3D City Database for CityGML

Version 4.0

Documentation

2018

I u I I virtualcitySYSTEMS o —
Geoinformationssysteme

2 3D Geodatabase for CityGML 2018

The images on the cover page were provided by:

— Chair of Photogrammetry and Remote Sensing & Chair of Cartography, Technische
Universitit Miinchen

— Geobasisdaten: © Stadtvermessung Frankfurt am Main
- IDAC Ltd, UK.
— virtualcitySYSTEMS GmbH, Berlin, Germany

— Chair of Geoinformatics, Technische Universitdt Miinchen. Image created based on
master thesis work of Matthias Korner, jointly supervised with HTW Dresden

— 3D City Model of Berlin © Berlin partner GmbH

- M.O.S.S. Computer Grafik Systeme GmbH, Taufkirchen, Germany

3D Geodatabase for CityGML 2018

Active participants in development

Name Institution Email

Thomas H. Kolbe Chair of Geoinformatics, thomas.kolbe@tum.de

Son H. Nguyen Technische Universitdt Miinchen son.nguyen@tum.de
Kanishk Chaturvedi kanishk.chaturvedi@tum.de
Bruno Willenborg b.willenborg@tum.de
Andreas Donaubauer andreas.donaubauer@tum.de
Claus Nagel virtualcitySYSTEMS GmbH, Berlin cnagel@pvirtualcitysystems.de
Zhihang Yao zyao@virtualcitysystems.de
Harald Schulz M.O.S.S. Computer Grafik Systeme GmbH, hschulz@moss.de

Philipp Willkomm Taufkirchen, Germany pwillkomm@moss.de
Gyorgy Hudra ghudra@moss.de

Felix Kunde Beuth University of Applied Sciences felix-kunde@gmzx.de

Participants in earlier developments

3D City Database Version 4.0.0 and its tools are based on earlier versions. During the
development phase 2006-2012 at the Institute for Geodesy and Geoinformation Science, TU

Berlin, the following individuals contributed to the development:

Name

Institution

Email

Thomas H. Kolbe
Claus Nagel
Javier Herreruela
Gerhard Konig
Alexandra Lorenz
(geb. Stadler)
Babak Naderi

Institute for Geodesy and Geoinformation
Science, Technische Universitidt Berlin

Felix Kunde

University of Potsdam

During the development phase 2004-2006 at the Institute for Cartography and Geo-
information, University of Bonn, the following individuals contributed to the development:

Name

Institution

Email

Thomas H. Kolbe
Lutz Plimer
Gerhard Groger
Viktor Stroh

Jorg Schmittwilken

Institute for Cartography and Geoinformation,
University of Bonn

Andreas Poth
Ugo Taddei

lat/lon GmbH, Bonn

mailto:thomas.kolbe@t

3D Geodatabase for CityGML 2018

3D Geodatabase for CityGML 2018 5

Table of Contents

DISCLAIMER ... rr s s sss s s s mmms s s s e s e nnmmm s s nnn s s e nnnns 1
1 INTRODUCGTION.... .ot rrrrssssss s sssmsss s s s s nmmss s s e e s nmmmnnnas 13
1.1 Main features of 3DCILYDB.c.ccccooieeiiieiieee e 15
1.2 System and deSign deCiSIONS.................ccceevvueieiiieeeiiieeiieeeee et 20
1.3 List of changes between SOftWaAre Ve SIONS.............cccoeeeveeeeeeeeiieeeiieesieeeereeenenens 21
1.3.1 Notable changes between 4.0.0 and 3.3.0.......c.cccceeviiienieniiienieeieeieee 21

1.4 Development RISTOTY...........cccoeieueiieeiiieeeeee ettt 23
1.5 AcknOWIEAZEMENLScccoociiiiiiiieiece e 24
2 DATA MODELLING AND DATABASE DESIGNccooiiiiiirrrieeiinneeeeenes 27
2.1 Simplification compared to CityGML 2.0.0c.cccoovvimiviaiiiiiiiiiieieeieen, 27
2.1.1 Multiplicities, cardinalities and r€CUrSIONScccueerueeriersieereeeiiienieeieans 27

2.1.2 Data type adaptationcceeeoueeriiieiieeniieeieeeie ettt 28

2.1.3 Project specific classes and class attributes..........cceeeeeeieeriienieeniencieeinens 28

2.1.4 Simplified design of GML geometry classescccceevveerivenieeniienieennnens 28

2.2 UML class di@Uami................cccocoueiuiiiiieieiie et 28
2.2.1 Geometric-topological Model..........cccoeiiiiiiiiiiiniiieeeeeeeee 29

2.2.2 ImPHCIt GEOMELIY.....eiiiiiiiiiiiiieiie ettt et et 30

2.2.3 Appearance MOdel.........cooiiiiiiiiiiiiiiiee e 31

2.2.4 Thematic MOdelcoceevuiiiiiiiiiiiiirieeeeeeee s 34
2.2.4.1 Core MOdel......oruiiiiiiiiiieniieiectetee et 34

2.2.4.2 Building modelccocuiiiiiiiiiiieiiieee e 36

2.2.4.3 Bridge Model........ccoiiiiiiiiiiiiieiecieeeee e 39

2.2.4.4 CityFurniture Model..........coooiiiiiiiieiiieeeecieeee e 42

2.2.4.5 Digital Terrain Model..........ccooveeiiiieiiieeiieeieeeeeeee e 43

2.2.4.6 Generic Objects and AHIIDULEScccveeereveeeiieeeiieeeiie e 45

2.2.47 LandUse Modelcoouiiiiiiiiiiiiieieeeeee e 47

2.2.4.8 Transportation Modelccoeoiiriiiiiiniiieieeeeceeeeee e 47

2.2.4.9 Tunnel Modelcoooiiiniiiiiiiiiiieneeeeeeee e 49

2.2.4.10 Vegetation Modelcoooveeiiieiiiniiieiieiiieiece e 52

2.2.4.11 WaterBodies Model...........cocoviiniiiiniiniiienieiccieeeeeesieee 53

2.3 Relational database SCREM.....................ccccoeceeeiiieiiiiiieiiieeie e 55
2.3.1 Mapping rules, schema CONVENtIONS.........ceveerrieerieriiienieeieenieeiee e 55
2.3.1.1 Mapping of classes onto tables...........ccoeeueevieriiienieniiieieeieeiens 55

2.3.1.2 Explicit declaration of class affiliation...........cccccecerveneriinennens 55

2.3.2 Conceptual database StrUCtUIEccceeeeuiiriierieiieeiieeie et 58

2.3.3 Database SChemMa..........coeeiirieriirieiieieeesee e 59

2.3.3.1 Metadata MOdE]L.....cooeeeeeeee e 59

3D Geodatabase for CityGML 2018

2.3.3.2 Core MOdel......ooiiiiiiiiiiiiieeee e 62

2.3.3.3 Tables for geometry representation.............cceeeveereerveerieenveennnans 64

2.3.3.4 Appearance Modelcccoeviieiiiiniiiinieiiieieee e 71

2.3.3.5 Building Model.........coocuiiiiiiiieiiiiiiciee e 76

2.3.3.6 Bridge Model........ccoiiiiiiiiieiiieiieceeeee e 82

2.3.3.7 CityFurniture Model...........cooouiieiiiieiiieeieecieeee e 84

2.3.3.8 Digital Terrain Model..........cccveeviiieiiieeiieceeeeceee e 85

2.3.3.9 Generic Objects and AHIIDULEScccveeevvieeiieeeiieeeiieeeiee e 87

2.3.3.10 LandUse Modelcoouiiiiiiiiiiiieniieieeseeee e 89

2.3.3.11 Transportation Modelccoeoiiriieiiiniiiiiieeieeeee e 89

2.3.3.12 Tunnel Modelcoouiiiiniiiiiiiiieieeeeeeseeee e 91

2.3.3.13 Vegetation Modelccccveeiiieiiiiiiieiieniieiece e 93

2.3.3.14 WaterBody Modelccoeviieiiiiiiiiiiiieeece e 94

2.3.4 SEQUEIICES oottt ettt ettt et ettt s 95

2.3.5 Definition of the CRS for a 3D City Database instance...........c...ccecueeueee 96
IMPLEMENTATION AND INSTALLATION........cooiiiiiiriiiereirer e 99
3.1 SYSTEM FOGUITEIMENLSeoeeeee et e et e e et e e e e ntaeeeeeesaeeeenn 99
3.1.1 3D City Database......ccceevuieeieiiiieeiieiieeie ettt ettt 99

3.1.2 Importetr/EXporter TOOL........ccooiiiiiiiiiiiiiiee e 99

3.2 Installation of the Importer/Exporter and the 3D City Database SQL Scripts... 100
3.3 Setting up the database SCREMQ.ccceevvuieeieeiciiieeiieeeciee e 102
33,1 Shell SCTIPLS ...viieiiieiieiie ettt ettt ettt enee s 102

3.3.2 SQL SCTIPLS.cutiiiiieiieeiieeieeeie ettt ettt ettt e teesteesbeebaeenaeeseessseeseens 103

3.3.3 Installation steps on Oracle Databasesccccccveveeeiiienieeiiieniieeieeiens 103

3.3.4 Installation steps on PostgreSQL.........cccoeiiiiiiiiiiienieiieeieeeeee e 106

3.4 Working with multiple database SCREMASccccoevveveiieeiieiiiiieenieeeieen, 108
3.4.1 Create and address database schemas..........c..cccceeveniiiinieniencnicnenee 108

3.4.2 Read and write access to @ SChema..........ccceceevierieniinieniencciceeee 109

3.4.3 Schema support in stored proceduresccooueevuierieeiieenieeiiienieeieeeeans 109

3.5 Migration from previous major releases................cccccouccieeeeeeciasieeeieanieeieannenns 110
3.5.1 V2 to V4 Migration on Oracle..........ccoviiiiiiiiiiiiiniiiiieiceeeeeieeee 111

3.5.2 V2 to V4 Migration on PostgreSQL..........cccoooiiiiiiiiiiiiiiineeeeieeeee 113

3.5.3 V310 VA MIGLationcoevieiiiieiieiieeiiesiieeieeite ettt st eiae i e seaeene s 113

3.6 Upgrade between minor releasesccccceuvueeeeeiiianeeiiieiieeeeeeeeeeins 113
STORED PROCEDURES AND ADDITIONAL FEATURES.............cceeeeeeeee. 115
4.1 User-defined dat@ tyPes.............ccooeueioiiiieeiiiaiieee et 115
4.2 CITYDB UTIL.......c.ocouiiiiiiaiiieeeee ettt 116
4.3 CITYDB CONSTRAINTccooiiiiiieieeee ettt 117
4.4 CITYDB IDX.....cccooiiiiiiiiiiieee ettt et 118
4.5 CITYDB SRS.....oooiiiiiieeeee ettt 119

3D Geodatabase for CityGML 2018 7

4.0 CITYDB STAT ..ottt 120
4.7 CITYDB OBJCLASS. ..ottt 120
4.8 CITYDB DELETE.........ccoiitiiiiieitee ettt 120
4.9 CITYDB ENVELOPEccocooiiiiiieieeeeee et 123
5 IMPORTER / EXPORTER......ccoiiiiiiiiei s 125
5.1 Running and using the Importer / EXPOFLErc..cccouvievieeiiaiieaiiaiienieeean. 125
5.2 Database connections and OPErationsccccoeeeeecreeeeaceeeseeeiieaneeeeeeneens 128
5.2.1 Managing and establishing database connectionsccecceeveeriennncene 128

5.2.2 Executing database OpPerations...........cceceeeueerierieeniiesieeniee e esiee e 130

5.3 Importing CityGML filescccoooeouiieiiiieiiee e 137
5.4 Exporting to CityGML...........cccooooiiiiiiiaiiiiie e 142
5.5 Exporting to KML/COLLADA/GITEcccveoiiiiiiieeeiieeeceeeeie et 145
5.5.1 Support of GenericCityObject having any geometry types..................... 152

5.5.2 Loading exported models in Google Earth and Cesium Virtual Globe... 153

5.0 PFEIEIONCES ...t 156
5.6.1 CityGML import preferencesoocueereerieenieniieenieeieeieeeieeiee e 157
5.6.1.1 CONINUALION ...eeovvieiieeiieiieeiieeie et e sire et e eteebee e eseeeaeenseesenes 157

5.6.1.2 gml:id handling.......c.ccoccoeiiiniiiiiiiniieiee e 158

5.6.1.3 Bounding DOXccceeeeiiiiiiiiieieeiieee et 159

5.6.1.4 AdAIESS ..couiieiiiiiieeeeee s 159

5.6.1.5 APPEATANCEeeveeiiiiieeeiiiieeeeiiee et e et e e et e e e e e eaaee s 162

5.6.1.6 GEOMELIY ..oeoiiiiiieeiiiee ettt ettt e e e e e e e e eaaee s 162

5.6.1.7 INAEXES...coiuiiiiiiiiieiieeeee e 164

5.6.1.8 XML validationccceceueeiiieniieiienieeieeeie e 165

5.6.1.9 XSL Transformation............ccceeeveeeiierieeniienieeiieeie e 166

5.6.1.10 IMPOTE LOZ ..veeneiieiiieiieeieeiie ettt 167

5.6.1.11 RESOUICES. ...ccuuiiruiiiiiiniiieiieeieete ettt 168

5.6.2 CityGML eXpOrt PreferenCes......coueiueeriieriieniieeieeniie et esiee e 171
5.6.2.1 CityGML VEISION ...ccvviieiiiieiieeeiieeeiie et svee e 171

5.6.2.2 Bounding boXcceeeeuiiiiiuiiiiiiieciieeee e 171

5.6.2.3 CityODbJECtGTIOUD ..veeevreeeeiieeiieeeiieeeieeeeieeesreeesreeesaeeeeeaee e 173

5.6.2.4 AdAIEsSoouiiiiiiiiieiieeee s 174

5.6.2.5 APPECATANCEeeevuviieeiiiieiiieeeiee ettt et 175

5.6.2.6 XLINKS .eouviiiiiiieiiiiesieeieeee ettt 176

5.6.2.7 XSL Transformation............ccceecveevuienieeniienieeiiesie e 177

5.6.2.8 RESOUICES...ccouuiiiiiiiiiiiiiiiiee ettt ettt s 178

5.6.3 KML/COLLADA/gITF export preferences..........ccoceeevueeneeriieenieeniennienns 179
5.6.3.1 General Preferences..........coceeveeiiiiniiiiienieeenceeeeeeeeee 179

5.6.3.2 Rendering Preferences........coooveveieeeciieeeciieeeieeeee e 183

5.6.3.3 Information Balloon Preferences............cccooueeveeniiniiinicnncnnen. 192

5.6.3.4 Altitude/Terrain Preferencesooovvvveveeeeeiiieiieeeiieieieeeeeeeeeeenenn. 199

3D Geodatabase for CityGML 2018

5.6.3.5 General setting recommendationsccceceeereieeencieeenveeennen. 204

5.6.4 Management of user-defined coordinate reference systems.................... 206

5.6.5 General PreferenCesoouiiriiiiiierieeiieeiie ettt 208
5.6.5.1 CaAChE ..oouiiiiiiiiiece s 208

5.6.5.2 Import and export pathcccceeeviieriieiiinieeece e, 209

5.6.5.3 NEtWOTK PIOXIES ..vveeevrreeiieeeiieeeirieeeieeeeieeesreeesreeesseeessaeeennneas 209

5.6.5.4 LOZEING .evviieiiieeiieeeee ettt e 210

5.6.5.5 Language SEleCtiONnccceeeeuveeriuieeeiiieeeiie e eeiee e eevee e 212

5.7 Map window for bounding box Selections...............ccccocvveveveeviieeesiiereniieeennans 213
5.8 Using the command line interface (CLI)............cccccocuevvveiviiieiiiiieiiieesieeeeieens 216
IMPORTER / EXPORTER PLUGINS.........cooiiiiirrrrrrrerrrrr s 219
6.1 Introduction to the plugin architeCtureccovevcuveecceeeeiieeeiieeeeeeeeeeennn, 219
6.2 Spreadsheet Generator Plugin (SPSHG)cc.cccoovoiiiiiiiiiiiiiiiieiieee e, 220
0.2.1 DEIINITION. ...cotiiiiiiiieie ettt sttt 220

6.2.2 Plugin installationcccooiiiiiiiiiiiie e 220

6.2.3 USer INterfacecocueeiuiiiiiiii e 221
6.2.3.1 Main Parameters...........cocuerieeniiiiiienieeiieseeee e 221

6.2.3.2 COIUMDS.eiiiiiiiieee e 222

6.2.3.3 COontent SOUICEcccueeruiieiiiriieiieeieeneteee et 227

0.2.3.4 OULPUL...oueiiiiiiiiiecieeeee ettt 227

6.3 ADE Manager PIUGINccccccooiiiiiiiiiiieiieeeee e 234
0.3.1 DEIINITIONcotiiiiiiiiieie ettt sttt 234

6.3.2 Plugin installationcccooiiiiiiiiiiiieeee e 234

6.3.3 USer INETaCE ..c..eeuvieiiiiieiiiieee e 236
6.3.3.1 ADE RegiStrationcccceevueeriieiiienieeiienieeieeeee e 236

6.3.3.2 ADE Transformation.........c.cceceveeneriieneenenieneeneseeseeeeeeee e 239

6.3.4 Workflow of extending the Import/Export Toolcccceeeuierrenirnnnn. 242
WEB FEATURE SERVICEccoi s 249
7.0 SYSEeM FEGUITEIMENLScoeeeeeeeeeeiie ettt e e e eaae e e e e e e eeaeee s 249
7.2 INSEAILIATION. ...t e 250
7.3 Configuring the Web Feature ServiCe...............ccocouvouievieeaiiieeeiieeiiieesieeenneaans 252
7.3.1 Database SETHNZScccveeruierieeiieiieeieeeiee et erieeeteesteeereeseeeaeeseessaeeeeens 252

7.3.2 Capabilities SEHINEScccuieriieiiieriieeiieriie et eee et ere e saeeeeae e 255

7.3.3 Feature type SEHINESeevuierieeiieeiieeiieeiie ettt ettt et eaeebeeseaeeee 256

7.3.4 OPErations SETHINZSceeruieriieriieeiiieeieeriie et eniee et e steeste et e saeenbeesaaeebee s 257

7.3.5 PoOStProcessSiNg SEHNZScccueeruieruieiiieriieeieeiee et e sttt siee st siee s 258

7.3.0 SEIVEI SETIINZS. coueeietieiieeiieiie ettt ettt ettt et st be e st beesaaeebee s 259

7.3.7 CaChE SEHINES ...ueeiiitieiieiiieiee ettt sttt e 260

7.3.8 CONSraINtS SETINZS ..ccuveitieriieiiieitieeieeeite ettt ettt sttt e sbeesaaeeee s 260

7.3.9 LOZEING SELHNEZS ..ecuveeeiieiieiieeieeeiie et eeite ettt et esteesreeseeeaeeseessneenseens 261

3D Geodatabase for CityGML 2018 9

7.4 Using the Web Feature ServiCecccccccuauueiiiaieieiieiieeie e 262

7.4.1 Basic functionalitycccooiiiiiiiiiiiieieee e 262

T7.4.1.1 WES OPETatioNnSccccuvieeiiieeiieeeiieeeieeeeieeeereeesreeesreeeseaeeennneas 262

7.4.1.2 Service URLccoooiiiiiiiiieieceeeeee e 263

7.4.1.3 Service DINAINGSccccveeeeuieieiieeiieeeee et 264

7.4.1.4 CityGML feature tyPes......ccceerieeriierieeiienieeieeeie e eee e 264

7.4.1.5 EXCEPLION TEPOTLS..c.ueierieriieeiieiieeiienireeteesiieereeseeeeseesaeeseesnnas 265

7.4.2 GetCapabilities OPETatiONceevuveeiiierieeiieiie et esiee et eiee e eee e 265

7.4.3 DescribeFeatureType Operation...........cccueecveeruieeiiieniieeiieeniieeieesieesieeeeans 266

7.4.4 ListStoredQUETies OPETatiONcc.eeruieriieriieiieeieenieeeeeeieeeaeeieesete e 268

7.4.5 DescribeStoredQUEry OPETationcocceeeueerieriieeniieeieeniee e esiee e 269

7.4.6 GetFeature OPErationcooueirieerieeiieniie ettt ettt sttt et e 271

7.5 Web-based WF'S CLIENL................ccccooeeeieiiiiieiiieeeiee e 273

8 3DCITYDB-WEB-MAP-CLIENTcooueiiiieenenns 275
8.1 SYSIEM FOGUITEIMENLSoeeeieeeeeee et e e e e et e e e e aaaee s 276

8.2 Installation and cONfIQUIALION.................ccooeeuiiiieiiieiieee et 276

8.3 USing the 3D Web CLIENLcccocueeiiiiiiieeiieeeee e 278

8.3.1 Overview of the relevant features and functionalities.............cccccccuenen. 278

8.3.2 Handling KML/gITF models with online spreadsheetccccecnee. 283

8.3.3 Handling Web Map Service data..........c.coeceeeiiiiiiiiiiiiiiiicieeeeieeee 290

8.3.4 Handling Digital Terrain Modelscoocueiiiiniiiiiiiiiiieieceeieeee 292

8.3.5 Interaction with 3D ObJECtS....cc.eeiiiiiiiiiiiiiiee e 294

8.3.6 Mobile Support EXtENSIONccceecuiiriieiieiiieiieeie ettt 300

8.3.7 Using the 3D Web Client from the 3DCityDB homepage....................... 302

9 3DCITYDB DOCKER IMAGES........... .o 303
9.1 GeING STATLE ...ttt 303

9.2 FUFPLREY TMAZESccoveeee ettt e e niaaeeenaeeen 304

10 REFERENGCES..........o o 305
APPENDIX A CHANGELOG........coooiiiiiiiirirrirrr s 309
A.1 3D City Database relational SCHEMacccocceeeeeeieiiieeniieeeiieeeiie e, 309
A.L.1 General Changes...........ccveruiieiiieiiieiiecie et 309

A.2 3D City Database SCTIDLScc.covueeeeiaiieeieeieeeiee ettt 309

A.3 3D City Database stored proceduresccoecueioeeciesiieeiiaiieeeeeieeeeen, 310
A.3.1 General Changes........cc.veeiiieeiiieeiee et eee e e e e sbeeeeaaeeen 310

A3.2 UTIL PACKAZE ...coiiieiieeiieie ettt e 310

A.3.3 IDX PACKAZE ..c.veeeiiieiieeiieiie ettt ettt et 310

A.3.4 SRS PACKAZEeeeiiieiieeiieeeeee et 310

A.3.5 STAT PACKAZE ...cvvieniieeiieiie ettt ettt ettt 310

A.3.6 DELETE PaCKa@eccovieiiieiieiiieiieeie ettt 310

10 3D Geodatabase for CityGML 2018

A.3.7 DELETE BY LINEAGE package........ccceceriririieieieierienieseeieeeeneenen 311

A.3.8 ENVELOPE packagecccccceeviiiiiiiiiieiieeieetee et 311

A.4 3D City Database Importer/EXPOTLEr..............ccocveeeieieeaiiaiieeeeeieee e, 311

A4l General ChaneS........ccveeeiieeiiieeiee et e e e e sbeeeeareeen 311

A4.2 CityGML IMPOTL...c.eeiiieiiieerieeeiieit ettt esaesteereeseeneas 311

A3 CityGML EXPOTt ..ocvvevieiieieiesieeieeeettee ettt eesaessesaeeseseeesaeneas 312

A.4.4 KML/COLLADA/ZITE €XPOIt....cccciiiiiiiiieniieiienieeiieeieeiee e 312

A5 Web FeQtUre ServViCecccoeiiiiiiiiaiiiiiiieetee ettt 312

A6 3D Web Map CLENL ..o 312
APPENDIXB 3DCITYDB @ TU MUNCHEN...........cceceeerrreeeeeeeeeeeeeesesseeneas 313
B.1 Interactive Cloud-based 3D Webclientc.ccocuevivciniiineiiiiieeieee. 313

B.2 Research Projects in which 3DCityDB is being usedccccccoceveevennn.ne. 314

B.3 Current and future work on 3DCItyDBccccccovviiiieiiieiieeieceee e, 314
APPENDIXC 3DCITYDB @ VIRTUALCITYSYSTEMS.........cccooiiiirrrreeene 315
C.1 VIirtualcityDATABASEcc.ooooiiiiiieieeeeeeee e 315

C.2 virtualcitySUITE — The 3D City Platform............cccccooveevcieiiiiiiiaiieieeeeen, 316
APPENDIX D 3DCITYDB @ M.O.S.S. ... 317
D.1 novaFACTORY at @ QLANCEcccoeveieiieiiiiieeeeeeee e 317

D.2 novaFACTORY 3D GDIccccooiiiiiiiiiiiiiiiiieeeeeee e 318

3D Geodatabase for CityGML 2018 11

Disclaimer

The 3D City Database (3DCityDB) version 4.0.0 has been developed in collaboration of the
Chair of Geoinformatics, Technische Universitit Miinchen (TUMGI), virtualcitySYSTEMS
GmbH, and M.O.S.S. Computer Grafik System GmbH. 3DCityDB is free and Open Software
licensed under the Apache License, Version 2.0. See the file LICENSE file shipped together
with the software for more details. You may obtain a copy of the license at
http://www.apache.org/licenses/LICENSE-2.0.

Please note that releases of the software before version 3.3.0 continue to be licensed under
GNU LGPL 3.0. To request a previous release of the 3D City Database under Apache License
2.0 create a GitHub issue at https://github.com/3dcitydb.

THE SOFTWARE IS PROVIDED BY TUMGI "AS IS" AND "WITH ALL FAULTS."
TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE QUALITY, SAFETY OR SUITABILITY OF THE SOFTWARE,
EITHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH,
ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR
MATERIALS CONCERNING THE SOFTWARE THAT IS CONTAINED ON AND
WITHIN ANY OF THE WEBSITES OWNED AND OPERATED BY TUMGI.

IN NO EVENT WILL TUMGI BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND
EVEN IF TUMGI HAVE BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

http://www.apache.org/licenses/LICENSE-2.0
https://github.com/3dcitydb

12

3D Geodatabase for CityGML 2018

3D Geodatabase for CityGML 2018 13

1 Introduction

Virtual 3D city and landscape models are provided for an increasing number of cities, regions,
states, and even countries. They are created and maintained by public authorities like national
and state mapping agencies as well as by cadastre institutions and private companies. The 3D
topography of urban and rural areas is essential for both visual exploration and a range of
different analyses in, for example, the urban planning, environmental, energy, transportation,
and facility management sectors.

3D city models are nowadays used as an integrative information backbone representing the
relevant urban entities along with their spatial, semantic, and visual properties. They are often
created and maintained with full coverage of entire cities and even countries, i.e. all real
world objects of a specific type like buildings, roads, trees, water bodies, and the terrain are
explicitly represented. In most cases the 3D city model objects have well-defined identifiers,
which are kept stable during the lifetime of the real world objects and their virtual
counterparts. Such complete 3D models are a good basis to organize different types of data
and sensors within Smart City projects as they build a stable platform for information linking
and enrichment.

In order to establish a common understanding and interpretation of the urban objects and to
achieve interoperable access and exchange of complete 3D models including the geometric,
topologic, visual, and semantic data, the Open Geospatial Consortium (OGC) has issued the
CityGML standard [Kolbe 2009]. CityGML defines a feature catalogue and data model for
the most relevant 3D topographic elements like buildings, bridges, tunnels, roads, railways,
vegetation, water bodies, etc. The data model is mapped to an XML-based exchange format
using OGC’s Geography Markup Language (GML).

The 3D City Database (3DCityDB) is a free Open Source package consisting of a database
schema and a set of software tools to import, manage, analyse, visualize, and export virtual
3D city models according to the CityGML standard. The database schema results from a
mapping of the object oriented data model of CityGML 2.0 to the relational structure of a
spatially-enhanced relational database management system (SRDBMS). The 3DCityDB
supports the commercial SRDBMS Oracle (with ‘Spatial’ or ‘Locator’ license options) and
the Open Source SRDBMS PostGIS (which is an extension to the free RDBMS PostgreSQL).
3DCityDB makes use of the specific representation and processing capabilities of the
SRDBMS regarding the spatial data elements. It can handle also very large models in multiple
levels of details consisting of millions of 3D objects with hundreds of millions of geometries
and texture images.

3DCityDB is in use in real life production systems in many places around the world and is
also being used in a number of research projects. For example, the cities of Berlin, Potsdam,
Munich, Frankfurt, Zurich, Rotterdam, Singapore all keep and manage their virtual 3D city
models within an instance of 3DCityDB. The companies virtualcitySYSTEMS (VCS) and
M.O.S.S., who are also partners in development, use 3DCityDB at the core of their
commercial products and services to create, maintain, visualize, transform, and export virtual

14 3D Geodatabase for CityGML 2018

3D city models (see Appendix B, Appendix C, and Appendix D for examples how and where
TUM, virtualcitySYSTEMS, and M.O.S.S. employ 3DCityDB in their projects). Furthermore,
the state mapping agencies of all 16 states in Germany store and manage the state-wide
collected 3D building models in CityGML LODI1 and LOD2 using 3DCityDB. In 2012 the
previous version of 3DCityDB and the developer team received the Oracle Spatial Excellence
Award, issued by Oracle USA.

Since 3DCityDB is based on CityGML, interoperable data access from user applications to
the database can be achieved in at least two ways:

1) by using the included high-performance CityGML Import/Export tool or the included
basic Web Feature Service 2.0 in order to exchange the data in CityGML format
(Version 2.0 or 1.0), and

2) by directly accessing the database tables whose relational structures are fully
explained in detail within this document. It is easy to enrich a 3D city model by
adding information to the database tables in some user application (using e.g. the
database APIs of programming language like C++, Java, Python, or of ETL tools like
the Feature Manipulation Engine from Safe Software). The enriched dataset then can
be exchanged or archived by exporting the city model to CityGML without
information loss. Analogously, 3DCityDB can be used to import a CityGML dataset
and then access and work with the city model by directly accessing the database tables
from some application programs or ETL software.

The Import/Export tool also provides functionalities for the direct export of 3D visualization
models in KML, COLLADA, and gITF formats. A tiling strategy is supported which allows
to visualize even very large 3D city and landscape models in geoinformation systems (GIS) or
digital virtual globes like Google Earth or CesiumJS Virtual Globe. The Import/Export tool
comes with an API to create further importers, exporters, and database administration tools.
One export plugin coming with the software installer package is the so-called ‘Spreadsheet
Generator Plugin’ (SPSHG) which allows to export thematic data of 3D objects into tables in
CSV and Microsoft Excel format that can be easily uploaded to and published as online
spreadsheets, for instance, within the Google Cloud. Starting from release 3.3.0, the
3DCityDB software package comes with the CesiumJS-based 3D viewer called “3DCityDB-
Web-Map-Client” which can link the 3D visualization models with online spreadsheets and
facilitates interactive visualization and exploration of 3D city models over the Internet within
web browsers on desktop and mobile computers. The most significant new functionality in
release 4.0.0 is the support of CityGML Application Domain Extensions (ADEs). ADEs
extend the CityGML datamodel by domain specific object types, attributes, and relations.

This document describes the design and the components of the 3D City Database as well as
their usage for the new major release 4.0.0 which has been developed and implemented by the
three partners in development, namely the Chair of Geoinformatics at Technische Universitdt
Miinchen, virtualcitySYSTEMS, and M.O.S.S. The development is continuing the previous
work carried out at the Institute for Geodesy und Geoinformation Science (IGG) of the Berlin
University of Technology and the Institute for Cartography and Geoinformation (IKG) of the
University of Bonn.

3D Geodatabase for CityGML 2018 15

This document has been completely reworked, integrated, extended, and edited from the
previous 3DCityDB documentations (version 3.3.0, version 2.0.1, and the documentation
addendum on 3DCityDB version 2.1.0 and the Importer/Exporter tool version 1.6.0). Some
figures and texts are cited from the OpenGIS City Geography Markup Language (CityGML)
Encoding Standard, Version 2.0.0 [Groger et al. 2012].

1.1 Main features of 3DCityDB

Many (but not all) of the features referring to object modelling and representation are implied
by following the CityGML standard 2.0.0 issued by the Open Geospatial Consortium.

CityGML 2.0.0 and 1.0.0 compliant database: The implementation defines the
classes and relations for the most relevant topographic objects in cities and regional
models with respect to their geometrical, topological, semantical, and appearance
properties. Included are generalization hierarchies between thematic classes,
aggregations, relations between objects, and spatial properties. These thematic
information go beyond graphic exchange formats and allow to employ virtual 3D city
models for sophisticated analysis tasks in different application domains.

Implementation on the basis of a spatially-enhanced relational database manage-
ment system (Oracle 10G R2 or higher with Spatial/Locator option; PostgreSQL
9.1 or higher with PostGIS extension 2.0 or higher): For the representation of all
vector and grid geometry the built-in data types provided by the SRDBMS are used
exclusively. This way, special solutions are avoided and different geoinformation
systems, CAD/BIM systems, and ETL software systems can directly access (read and
write) the geometry objects stored in the SRDBMS.

Support for CityGML Application Domain Extensions (ADEs): Semantic 3D city
models are employed for many different applications from diverse domains like
energetic, environmental, driving, and traffic simulations, as-built building infor-
mation modeling (as-built BIM), asset management, and urban information fusion. In
order to store and exchange application specific data aligned and integrated with the
3D city objects, the CityGML datamodel can be extended by new feature types,
attributes, and relations using the CityGML ADE mechanism. ADEs are specified as
(partial) GML application schemas using the modeling language XML Schema.
Starting from release 4.0.0 the 3DCityDB database schema can be dynamically
extended by arbitrary ADEs like the Energy ADE, UtilityNetwork ADE, Dynamizer
ADE, or national CityGML extensions like IMGeo3D (from The Netherlands). Since
ADEs can define an arbitrary number of new elements with all types and numbers of
spatial properties, a transformation method has been developed to automatically derive
the relational database schemas for arbitrary ADEs from the ADE XML schema files.
Since we intended to follow similar rules in the mapping of the object-oriented ADE
models onto relational models as we used for the (manual) mapping of the CityGML
datamodel onto the 3DCityDB core schema, the Chair of Geoinformatics at TUM
developed a new transformation method based on graph transformation systems. This

16

3D Geodatabase for CityGML 2018

method is described in detail in [Yao & Kolbe 2017] and is implemented within the
“ADE Manager” plugin for the Importer/Exporter software tool. It performs a
sophisticated analysis of the XML schema files of an ADE, the automatic derivation
of additional relational table structures, and the registration of the ADE within the
3DCityDB. Furthermore, SQL scripts are generated for each ADE for e.g. the deletion
of ADE objects and attributes from the database. Please note that in order to support
also the import and export of CityGML datasets with ADE contents, a Java library for
the specific ADE has to be implemented. This library has to perform the handling of
the CityGML ADE XML elements and the reading from and writing into the
respective ADE database tables using JDBC and SQL. An example how to develop
such a Java library is given for a Test ADE in the 3DCityDB github repository'.

Tool for importing and exporting CityGML data: The included Importer/Exporter
software tool allows for high performance importing and exporting of CityGML
datasets according to CityGML versions 2.0 and 1.0. The tool allows processing of
very large datasets (>> 4 GB), even if they include XLinks between CityGML features
or XLinks to 3D GML geometry objects. The multi-threaded programming exploits
multiprocessor systems or multikernel CPUs to speed up the processing of complex
XML-structures, resulting in high performance database access. Objects can be
filtered during import or export according to spatial regions (bounding box), their
object IDs, feature types, names, and levels of detail. Bounding boxes can be
interactively selected using a map window based on OpenStreetMap (OSM). A tiling
strategy is implemented in order to support the export of very large datasets. In case of
a very high number of texture images they can be automatically distributed in a
configurable number of subdirectories in order to avoid large directories with millions
of files which can render a Microsoft Windows operating systems unresponsive. The
Importer can also validate CityGML files and can be configured to only import valid
features. It considers CityGML ADE contents, if the ADEs have been registered in the
database and specific Java libraries for reading/writing the ADE contents from/into the
ADE database tables is provided (see above). The Importer/Exporter tool can be run in
interactive or batch mode.

Tool for exporting visualization models in KML, COLLADA, and gITF formats:
This tool exports city models from the 3D city database in KML, COLLADA, and
gITF formats which can directly be viewed and interactively explored in
geoinformation systems (GIS) or digital virtual globes like Google Earth or Cesium
WebGL Virtual Globe. A tiling strategy is supported where only tiles in the vicinity of
the viewer’s location are being loaded facilitating the visualization of even very large
3D city and landscape models. Information balloons for all objects can be configured
by the user. The exported models are especially suited to be visualized using the
3DCityDB-Web-Map-Client (see below), an Open Source 3D web viewer that is
based on the CesiumJS Webglobe framework with many functional extensions.

! https://github.com/3dcitydb/extension-test-ade

https://github.com/3dcitydb/extension-test-ade

3D Geodatabase for CityGML 2018 17

Tool for exporting data to spreadsheets: The ‘Spreadsheet Generator’ (SPSHG)
allows exporting thematic data of 3D objects into tables in CSV and Microsoft Excel
format which can be uploaded to a Google Spreadsheet within the Google Document
Cloud. For every selected geoobject one row is being exported where the first column
always contains the GMLID value of the respective object. The further columns can
be selected by the user. This tool can be used to export attribute data from e.g.
buildings like the class, function, usage, roof type, address, and further generic
attributes that may contain information like the building energy demand, potential
solar energy gain, noise level on the facades etc. The spreadsheet rows can be linked
to the visualization model generated by the KML/COLLADA/gITF Exporter. This is
illustrated in Appendix B.

Tool for 3D visualization and interactive exploration of 3D models on the web:
The ‘3DCityDB-Web-Map-Client’ is a WebGL-based 3D web viewer which extends
the Cesium Virtual Globe to support efficient displaying, caching, prefetching,
dynamic loading and unloading of arbitrarily large pre-styled 3D visualization models
in the form of tiled KML/gITF datasets generated by the KML/COLLADA/gITF
Exporter. It provides an intuitive user interface to facilitate rich interaction with 3D
visualization models by means of the enhanced functionalities like highlighting the
objects of interests on mouseover and mouseclick as well as hiding, showing, and
shadowing them. Moreover, the 3DCityDB-Web-Map-Client is able to link the 3D
visualization model with an online spreadsheet (Google Fusion Table) in the Google
Cloud and allows viewing and querying the thematic data of every city object
according to its GMLID. For details see also [Chaturvedi et al. 2015, Yao et al. 2016].

Web Feature Service (WFS) 2.0: The 3DCityDB comes with an OGC compliant
implementation of a basic WFS 2.0 allowing web-based access to the 3D city objects
stored in the database. WFS clients can directly connect to this interface and retrieve
3D content for a wide variety of purposes. The implementation currently satisfies the
Simple WFS conformance class. The WFS considers CityGML ADE contents, if the
ADEs have been registered in the database and specific Java libraries for reading/
writing the ADE contents from/into the ADE database tables is provided (see above).
An implementation of a full, transactional WFS is commercially available from one of
the development partners, see Appendix C.

Support of different kinds of multi-representations: Levels of detail, different
appearances, (and with Oracle RDBMS only) planning versions and history:
Every geoobject as well as the DTM can be represented in five different resolution or
fidelity steps (Levels of Detail, LOD). With increasing LOD, objects do not only
obtain a more precise and finer geometry, but do also gain a thematic refinement.

Different appearance data may be stored for each city object. Appearance relates to
any surface-based theme, e.g. infrared radiation or noise pollution, not just visual
properties. Consequently, data provided by appearances can be used as input for both
presentation and analysis of virtual 3D city models. The database supports feature

18

3D Geodatabase for CityGML 2018

appearances for an arbitrary number of themes per city model. Each LOD of a feature
can have individual appearances. Appearances can represent — among others — textures
and georeferenced textures. All texture images can be stored in the database.

The version and history management employs Oracle’s Workspace Manager and,
hence, is only available for 3DCityDB instances running on an Oracle RDBMS. It is
largely transparent to application programs that work with the database. Procedures
saved within the database (Stored Procedures) are provided, which allow for the
management of planning alternatives and versions via application programs.

Complex digital terrain models: DTMs may be represented in four different ways in
CityGML and therefore also in the 3D city database: regular grids, triangular irregular
networks (TINs), 3D mass points and 3D break lines. For every level of detail, a
complex DTM consisting of any number of DTM components and DTM types can be
defined. Besides, it is possible to combine certain kinds of DTM representations for
the same geographic area with each other (e.g. mass points and break lines or grids
and break lines). In Oracle Spatial (but not Locator) Grid-based DTMs may be of
arbitrary size and are composed from separate tiles to a single overall grid using the
Oracle GeoRaster functionality. Please note that the Import/Export tool provides
functions to read and write TIN, mass point, and break line DTM components, but not
for raster based DTMs. GeoRaster data would have to be imported and exported using
other tools from e.g. Oracle, ESRI, or Safe Software.

Complex city object modelling: The representation of city objects in the 3D city
database ranges from coarse models to geometrically and semantically fine grained
structures. The underlying data model is a complete realization of the CityGML data
model for the levels of detail (LOD) 0 to 4. For example, buildings can be represented
by simple, monolithic objects or can consist of an aggregation of building parts.
Extensions of buildings, like balconies and stairs, can be classified thematically and
provided with attributes just as single surfaces can be. LOD4 completes a LOD3
model by adding interior structures for 3D objects. For example, LOD4 buildings are
composed of rooms, interior doors, stairs, and furniture. This allows among other
things to select the floor space of a building, so that it can later be used e.g. to derive
SmartBuildings or to form 3D solids by extrusion [Doéllner et al. 2005]. Buildings can
be assigned addresses that are also stored in the 3D city database. Their implemen-
tation refers to the OASIS xAL Standard, which maps the address formats of the
different countries into a unified XML schema. In order to model whole complexes of
buildings, single buildings can be aggregated to form special building groups. The
same complex modelling applies to the other CityGML feature types like bridges,
tunnels, transportation and vegetation objects, and water bodies.

Representation of generic and prototypical 3D objects: Generic objects enable the
storage of 3D geoobjects that are not explicitly modelled in CityGML yet, for example
dams or city walls, or that are available in a proprietary file format only. This way,
files from other software systems like architecture or computer graphics programs can

3D Geodatabase for CityGML 2018 19

be imported directly into the database (without interpretation). However, application
systems that would like to use these data must be able to interpret the corresponding
file formats after retrieving them back from the 3D geodatabase.

Prototypical objects are used for memory-efficient management of objects that occur
frequently in the city model and that do not differ with respect to geometry and
appearance. Examples are elements of street furniture like lanterns, road signs or
benches as well as vegetation objects like shrubs, certain tree types etc. Every instance
of a prototypical object is represented by a reference to the prototype, a base point and
a transformation matrix for scaling, rotating and translating the prototype.

The geometries (and appearances like textures, colors etc.) of generic objects as well
as prototypes can be stored either using the geometry datatype of the spatial database
management system (Oracle Spatial/Locator or PostGIS) or in proprietary file formats.
In the latter case a single file may be saved for every object, but the file type (MIME
type), the coordinate transformation matrix that is needed to integrate the object into
the world coordinate reference system (CRS) and the target CRS have to be specified.

o Extendable object attribution: All objects in the 3D geodatabase can be augmented
with an arbitrary number of additional generic attributes. This way, it is possible to
add further thematic information as well as further spatial properties to the objects at
any time. In combination with the concept of generic 3D objects this provides a highly
flexible storage option for object types which are not explicitly defined in the
CityGML standard. Every generic attribute consists of a triple of attribute name, data
type, and value. Supported data types are: string; integer and floating-point numbers;
date; time; binary object (BLOB, e.g. for storing a file); geometry object according to
the specific geometry data type of Oracle or PostGIS respectively; simple, composite,
or aggregate 3D solids or surfaces. Please note that generic attributes of type BLOB or
geometry are not allowed as generic attributes in CityGML (and will, thus, not be
exported by the CityGML exporter). However, it may be useful to store binary data
associated with the individual city objects, for example, to store derived 3D computer
graphics representations.

e Free, also recursive grouping of geoobjects: Geoobjects can be grouped arbitrarily.
The aggregates can be named and may also be provided with an arbitrary number of
generic attributes (see above). Object groups may also contain object groups, which
leads to nested aggregations of arbitrary depth. In addition, for every object of an
aggregation, its role in the group can be specified explicitly (qualified association).

o External references for all geoobjects: All geoobjects can be provided with an
arbitrary number of references to corresponding objects in external data sources (i.e.
hyperlinks / linked data). For example, in case of building objects this allows to store
e.g. the IDs of the corresponding objects in official cadasters, digital landscape models
(DLM), or Building Information Models (BIM). Each reference consists of an URI to
the external data store or database and the corresponding object ID or URI within that
external data store or database.

20 3D Geodatabase for CityGML 2018

e Flexible 3D geometries: The geometry of most 3D objects can be represented through
the combination of solids and surfaces as well as any - also recursive - aggregation of
these elements. Each surface may has attached different textures and colors on both its
front and back face. It may also comprise information on transparency. Additional
geometry types (any geometry type supported by the spatial database management
system Oracle Spatial/Locator or PostGIS) can be added to the geoobjects by using
generic attributes.

e Open Source and Platform Independence: The entire software is freely accessible
to the interested public. The 3DCityDB is licensed under the Apache License, Version
2.0, which allows including 3DCityDB in commercial systems. You may obtain a
copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0. Both
the Importer/Exporter tool and the Web Feature Service are implemented in Java and
can be run on different platforms and operating systems.

e Docker support: We now provide Docker images for 1) a complete 3DCityDB
installation pre-installed within a PostGIS SRDBMS, 2) a webserver with an installed
3DCityDB-Web-Map-Client, 3) a 3DCityDB WFS. We also provide a Docker-
compose script to launch all three Docker containers in a linked way with just a single
command. Details are given in Section 9 and in the respective github repositories.
Docker is a runtime environment for virtualization. Docker encapsulates individual
software applications in so-called containers, which are — in contrast to virtual
machines — light-weight and can be deployed, started and stopped very quickly and
easily. Using our Docker images a 3DCityDB can be installed by a single command.

1.2 System and design decisions

The 3D City Database is implemented as a relational database schema using the spatial
datatypes provided by a spatially-enhanced relational database management system
(SRDBMS). Above, external software applications and database stored procedures are
provided working on this database schema. Since only Oracle with the Spatial or Locator
licensing option (10G R2 or higher) and PostgreSQL (9.3 or higher) with PostGIS extension
(2.0 or higher) offer comprehensive support for 3D spatial data, the 3D City Database schema
is being provided for these two systems only.

In addition to the general advantages arising from the usage of a widely used relational
database management system (RDBMS), both Oracle Spatial/Locator and PostgreSQL/
PostGIS offer some important performance characteristics that allow an efficient implemen-
tation of the required functionalities:

e Both RDBMS support spatial data types with coordinates ranging from 2D to 4D.
Spatial indexes and filters can be 2D or 3D allowing for efficient spatial selections in
very large city models. Furthermore, the spatial data types are supported by a number

2 https://github.com/tum-gis

https://github.com/tum-gis

3D Geodatabase for CityGML 2018 21

of commercial and Open Source GIS that provide a database connection as for
example ESRI’s ArcGIS/ArcSDE or Safe Software’s Feature Manipulation Engine
(FME). This enables such systems to directly access the data stored in the 3D
geodatabase.

e Rules can be implemented using stored procedures and trigger mechanisms which
propagate updates of objects to likewise affected objects in the database (transparent
for the user).

The data model of the 3D City Database is based on the CityGML 2.0 standard. The object-
oriented data model of CityGML has been mapped to a purely relational data model with the
exception that geometry objects are mapped to the spatial datatypes provided by the SDBMS.
In order to achieve high performance for data manipulations and queries the mapping was
done manually with a number of optimizations. A few simplifying assumptions where made
regarding the usage of the CityGML concepts in the real world helping to increase
performance. These are documented in chapter 2.1.

Surface-based geometries like Polygons, TINs, MultiSurfaces as well as Solids are stored in a
special way: they are decomposed into their primitive surfaces and each surface is stored as an
individual tuple in one big surface table. The reason for this is that each surface can be
assigned multiple appearances (e.g. textures) in CityGML and, thus, each appearance must be
explicitly linkable to the corresponding surface. For Solids also the solid geometry objects are
stored in addition to their decomposed boundary surfaces allowing to apply spatial operations
on them like the computation of the volume.

The provided software tools like the Importer/Exporter application are implemented in the
Java language in order to be platform independent. The tools have been confirmed to run
under Microsoft Windows, Linux, and Apple Mac OS X. High performance is achieved by
exploiting multi-threading on multiprocessor or multi-core CPU systems.

1.3 List of changes between software versions

1.3.1 Notable changes between 4.0.0 and 3.3.0

New features and functionalities:

e Management and storage of arbitrary CityGML ADEs with the 3DCityDB, the
Importer/Exporter ADE Manager Plugin and the 3DCityDB WFS

e New 3DCityDB Docker images to support continuous integration workflows

e New metadata tables ADE, SCHEMA, SCHEMA REFERENCING and
SCHEMA TO OBJECTCLASS for registering CityGML ADEs

e New prefilled metadata table AGGREGATION INFO that supports the automatic
generation of DELETE and ENVELOPE scripts

e New function to create entries in USER_SDO GEOM METADATA view (Oracle)

22

3D Geodatabase for CityGML 2018

Function objectclass id to table name now has a counterpart:
table name to objectclass ids returning an array of objectclass ids
(CITYDB OBJCLASS package in Oracle, part of a data schema in PostgreSQL)

New database procedures to enable/disable foreign key constraints to speed up bulk
write operations (CITYDB CONSTRAINT package in Oracle, part of the
citydb pkg schema in PostgreSQL)

New SQL script to create additional data schemas in one database (PostgreSQL)

New shell and SQL scripts to grant read-only or full read-write access to another
schema.

Importer/Exporter can connect to different database schemas with the same user
Enabling XSL transformations on CityGML imports and exports as well as WFS
responses

New database operation panel to change the spatial reference system used in the
database (incl. optional coordinate transformation)

New LoD filter for CityGML exports

3DCityDB WEFS allows for exporting into the CityJSON format

Improved and updated features and functionalities:

Moved interactive prompts from SQL to batch/shell scripts for better setup automation
Added OBJECTCLASS ID column to all feature tables to distinguish objects from
CityGML ADEs. Also extended OBJECTCLASS table by more feature-specific
details and inserted new entries for feature properties such as geometry, generic
attributes etc.

Improved performance on stored procedures by reducing amount of dynamic SQL.
Therefore, schema name parameter has been removed from DELETE and ENVELOPE
scripts. Under PostgreSQL these scripts (as well as the INDEX TABLE) are now part
of a data schema such as citydb.

DELETE and ENVELOPE are now generated automatically in order to deal with
schema changes introduced by ADEs. Therefore, the function prefix has been
shortened to del and env_ not hit the character limit under Oracle,

The CITYDB DELETE BY LINEAGE package has been removed. The only
function left is del cityobjects by lineage which is now part of the
DELETE package

Database migration scripts for version 2.1.0 or version 3.3.0 to version 4.0.0

Switching from Ant to Gradle as the new build system for the Importer/Exporter tools
Allow import of CityGML files with flat hierarchies between city objects

Added support for importing gml:MultiGeometry objects containing only polygons
Added support for exporting to gITF v2.0

3DCityDB WFS now supports CORS and provides a KVP over HTTP GET endpoint
for every operation simplifying the integration with GIS and ETL software such as
FME

3D Geodatabase for CityGML 2018 23

1.4 Development history

The development of the 3D City Database was always closely related to the development of
the CityGML standard [Kolbe & Groger 2003]. It was started back in 2003 by Dr. Kolbe and
Prof. Pliimer at the Institute for Cartography and Geoinformation at University of Bonn. In
the period from November 2003 to December 2005 the official virtual 3D city model of
Berlin, commissioned by The Berlin Senate and Berlin Partner GmbH, was developed within
a pilot project funded by the European Union [Pliimer et al. 2005, Berlin 3D]. Since then, the
model has been playing a central role in the three-dimensional spatial data infrastructure of
Berlin and opened up a multitude of applications for the public and private sector alike. As an
example the virtual city model is successfully used for presentation of the business location,
its urban development combined with application related information to politicians, investors,
and the public in order to support civic participation, provide access to decision-making
content, assist in policy-formulation, and control implementation processes [Ddllner et al.
2006]. 3DCityDB was key in demonstrating the real world usage of CityGML to the Open
Geospatial Consortium on the one hand, and the practical usability and versatility of
CityGML to the city of Berlin on the other hand. This first development phase was carried out
by University of Bonn in collaboration with the company /at/lon GmbH. Oracle Spatial was
the only supported SDBMS in that phase and the next (3DCityDB Versions 0.2 up to 1.3).

Within the framework Europdische Fonds fiir regionale Entwicklung (EFRE 1I) the project
Geodatenmanagement in der Berliner Verwaltung — Amtliches 3D-Stadtmodell fiir Berlin
allowed for upgrading the official 3D city model based on the former CityGML specification
draft 0.4.0 in the year 2007. The developments were carried out by the Institute for Geodesy
und Geoinformation Science (IGG) of the Berlin University of Technology (where Kolbe
became full professor for Geoinformation Science in 2006) on behalf of the Berliner
Senatsverwaltung fiir Wirtschaft, Arbeit und Frauen and the Berlin Partner GmbH (former
Wirtschaftsforderung Berlin International). The relational database model (3DCityDB
versions 1.4 up to 1.8) was implemented and evaluated in cooperation with 3DGeo GmbH
(later bought by Autodesk GmbH) in Potsdam. A special database interface for LandXPlorer
was provided by 3DGeo / Autodesk. Later on, a first version of the Java based CityGML
Importer/Exporter was developed [Stadler et al. 2009].

In August 2008, CityGML 1.0.0 became an adopted standard of the Open Geospatial
Consortium (OGC). In the follow-up project Digitaler Gestaltplan Potsdam starting in 2010
the 3DCityDB version 2 was developed which brought support for all CityGML 1.0.0 feature
types. The KML/COLLADA exporter was added as well as a ‘Matching’ plugin. This project
was carried out by /GG of TU Berlin on behalf of and in collaboration with the company
virtualcitySYSTEMS (VCS) in Berlin. In 2012 the developer team at TU Berlin received the
Oracle Spatial Excellence Award for Education and Research from Oracle USA for our work
on 3DCityDB. Also in 2012 3DCityDB was ported to PostgreSQL/PostGIS by Felix Kunde, a
master student from the University of Potsdam, who did his master thesis in collaboration
with /GG [Kunde 2013].

In August 2012, CityGML 2.0.0 became an adopted standard of the Open Geospatial Consor-
tium (OGC). In September 2012, Prof. Kolbe moved from IGG, TU Berlin to the Chair of

24 3D Geodatabase for CityGML 2018

Geoinformatics at Technische Universitit Miinchen (TUM). The companies virtualcity-
SYSTEMS GmbH in Berlin and M.O.S.S. Computer Grafik Systeme GmbH in Taufkirchen
(near Munich) have also been using the 3D City Database in their commercial projects for a
number of years. In this context, the Chair of Geoinformatics at TUM and the companies
virtualcitySYSTEMS and M.O.S.S. signed an official collaboration agreement on the joint
further development of 3DCityDB and its tools. The work on the new major release version
3.0.0 began in 2013 when Dr. Nagel finished his PhD and joined the company VCS. In
Version 3.3.0 the new 3D web client was being added. The webclient was developed by
Zhihang Yao with contributions from Kanishk Chaturvedi and Son Nguyen. In 2015 Zhihang
Yao and Kanishk Chaturvedi were awarded the first price in the 'Best Students Contribution'
of the 'Web3D city modeling competition' under the annual ACM SIGGRAPH Web3D
Conference for the 3DCityDB-Web-Map-Client.

The work on version 4.0.0 — especially the support of CityGML ADEs — began in 2015 in the
course of the PhD work of Zhihang Yao. One part of his PhD thesis is focusing on the model
transformation of CityGML ADEs onto spatial relational databases using pattern matching
and graph transformation rules. Support of CityGML ADEs in the Importer/Exporter required
a substantial rewriting of the citygml4; Java library, the Importer/Exporter and WFS source
code performed by Dr. Nagel starting from 2016. Felix Kunde worked, among others, on
performance improvements and restructuring of the PL/(pg)SQL scripts. Son Nguyen added
support for mobile devices in the 3DCityDB-Web-Map-Client in 2017. Docker support was
added by Bruno Willenborg in 2018. Starting from 2017 all partners worked on updating
diverse functionalities, scripts, documentation, and on testing.

1.5 Acknowledgements

The 3D City Database project team is grateful and appreciative for the financial assistance
and support we received from partners that contributed to the development of version 4.0 and
the work on the ADE support.

Government Technology Agency of Singapore

The Government Technology Agency of Singapore (GovTech Singapore) has been
developing a 3D city standard for Singapore based on CityGML, to establish a common 3D
representation of the city-state. GovTech wanted to extend the representation to include other
city features through the ADE approach, and had worked with virtualcitySYSTEMS GmbH to
start the development of the ADE support on 3DCityDB. The intent is to open source the
3DCityDB ADE support to the international community, so as to encourage wider adoption
and implementation of the CityGML standard and ADE:s.

CADFEM International GmbH

Founded in 1985, CADFEM is one of the pioneers of numerical simulation based on the
Finite Element Method and one of the largest European suppliers of Computer-Aided
Engineering. Through the Leonard Obermeyer Center of the Technical University Munich,
CADFEM supports the research on digital methods for the design, creation and maintenance
of the built environment and the work on the 3D City Database. Bridging the gap between
simulation systems and 3D GIS / BIM is a key requirement for enabling multi-physics Urban

3D Geodatabase for CityGML 2018 25

Simulations and for building Digital Twins of the urban space. The CityGML ADE
mechanism supports this in two ways: 1) city features can be enriched with data that is
relevant for simulations, and 2) simulation results can be brought back into the city model,
turning it into a dynamic knowledge base. CADFEM is supporting the 3D City Database
project to leverage the adoption and usage of CityGML ADEs in the field of Urban
Simulations.

Climate-KIC of the EIT

Climate-KIC is a so-called ‘Knowledge and Innovation Community’ about Climate Change
and Mitigation. It is one of three Knowledge and Innovation Communities (KICs) created in
2010 by the European Institute of Innovation and Technology (EIT). The EIT is an EU body
whose mission is to create sustainable growth. Most 3DCityDB developments at TU Munich
were done in the context of the projects Energy Atlas Berlin, Modeling City Systems (MCS),
Smart Sustainable Districts (SSD), and Smart District Data Infrastructure (SDDI), all
financially supported by Climate-KIC.

26

3D Geodatabase for CityGML 2018

3D Geodatabase for CityGML 2018 27

2 Data Modelling and Database Design

In this section the slightly simplified data model with respect to CityGML is described at the
conceptual level using UML class diagrams. These diagrams form the basis for the
implementation-dependent realization of the model with a relational database system which is
presented in section 2.3. However, UML diagrams may also form the basis for other
implementations e.g. for the definition of an exchange format based on XML or GML. The
UML diagrams of the 3D city model are depicted in section 2.2.

2.1 Simplification compared to CityGML 2.0.0

CityGML is a common information model for 3D wurban objects and provides a
comprehensive and extensible representation of the objects. It is explained in detail in the
CityGML specification [Groger et al. 2008, Groger et al. 2012] and [Kolbe 2009]. An analysis
of the previous versions of the 3D City Database indicated that for the data collected and
processed a less complex schema is sufficient. Using a simplified schema usually allows
improving system performance. Therefore, the first task was related to database design
aspects with respect to adjusting the comprehensive CityGML features. As result a simplified
database schema was generated, allowing an optimized workflow and guaranteeing efficient
processing time. The related UML-diagrams were discussed and coordinated with the project
partners and translated into the relational schema. Based on this work the SQL scripts for
setting up the Oracle and PostgreSQL database schema were generated. Please note, that all
test CityGML datasets (versions 1.0.0 and 2.0.0) from the CityGML homepage (and others)
can be stored and managed without restrictions with this simplified database schema.

2.1.1 Multiplicities, cardinalities and recursions
Simplifications with respect to the CityGML specification were made as follows:

e Multiplicities of attributes
Attributes with a variable amount of occurrences (*) are substituted by a data type
enabling the storage of arbitrary values (e.g. data type String with a predefined
separator) or by an array with a predefined amount of elements representing the
number of objects that participate in the association. This means that object attributes
can be stored in a single column.

e Cardinalities and types of relationships
n:m relations require an additional table in the database. This table consists of the
primary keys of both elements’ tables which form a composite primary key. If the
relation can be restricted to a 1:n or n:1 relationship the additional table can be
avoided. Therefore, all n:m relations in CityGML were checked for a more restrictive
definition. This results in simplified cardinalities and relations.

e Simplified treatment of recursions
Some recursive relations are used in the CityGML data model. Recursive database
queries may cause high cost, especially if the amount of recursive steps is unknown. In
order to guarantee good performance, implementation of recursive associations
receive two additional columns which contain the ID of the parent and of the root

28 3D Geodatabase for CityGML 2018

element. For example, if all building parts related to a specific building are queried,
only those tuples containing the ID of the building as root element have to be selected.
Thus, typical queries concerning object geometry remain high-performance.

2.1.2 Data type adaptation

Data types specified in CityGML were substituted by data types which allow an effective
representation in the database. Strings for example are used to represent code types and
number vectors; GML geometry types were changed to the database geometry data type.
Matrices are stored each one as String data type, with values listed in a row-major sequence
separated by spaces.

2.1.3 Project specific classes and class attributes

The 3D city database may contain some classes for representation of project specific
metadata, version control and attributes for representation of additional project specific
information. Since this information is represented in the CityGML specification differently or
even not at all, appropriate classes and class attributes are added or respectively adopted.

2.1.4 Simplified design of GML geometry classes

Spatial properties of features are represented by objects of GML3’s geometry model based on
the ISO 19107 standard ‘Spatial Schema’ [Herring 2001], representing 3D geometry
according to the well-known Boundary Representation (B-Rep, cf. [Foley et al. 1995]).
Actually only a subset of the GML3 geometry package is used. Moreover, for 2D and 3D
surface-based geometry types a simpler but equally powerful model is used: These geometries
are stored as polygons, which are aggregated to MultiSurfaces, CompositeSurfaces,
TriangulatedSurfaces, Solids, MultiSolids, as well as CompositeSolids.

2.2 UML class diagram

The following pages cite several parts of the CityGML specification [Groger et al., 2012]
which are necessary for a better understanding. Main focus is put on explaining the
customization and the differences to the CityGML standard.

Design decisions in the model are explicitly visualised within the UML diagrams. Following
models are presented in detail:

e Geometric-topological model
e Appearance model
e Thematic Model

o CityGML Core
Building model
Bridge model
City furniture
Digital Terrain Model
Generic objects and attributes
Land use
Transportation objects

0 O O O 0O O O

3D Geodatabase for CityGML 2018 29

o Tunnel model
o Water bodies
o Vegetation objects

For intuitive understanding, classes which will be merged to a single table in the relational
schema, are shown as orange blocks in the UML diagrams. n:m relations, which only can be
represented by additional tables, are represented as green blocks.

2.2.1 Geometric-topological Model

The geometry model of CityGML consists of primitives, which may be combined to form
complexes, composite geometries or aggregates. A zero-dimensional object is modelled as a
Point, a one-dimensional as a Curve. A curve is restricted to be a straight line, thus only the
GML3 class LineString is used.

Combined geometries can be aggregates, complexes or composites of primitives (see
illustration in figure 1). In an Aggregate, the spatial relationship between components is not
restricted. They may be disjoint, overlapping, touching, or disconnected. GML3 provides a
special aggregate for each dimension, a MultiPoint, a MultiCurve, a MultiSurface or a
MultiSolid. In contrast to aggregates, a Complex is topologically structured: its parts must be
disjoint, must not overlap and are allowed to touch, at most, at their boundaries or share parts
of their boundaries. A Composite is a special complex provided by GML3. It can only contain
elements of the same dimension. Its elements must be disjoint as well, but they must be
topologically connected along their boundaries. 4 Composite can be a CompositeSolid, a
CompositeSurface, or CompositeCurve.

MultiSurface GeometricComplex CompositeSurface

Figure 1: Different types of aggregated geometries [Groger et al., 2012]

The modelling of two-dimensional and three-dimensional geometry types is handled in a
simplified way. All surface-based geometries are stored as polygons, which are aggregated to
MultiSurfaces, CompositeSurfaces, TriangulatedSurfaces, Solids, MultiSolids, as well as
CompositeSolids accordingly. This simplification substitutes the more complex representation
used for those GML geometry classes in grey blocks in Figure 2. Mapping the UML diagram
to the relational schema now requires only one table (SURFACE GEOMETRY), which is
explained in chapter 2.3.3.3.

30 3D Geodatabase for CityGML 2018

<<Geometry>>
gmi::_Geometry

<<Geometry>>
gml::_GeometricPrimitive

interior 0"
<<Geometry>> <<Geometry>> <<Geometry>>
gml::_Solid gmi::_Surface . R eomety2s gmi:Point
solidMember exterior 1 = gmi::_Curve +position : gml::DirectPosition [1]
1 surfaceMember 17+ 0.2 baseSurface curveMember
) 0.1 0.1 %
<<Geometry>> <<Geometry=> <<Geometry>> <<Geometry>>
gml::CompositeSolid gml::Solid gml::GompositeGurve gml::LineString
. | ‘ 1 +paosition : gml::DirectPosition [2..%]
<<Geomelry>> <<Geometry>> <<Geometry>> <<Geometry>>
gml::CompositeSurface gml::Surface gml::Polygon gml::OrientableSurface
ﬁ}‘ : +orientation : gml::SignType [0..1]
| 1.7 patchies exterior |
<<Geometry>> <<Geometry>> <<Geometry>>
gml::TriangulatedSurface 1 gml::_SurfacePatch - gml::_Ring
interfior *
trianglePatches
exterior 4
<<Geometry>>
gml:TIN <<Geometry>> <<Geometry>> exterior 7
+stopLines : gml:LineStringSegment [0..7] gml::Triangle gml::Rectangle
+breakLines : gml::LineStringSegment [0..7] <<Geometry>>

+maxLength : gml::LengthType [1] gml::LinearRing

+controlPoint : gml::posList [1]

+position : gml::DirectPosition [4..%]

gml geometry classes containend in the gray box above a simplified to following structure:

<<Geomelry>>
_BRepGeometry
+isXLink : boolean [1]
bRepMember |+sReverse : boolean [1]
-isSolid : boolean [1]
+isComposite : boolean [1]
+isTriangulated : boolean [1]

p

<<Geometry>>
<<Geometry>> Polygon
BRepAggregate +geometry : SDO_GEOMETRY [1]

The whole generalisation relation is realised in the database as one table named SURFACE_GEOMETRY

Figure 2: Geometrical-topographical model.
For simplification the geometry classes in the grey block are substituted by the construct in the orange block

In order to implement topology, CityGML uses the XML concept of XLinks provided by
GML. Each geometry object that should be shared by different geometric aggregates or
different thematic features is assigned a unique identifier, which may be referenced by a GML
geometry property using a href attribute. The XLink topology is simple and flexible and
nearly as powerful as the explicit GML3 topology model. However, a disadvantage of the
XLink topology is that navigation between topologically connected objects can only be
performed in one direction (from an aggregate to its components), not (immediately)
bidirectional, as it is the case for GML’s built-in topology.

2.2.2 Implicit Geometry
The concept of implicit geometries is an enhancement of the GML3 geometry model.

An implicit geometry is a geometric object, where the shape is stored only once as a
prototypical geometry, for example a tree or other vegetation objects, a traffic light or traffic
sign. This prototypic geometry object is re-used or referenced many times, wherever the

3D Geodatabase for CityGML 2018 31

corresponding feature occurs in the 3D city model. Each occurrence is represented by a link to
the prototypic shape geometry (in a local Cartesian coordinate system), by a transformation
matrix that is multiplied with each 3D coordinate of the prototype, and by an anchor point
denoting the base point of the object in the world coordinate reference system. The concept of
implicit geometries is similar to the well-known concept of primitive instancing used for the
representation of scene graphs in the field of computer graphics [Foley et al. 1995].

=<Object=> referencePoint <<Geometry>>
ImplicitGeometry ; gml::Point <<PrimitiveType>>
+mimeType : gml::CodeType TransformationMatrix4x4Type
-l.ransfonnatlohl\.de_l-trlx : TransformationMatrix4x4Type N o +gml::doubleList[16]
+libraryObject : xs::anyURI <<Geometry>>
relativeGMLGeometry gml::_Geometry

Figure 3: Implicit Geometry model

Implicit geometries may be applied to features from different thematic fields in order to
geometrically represent the features within a specific level of detail (LOD). Thus, each
CityGML thematic extension module (like Building, Bridge, and Tunnel etc.) may define
spatial properties providing implicit geometries for its thematic classes.

The shape of an implicit geometry can be represented in an external file with a proprietary
format, e.g. a VRML file, a DXF file, or a 3D Studio MAX file. The reference to the implicit
geometry can be specified by an URI pointing to a local or remote file, or even to an
appropriate web service. Alternatively, a GML3 geometry object can define the shape. This
has the advantage that it can be stored or exchanged inline within the CityGML dataset.
Typically, the shape of the geometry is defined in a local coordinate system where the origin
lies within or near to the object’s extent. If the shape is referenced by an URI, also the MIME
type of the denoted object has to be specified (e.g. “model/vrml” for VRML models or
“model/x3d+xml” for X3D models).

The implicit representation of 3D object geometry has some advantages compared to the
explicit modelling, which represents the objects using absolute world coordinates. It is more
space-efficient, and thus more extensive scenes can be stored or handled by a system. The
visualization is accelerated since 3D graphics hardware supports the scene graph concept.
Furthermore, the usage of different shape versions of objects is facilitated, e.g. different
seasons, since only the library objects have to be exchanged.

2.2.3 Appearance Model

Information about a surface’s appearance, i.e. observable properties of the surface, is
considered an integral part of virtual 3D city models in addition to semantics and geometry.
Appearance relates to any surface-based theme, e.g. infrared radiation or noise pollution, not
just visual properties and can be represented by — among others — textures and georeferenced
textures. Appearances are supported for an arbitrary number of themes per city model. Each
LoD of a feature can have individual appearances. Each city object or city model respectively
may store its own appearance data. Therefore, the base CityGML classes _CityObject and
CityModel contain a relation appearance and appearanceMember respectively.

32

3D Geodatabase for CityGML 2018

<<Fealure>>
gmi.:_Feature

N

<<Feature>>
gmi::_FeatureCollection

1

=<=<Fealure>>
core::CityModel

=<Fealure>>
core::_CityObject

<<Feature>>

appearancelMember

Appearance

+theme : xs::string [0..1]

appearance

<<Feature>>
_SurfaceData

+isFront : xs:boolean [0..1] = true |3

T

surfaceDataMember

<<Feature>>
X3DMaterial

<<Feature>>
_Texture

+ambientintensity : core::doubleBetweenOand1 [0..1]
+diffuseColor : Color [0..1]
+emissiveColor : Color [0..1]

TimageURI cxszanyURI[1]
+mimeType : gml::CodeType [0..1]
+textureType : Texture TypeType [0..1]

BT - Iy A i R A

-~
This part will be stored

in a single table

+specularColor : Coler [0..1] +wrapMode : WrapMoede Type [0..1]
+shininess : core::doubleBetweenOand [0..1) +borderColor : ColorPlusO pacity [0..1]
+transparency : core::doubleBetweenOand1 [0..1]

+isSmooth : xs:boolean [0..1] ‘/%
+target : xs::anyURI[0.Y]

=<Feature>>
GeoreferencedTexture

<<Feature>>
ParameterizedTexture

+preferWerldFile : xs:boolean [0.1] = true
+orientation : core: TransformationMatrix2x2Type [0..1]

<<Object=> +target : xs::anyURI[0.*]
_ _ | TextureA iation
+uri : xs::anyURI [1]
target . referencePoint <<Geomelry>>
ml::Point
<<Object>> 0.1 9
_ TextureParameterization

T
| |

<<Object>> <<Dbject>>
TexCoordGen TexCoordList
+textureCoordinates : gmi::doubleList [1..*]
+ring : xszanydRI [1..%]

+worldTeTexture : core : TransformationMatrix3x4Type (1]

Figure 4: Appearance model

Themes are represented by an identifier only. The appearance of a city model for a given
theme is defined by a set of objects of class Appearance, referencing this theme through the
attribute theme. All appearance objects belonging to the same theme compose a virtual group.
An Appearance object collects surface data relevant for a specific theme through the relation
surfaceDataMember. Surface data is represented by objects of the abstract class
_SurfaceData. Its only attribute is the Boolean flag isFront, which determines the side (front
and back face of the surface) a surface data object applies to.

A constant surface property is modelled as material. A surface property, which depends on the
location within the surface, is modelled as texture. Each surface object can have both a
material and a texture per theme and side. This allows for providing both a constant
approximation and a complex measurement of a surface’s property simultaneously. If a
surface object is to receive multiple textures or materials, each texture or material requires a
separate theme. The mixing of themes or their usage is not explicitly defined but left to the
application.

3D Geodatabase for CityGML 2018 33

Materials define light reflection properties being constant for a whole surface object. The
definition of the class X3DMaterial is adopted from the X3D and COLLADA specification
(cf. X3D, COLLADA specification):

o diffuseColor defines the colour of diffusely reflected light.
o specularColor defines the colour of a directed reflection.
o emissiveColor is the colour of light generated by the surface.

All colours use RGB values with red, green, and blue chanels, each defined as value between
0 and 1. Transparency is stored separately using the transparency element where 0 stands for
fully opaque and 1 for fully transparent. ambientIntensity specifies the minimum percentage
of diffuseColor that is visible regardless of light sources. shininess controls the sharpness of
the specular highlight. 0 produces a soft glow while 1 results in a sharp highlight. isSmooth
gives a hint for normal interpolation. If this Boolean flag is set to true, vertex normals should
be used for shading (Gouraud shading). Otherwise, normals should be constant for a surface
patch (flat shading). Target surfaces are specified using target elements. Each element
contains the URI of one target surface geometry object.

The base class for textures is _AbstractTexture. Here, textures are always raster-based 2D
textures. The raster image is specified by imageURI using a URI and may contain an arbitrary
image data resource, even a preformatted request for a web service. The image data format
can be defined using standard MIME types in the mimeType element. Textures can be
qualified by the attribute textureType, differentiating between textures, which are specific for
a certain object (specific) and prototypic textures being typical for that object surface
(typical). Textures may also be classified as unknown. The specification of texture wrapping
is adopted from the COLLADA standard. Possible values of the attribute wrapMode are none,
wrap, mirror, clamp and border.

_AbstractTexture is further specialised according to the texture parameterisation, i.e. the
mapping function from a location on the surface to a location in the texture image. Texture
parameterisation uses the notion of texture space, where the texture image always occupies of
the region [0,1]* regardless of the actual image size or aspect ratio. The lower left image
corner is located at the origin. To receive textures, the mapping function must be known for
each surface object.

The class GeoreferencedTexture describes a texture that uses a planimetric projection. Such a
texture has a unique mapping function which is usually provided with the image file (e.g.
georeferenced TIFF) or as a separate ESRI world file. The search order for an external
georeference is determined by the Boolean flag preferWorldFile. Alternatively, inline
specification of a georeference similar to a world file is possible. This internal georeference
specification always takes precedence over any external georeference. referencePoint defines
the location of the centre of the upper left image pixel in world space and corresponds to
values 5 and 6 in an ESRI world file. Since GeoreferencedTexture uses a planimetric
projection, referencePoint is two-dimensional and the orientation defines the rotation and
scaling of the image in form of a 2x2 matrix (a list of 4 doubles in row-major order
corresponding to values 1, 3, 2, and 4 in an ESRI world file). The CRS of this transformation
is identical to the referencePoint’s CRS. If neither an internal nor an external georeference is

34 3D Geodatabase for CityGML 2018

given, the GeoreferencedTexture is invalid. Target surfaces are specified using target
elements. Each element contains the URI of one target surface geometry object. All target
surface objects share the mapping function defined by the georeference.

The class ParameterizedTexture describes a texture with a target-dependent mapping
function. Each target surface geometry object is specified as URI in the uri attribute of a
separate target element. The mapping 1is defined by associated classes of
_TextureParameterization:

e TexCoordList for the concept of texture coordinates, defining an explicit mapping of a
surface’s boundary points to points in texture space, and

e TexCoordGen when using a common 3x4 transformation matrix from world space to
texture space, specified by the attribute worldToTexture.

2.2.4 Thematic model

The thematic model consists of the class definitions for the most important types of objects
within virtual 3D city models. Most thematic classes are (transitively) derived from the basic
classes Feature and FeatureCollection, the basic notions defined in ISO 19109 and GML3 for
the representation of features and their aggregations. Features contain spatial as well as non-
spatial attributes, which are mapped to GML3 feature properties with corresponding data
types. Geometric properties are represented as associations to the geometry classes described
in chapter 2.2.1 The thematic model also comprises different types of interrelationships
between Feature classes like aggregations, generalizations, and associations.

The aim of the explicit modelling is to reach a high degree of semantic interoperability
between different applications. By specifying the thematic concepts and their semantics along
with their mapping to UML and GML3, different applications can rely on a well-defined set
of Feature types, attributes, and data types with a standardised meaning or interpretation. In
order to allow also for the exchange of objects and/or attributes that are not explicitly
modelled in CityGML, the concepts of GenericCityObjects and GenericAttributes have been
introduced.

2.2.4.1 Core Model

The base class of all thematic classes within CityGML’s data model is the abstract class
_CityObject. _CityObject provides a creation and a termination date for the management of
histories of features as well as generic attributes and external references to corresponding
objects in other data sets. CityObject is a subclass of the GML class Feature, thus it may
inherit multiple names from Feature, which may be optionally qualified by a codeSpace. This
enables the differentiation between, for example, an official name from a popular name or
names in different languages (c.f. the name property of GML objects, Cox et al., 2004). The
generalisation property generalizesTo of _CityObject may be used to relate features, which
represent the same real-world object in different LoD, i.e. a feature and its generalized
counterpart(s). The direction of this relation is from the feature to the corresponding
generalised feature.

3D Geodatabase for CityGML 2018 35

Features of CityObject and its specialized subclasses may be aggregated to a CityModel,
which is a feature collection with optional metadata. Generally, each feature has the attributes
class, function, and usage, unless it is stated otherwise. The class attribute can occur only
once, while the attributes usage and function can be used multiple times. The class attribute
describes the classification of the objects, e.g. road, track, railway, or square. The attribute
function contains the purpose of the object, like national highway or county road, while the
attribute usage defines whether an object is e.g. navigable or usable for pedestrians. The
attributes class, function and usage are specified as gml:CodeType. The values of these
properties can be enumerated in code lists. Furthermore, for each feature the geographical
extent can be defined using the Envelope element. Minimum and maximum coordinate values
have to be assigned to opposite corners of the feature’s bounding box.

<<Geometry>>
gmi::Evelope

0..1 2 envelope
1

<<Feature>>
gml::_Feature

+name : gml:CodeType [0.."] <<Feature>>
A CityObjectGroup
+class : gml::CodeType [0..1] + geomet <<Geometry>>
J = Hunction : gml::CodeType [0..*] 0.1 gml:: _Geometry
+usage : gml::CodeType [0.."]
<<Feature>>
gmi::_FeatureCollection
[‘l ,,,,,,,, Role
parent :
<<Feature>> e groupMember +role : xs:zstring [1]
CitvMode! 2L
<<Feature>>
: CityObject ‘1 <<DataType>>
+creationDate : xs::date [0..1] extemnalReference ExternalReference

*

+eminationDate : xs:date [..1] +informationSystem : xs::anyURI [0..1]

cityObjectMember | +relativeToTerrain : RelativeToTemainType [0..1]
+relativeToWater : RelativeToWaterType [0..1] generalizesTo 1
[
externalObject 1
I <<Union>>
<<Fealure>> <<Feature>> <<Fealure>> <<Feature>> <<Fealure>> ExternalObjectReference
dem:: ReliefFeature luse::LandUse veg::_VegetationObject fn::CityFurniture wir::_WaterObject +name : xs::string [1]
+uri : xs:anyURI [1]
<<Feature>> <<Feature>> <<Feature>>
gen::GenericCityObject _Site tran::_TransportationObjcet
[[]
<<Feature>> <<Feature>> <<Feature>>
bidg::_AbstractBuilding tun::_AbstractTunnel brdg::_AbstractBridge

Figure 5: Core Model and thematic top level classes

The subclasses of _CityObject comprise the different thematic fields of a city model, in the
following covered by separate thematic models: building model (_A4bstractBuilding), tunnel
model (_AbstractTunnel), bridge model (_AbstractBridge), city furniture model
(CiyFurniture), digital terrain model (ReliefFeature), land use model (LandUse),
transportation model (7ransportationObject), vegetation model (_VegetationObject), water
bodies model (WaterObject) and generic city object model (GenericCityObject). The latter
one allows for the modelling of features, which are not explicitly covered by one of the other
models. The separation into these models strongly correlates with CityGML’s extension
modules, each defining a respective part of a virtual 3D city model.

36 3D Geodatabase for CityGML 2018

3D objects are often derived from or have relations to objects in other databases or data sets.
For example, a 3D building model may have been constructed from a two-dimensional
footprint in a cadastre data set. The reference of a 3D object to its corresponding object in an
external data set is essential, if an update must be propagated or if additional data is required
(like the name and address of a building’s owner in a cadastral information system). In order
to supply such information, each _CityObject may have External References to corresponding
objects in external data sets. Such a reference denotes the external information system and the
unique identifier of the object in this system.

CityObjectGroups aggregate CityObjects and furthermore are defined as special CityObjects.
This implies that a group may become a member of another group realizing a recursive
aggregation schema. Since CityObjectGroup is a feature, it has the optional attributes class,
function and usage. The class attribute allows a group classification with respect to the stated
function and may occur only once. The function attribute is intended to express the main
purpose of a group, possibly to which thematic area it belongs (e.g. site, building,
transportation, architecture, unknown etc.). The attribute usage can be used, if the object’s
usage differs from its function. The attributes class, function and usage are specified as
gml:CodeType. The values of these properties can be enumerated in code lists.

Each member of a group may be qualified by a role name, reflecting the role each CityObject
plays in the context of the group. Furthermore, a CityObjectGroup can optionally be assigned
an arbitrary geometry object. This may be used to represent a generalised geometry generated
from the member’s geometries. The parent association linking a CityObjectGroup to a
CityObject allows for the modelling of generic hierarchical groupings. This concept is used,
for example, to represent storeys in buildings. See Figure 5 for the simplified UML diagram.

2.2.4.2 Building model

Buildings can be represented in five levels of detail (LoDO to LoD4). The building model
allows the representation of simple buildings that consist of only one component, as well as
the representation of complex relations between parts of a building, e.g. a building consisting
of three parts — a main house, a garage and an extension. The parts can again consist of parts
etc. The subclasses Building and BuildingPart of _AbstractBuilding enable these modelling
options.

Building with two WHniwan: 0

building parts
(represented as
one Building

N Building consist-

I :

feature and one e ing of one part

included Build- : (represented as

ingPart feature) one Building
¢ feature)

Figure 6: Example of buildings consisting of one and two building parts [Groger et al., 2008]

3D Geodatabase for CityGML 2018

37

In the case of a simple, one-piece house there is only one Building which inherits all attributes
and relations from _AbstractBuilding (cf.). However, such a Building can also comprise
BuildingParts which likewise inherit all properties from _AbstractBuilding: the building’s
class, function (e.g. residential, public, or industry), usage, year of construction, year of
demolition, roof type, measured height, and the number and individual heights of all its
storeys above and below ground (cf. Figure 7).

0.1
lod3ImplicitRepresentation
IoddlmzlicﬂRczrcScntation

od4imolicitReoresentation 0..1 =

0.1

lod4implicitRepresentation

<<Object=>
core::implicitGeometry

<<F
core::_CityObjfect

0.1
lod2IimplicitRepresentation

lod3ImplicitRepresentation

loddGeometry 0]

lod4ImolicitRecresentation

121 lodzGeometry

<<F
core::_Site

<<Faature=>>

<<Geometry==> Bulldi
lnd4G e, gmiz:_ y lod3Geometry *|+class : gml:CodeType [0..1] a
0.1 lod4Geometry « [#function : gml::CodeType [0..%] <>
+usage : gml:CodeType [0..%]
* /houterBuidinglnstallation
<<Feature>> <>
IntBuildinglnstallation interior llation
+class : gmi:CodeType [0..1] -
= |+function : gmi::CodeType [0..%] <>
: gmi:CodeType [0.*
tusage - om Typa [0.7] <<Feature>>
_AbstractBuilding
roominstallation * +class : gml:CodeType [0..1]
+function : gmi: CodeType [0..7] |
+usage ;| gml:CodeType [0..%]
+yearOfConstruction : xs:.gYear [0.1]
. <<Feature=> +yearOfDemclition : xs::gYear [0..1] ot
= BulldingFurniture +roofType : gmi:CodeType [0..1] <>
. - gmi=CodeType [0.1] +measuredHeight : gml::LengthType [0..1]
+lunction : gml::CodeType [0.] +storeysAboveGround : xs::nonNegativelnteger [0..1]
+usage : g‘n‘l"[‘}‘odcTypc [o. .]' +storeysBelowGround : xs::nonMNegativelnteger [0..1]
) - B +storeyHeights AboveGround : gml: MeasureOrNullListType [0..1] o
« /MnteriorFurniture +storeyHeightsBelowGround : gml:MeasureOmNullListType [0..1] =
0.1
ccFeatura>> <<Feature>> <<Feature>>
Raom Building BuildingPart
+class | gml:CodeType [0..1] S consists OfB uildingPart)
function : gmi:CodeType [0.] interiorRoom
+usage . gml::CodeType [0..%] = = =
lod1Solid lod1MultiSurface lod1 Temrainintersection
0.1 <> e lod2Solid lod2MultiSurface lod2 Temainintersection
lod3Solid lod3MultiSurface | |/@d0FootPrint lod3Temainintersaction
01 log4solia lodaultiSurface lod4Tenainlntersection
lod2MultiCurve
lod4Solid <<Geometry>> <<Geometry>> -
lod3MultiC:
01 gmi::_Solid gml:MultiSurface Wb
- lo c4MuTtiCurve
0 1/|\ 0.1 0.1 Wo.1 0.1
) . lod4MuliSurface DL GRS <<Geometry>>
N <<Featura>> A . oo
o = lod3MultiSurface lod3MultiSurface gml::MultiCurve
lodd4MultiSurface lod4MultiSurface
<<Feature>> <<Feature>> boundedBy . *[*[* * boundedBy
Door Window <<Faature>> - bound edBy
- 0.2
_BoundarySurface *boundedBy
[I I I I I 1
e F ccf = F e F <<Faature>> =< Faature== <cFeature>>
RoofSurface WallSurfacee GroundSurface ClosureSurface CellingSurface InteriorWall Surface FloorSurface
=< Featura>> <<Featura>>
QuterCeilingSurface QuterFloorSurface

Furthermore, Addresses can be assigned to Buildings or BuildingParts.

Figure 7: UML diagram of Building model

In particular,

BuildingParts may again comprise BuildingParts as components, because the composition

38 3D Geodatabase for CityGML 2018

relation is inherited. This way a tree-like hierarchy can be created whose root object is a
Building and whose non-root nodes are BuildingParts. The attribute values are generally filled
in the lower hierarchy level, because basically every part can have its own construction year
and function. However, the function can also be defined in the root of the hierarchy and
therefore span the whole building. The individual BuildingParts within a Building must not
penetrate each other and must form a coherent object.

The geometric representation of an _AbstractBuilding is successively refined from LODO to
LOD4. Therefore, a single building can have multiple spatial representations in different
levels of detail at the same time by Solid, MultiSurface, and/or MultiCurve (cf. Figure 7).

In LoDO, the building can be represented by horizontal, 3-dimentional surfaces describing the
footprint and the roof edge. In LoD1, a building model consists of a geometric representation
of the building volume. Optionally, a MultiCurve representing the TerrainlntersectionCurve
can be specified. This geometric representation is refined in LoD2 by additional MultiSurface
and MultiCurve geometries, used for modelling architectural details like a roof overhang,
columns, or antennas. In LoD2 and higher LoDs the outer facade of a building can also be
differentiated semantically by the classes BoundarySurface and Buildinglnstallation. A
_BoundarySurface is a part of the building’s exterior shell with a special function like wall
(WallSurface), roof (RoofSurface), ground plate (GroundSurface), or closing surface
(ClosureSurface) as shown in Figure 8. Closure surfaces can be used to virtually seal open
buildings as for example hangars, allowing e.g. volume calculation. The Buildinglnstallation
class is used for building elements like balconies, chimneys, dormers, or outer stairs, strongly
affecting the outer appearance of a building. A Buildinglnstallation is used for the
representation of chimneys, stairs, balconies etc. and optionally has the attributes class,
function, and usage.

Roof surface
Exterior Shell
Wall \
surface
Ceiling Wall , ™ InteriorWall
surface Room Surface Surface
/,/
i {
Opening InteriorWall ' [
(Window) Surface i
|
1
4 [
Opening '
Floor surface (Door) ! L Opening
1
Ground surface ' Door

Figure 8: Boundary surfaces

In LoD3, the openings in _BoundarySurface objects (doors and windows) can be represented
as thematic objects. In LoD4, the highest level of resolution, also the interior of a building,
composed of several rooms, is represented in the building model by the class Room. The
aggregation of rooms according to arbitrary, user-defined criteria (e.g. for defining the rooms
corresponding to a certain storey) is achieved by employing the general grouping concept
provided by CityGML. Interior installations of a building, i.e. objects within a building which

3D Geodatabase for CityGML 2018 39

(in contrast to furniture) cannot be moved, are represented by the class
IntBuildinglnstallation. If an installation is attached to a specific room (e.g. radiators or
lamps), they are associated with the Room class, otherwise (e.g. in case of rafters or pipes)
with AbstractBuilding. A Room may have the attributes class, function, and usage referenced
to external code lists. The class attribute allows a classification of rooms with respect to the
stated function, e.g. commercial or private rooms, and occurs only once. The function
attribute is intended to express the main purpose of the room, e.g. living room, kitchen. The
attribute usage can be used if the object’s usage differs from its function. Both attributes can
occur multiple times.

The visible surface of a room is represented geometrically as a Solid or MultiSurface.
Semantically, the surface can be structured into specialised BoundarySurfaces, representing
floor (FloorSurface), ceiling (CeilingSurface), and interior walls (InteriorWallSurface) (cf.
Figure 8). Room furniture, like tables and chairs, can be represented in the CityGML building
model with the class BuildingFurniture. A BuildingFurniture may have the attributes class,
function, and usage.

2.2.4.3 Bridge Model

The bridge model was developed in analogy to the building model (cf. section 2.2.4.2) with
regard to structure and attributes [Groger et al., 2008]. The bridge model allows for the
representation of the thematic, spatial and visual aspects of bridges and bridge parts in four
levels of detail, LOD 1 — 4. A (movable or unmovable) bridge can consist of multiple
BridgeParts. Like Bridge, BridgePart is a subclass of _AbstractBridge and hence, has the
same attributes and relations. The relation consistOfBridgePart represents the aggregation
hierarchy between a Bridge (or a BridgePart) and it’s BridgeParts. By this means, an
aggregation hierarchy of arbitrary depth can be modelled. The semantic attributes of an
_AbstractBridge are class, function, usage and is_movable. The attribute class is used to
classify bridges, e.g. to distinguish different construction types (cf. Figure 9). The attribute
function allows representing the utilization of the bridge independently of the construction.
Possible values may be railway bridge, roadway bridge, pedestrian bridge, aqueduct, etc. The
option to denote a usage which is divergent to one of the primary functions of the bridge
(function) is given by the attribute usage. Each Bridge or BridgePart feature may be assigned
zero or more addresses using the address property.

BridgePart

|

BridgeConstructionElement

BridgePart l‘:’////
\L BridgePart

|

BridgeConstructionElement

Bridge

Figure 9: Example of bridge consisting of bridge parts

40 3D Geodatabase for CityGML 2018

The spatial properties are defined by a solid for each of the four LODs (relations /lod1Solid to
lod4Solid). In analogy to the building model, the semantical as well as the geometrical
richness increases from LODI (blocks model) to LOD3 (architectural model). Interior
structures like rooms are dedicated to LOD4. To cover the case of bridge models where the
topology does not satisty the properties of a solid (essentially water tightness), a multi-surface
representation is allowed (lodIMultiSurface to lod4MultiSurface). The line where the bridge
touches the terrain surface is represented by a terrain intersection curve, which is provided for
each LOD (relations lod1Terrainintersection to lod4Terrainlntersection). In addition to the
solid representation of a bridge, linear characteristics like ropes or antennas can be specified
geometrically by the lod I MultiCurve to lod4MultiCurve relations.

The thematic boundary surfaces of a bridge are defined in analogy to the building module.
_BoundarySurface is the abstract base class for several thematic classes, structuring the
exterior shell of a bridge as well as the visible surfaces of rooms, bridge construction elements
and both outer and interior bridge installations. From _BoundarySurface, the thematic classes
RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, QOuterFloorSurface,
ClosureSurface, FloorSurface, InteriorWallSurface, and CeilingSurface are derived.

RoofSurface

Window

WallSurface

OuterFloorSurface

OuterCeilingSurface

Figure 10: Different BoundarySurfaces of a bridge

Bridge elements which do not have the size, significance or meaning of a BridgePart can be
modelled either as BridgeConstructionElement or as Bridgelnstallation. Elements which are
essential from a structural point of view are modelled as BridgeConstructionElement, for
example structural elements like pylons, anchorages etc. (cf. Figure 9, Figure 11). A general
classification as well as the intended and actual function of the construction element are
represented by the attributes class, function, and usage. The visible surfaces of a bridge
construction element can be semantically classified using the concept of boundary surfaces
representing floor (FloorSurface), ceiling (CeilingSurface), and interior walls
(InteriorWallSurface) (cf. Figure 10). Whereas a BridgeConstructionElement has structural
relevance, a Bridgelnstallation represents an element of the bridge which can be eliminated
without collapsing of the bridge (e.g. stairway, antenna, and railing) (cf. Figure 11).
Bridgelnstallations occur in LOD 2 to 4. The class Bridgelnstallation contains the semantic

3D Geodatabase for CityGML 2018 4]

attributes class, function and usage. The attribute class gives a classification of installations of
a bridge. With the attributes function and usage, nominal and real functions of the bridge
installation can be described.

BridgeConstructionElement

/

Bridgelnstallation

’

ry

BridgePart

T
Bridge

Figure 11: Example of bridge consisting of BridgeConstructionElement and Bridgelnstallation

In LOD3 and LOD4, a BoundarySurface may contain _Openings like doors and windows.
The classes BridgeRoom, IntBridgelnstallation and BridgeFurniture allow for the
representation of the bridge interior. They are designed in analogy to the classes Room,
IntBuildinglnstallation and BuildingFurniture of the building module and share the same
meaning. The bridge interior can only be modelled in LOD4.

42 3D Geodatabase for CityGML 2018

core::_CltyObject
———————
<<Feature>>
T e Bridgelnstallation
o e TRenresAmATn ! : gml:CodeType [0..1] *
Ind3mnlicitRenresantation * |+unction : gmi::CodeType [0..] >
lod3implicitRepresentation 0! <<Objact> 01| jogaimplicitRepreseniaion - [*usage : gml:CodeType [0.7] *outerBri
lod4ImplicitReprese ntation core::ImplicitGeomeatry
o1 lod1 ImplicitRepresantation
loddimplicitRepresentation - lod2implicitRepresentation
inddimnlicitRanresantation?-! lod3implicitRepresentation
lod4implicitReprese ntation
[
lod2Geometry
0.1 C
lncdGen rrk\?l"\}1 << Geometry=> il
gmi_Geometry lod4Geometry o o] of +
lod4Geometry lod1Geometry - =<Feature=>
01 0.1 |lod2Geometry . BridgeConstructionE lemant _ i i
 |+class : gmi:CodeType [0..1] lod1 Temrainintersection
lod3Geometry " . .
function : gmi::CodeType [0.."] H lod2 Temrainintersection
lod4Geomet - ' s .
a = A HETERE] - lod3Temrainintersection
<<Feature>> - O - lod4Temrainintersection
IntBridgel llation outerBridgeConstruction Q
— lass | gml:CodeType [0..1] '<>
+function : gmi::CodeType [0..7]
+usage : gml:CodeType [0.."] address <<Feature>> address
T "’ core::Address | T+
-~ interiorBridgelnstallation é o
bridge Roominstallation - hl <>' :
=<Feature>>
hd <<Featura>> _AbstractBridge
BridgeF urniture +class : gml:CodeType [0..1]
*|+class gml:CodeType [0..1] +function : gml::CodeType [0..]
+function : gml::CodeType [0.."] +usage : gml:CodeType [0.°]
+usage : gml::CodeType [0.."] +yearOfConstruction : xs:.gYear [0..1] .
+yearOfDemolition : xs::gYear [0..1] <>
- interficrFurniture +isMovable : xs:boolean [0..1]
0.1
<<Feature=> <<Featura>> <<Featura>>
BridgeRoom Bridge BridgePart
 e—
+class : gml:CodeType [0..1] =— — consistsOfBridgePart
+function : gml::CodeType [0..7] PED ST
+usage | gml::CodeT, 0..*
A0 vpa -] 1S lodTMuliSuriace lodTemainintersecton loa2MultiCurve
0.1 <> =" lod2Solid lod2MultiSurface lod2Temainintersection lod3MultiCurve
lod3Solid lod3MultiSurface lod3TemainIntersection lodd4MultiCurve
0.1 lod4Solid lod4MultiSurface . 4 lod4Temainintersection .
N 0.1 0.1
lod4Solid <<Geometry>> <<Geometry>> <<Geometry>>
= gmi:_Solid gmlzMultiSurface gmlz:MultiCurve
0. 0.4 0.1
o <<Feature>> RS lod2MultiSurface
—____Opening lod3MultiSurface lod3MultiSurface
L — |
- lod4MultiSurface loddMultiSurface
e < openina —‘
. “I°° - boundedB
<<Feature>> <<Feature>> bound edBy <<Feature>> . .
Door <> _BoundarySurface --boundedBy
+ 0.2 * boundedBy
boundedBv
[[I I | I 1
<<F <<F <<F c<F <<F << <<Feature=>
RoofSurface WallSurfacee face [+ face C: face Inte riorWall Surface FloorSurface
<<Feature>> <<Feature>>
QuterCellingSurface QuterFloorSurface

Figure 12: UML diagram of bridge model

2.2.4.4 CityFurniture Model

City furniture objects are immovable objects like lanterns, traffic lights, traffic signs, flower
buckets, advertising columns, benches, delimitation stakes, or bus stops. The class
CityFurniture may have the attributes class, function and usage (ct. UML-diagram, Figure
13). Their possible values are explained in detail in the CityGML specification. The class
attribute allows an object classification like traffic light, traffic sign, delimitation stake, or
garbage can, and can occur only once. The function attribute describes, to which thematic area

3D Geodatabase for CityGML 2018 43

the city furniture object belongs to (e.g. transportation, traffic regulation, architecture etc.),
and can occur multiple times. The attribute usage denotes the real purpose of the city object,
and can occur multiple times as well.

<<Feature>>
core::_CityObject

lod1Geometry & * lod1Terrainintersection
<<Feature>>
lod2Geometry * CityFurniture * lod2Terrainintersection
Geometry>>
<<Geometry>> +class : gml::CodeType [0..1] . q = -
gml::_Geometry (0.1 EGEGe +function : gml::CodeType [0..4 lod3Terrainintersection 0.4 9mi:MultiCurve
lod4Geometry «|*usage : gml::CodeType [0.."] + lod4Terrainintersection

lod1implicitRepresentation

lod2implicitRepresentation

<<Object>>
core::mplicitGeometry

lod3ImplicitRepresentation

lod4implicitRepresentation

Figure 13: City furniture model

Since CityFurniture is a subclass of CityObject and hence is a feature, it inherits the attribute
gml:name. As with any CityObject, CityFurniture objects may be assigned
ExternalReferences and GenericAttributes. For ExternalReferences city furniture objects can
have links to external thematic databases. Thereby, semantical information of the objects,
which cannot be modelled in CityGML, can be transmitted and used in the 3D city model for
further processing, for example information from systems of power lines or pipelines, traffic
sign cadastre, or water resources for disaster management.

City furniture objects can be represented in city models with their specific geometry, but in
most cases the same kind of object has an identical geometry. The geometry of CityFurniture
objects in LoD 1-4 may be represented by an explicit geometry (lodXGeometry where X is
between 1 and 4) or an ImplicitGeometry object (lodXImplicitRepresentation with X between
1 and 4). In the concept of ImplicitGeometry the geometry of a prototype city furniture object
is stored only once in a local coordinate system and referenced by a number of features.
Spatial information of city furniture objects can be taken from city maps or from public and
private external information systems. In order to specify the exact intersection of the DTM
with the 3D geometry of a city furniture object, the latter can have a TerrainintersectionCurve
(TIC) for each LoD. This allows for ensuring a smooth transition between the DTM and the
city furniture object.

2.2.4.5 Digital Terrain Model

CityGML includes a very adaptable digital terrain model (DTM) which permits the
combination of heterogeneous DTM types (grid, TIN, break lines, mass points) available in
different levels of detail.

44 3D Geodatabase for CityGML 2018

A DTM fitting to a certain city model is represented by the class ReliefFeature. This is a
CityObject having the LoD step that fits the DTM as attribute. A relief consists of several
ReliefComponents. Each of these components that are likewise CityObjects also comprises a
LoD step. Individual geometrical types of the components are defined by the four subclasses
of ReliefComponent: breaklines, triangular networks (TINs), mass points, and grids (raster).
Geometrically, the corresponding ISO 19107 or GML classes define these types: breaklines
by a single MultiCurve, TINs by TriangulatedSurfaces, mass points by MultiPoint, and raster
by RectifiedGridCoverage.

<<Feature>>
core::_CityObject

T

<<Feature>>
ReliefFeature

1.~

<<Feature>>
_ReliefComponent

0.1

<>

+lod : core:integerBetweenOand4 [1]

reliefComponent

+lod : core::integerBetweenOand4 [1]

extent

<<Geometry>>
gml::Polygon

z}

l

l

l

<<Feature>>

<<Feature>>

<<Feature>>

<<Feature>>

TINRelief MassPointRelief BreaklineRelief RasterRelief
tin reliefPoints ridgeOrVallelyLines | breaklines 1| grid
1 1 0..1 0.1
<<Geometry=> <<Geometry>> <<Geometry>> <<Feature>>

gml::TriangulatedSurface

gml::MultiPoint

gml::MultiCurve

gml::RectifiedGridCoverage

T

<<Geometry>>
gml::Tin

+stopLines : gml:LineStringSegment [0..*]
+breakLines : gml::LineStringSegment [0..*]
+maxLength : gml::LengthType [1]
+controlPoint : gml::posList [1]

Figure 14: UML diagram representing the digital terrain model

A relief can contain ReliefComponents of heterogeneous type and different LoDs. A relief in
LoD2, for example, can contain some LoD3-TIN-ReliefComponents beside a LoDZ2-Raster-
ReliefComponent. In some cases even a LoD1 grid may exist in some regions of the relief.

In order to geometrically separate the individual components of a grid, which can exist in
different LoD, the validity polygon of a component (extent) is used. This polygon defines the
scope in which the component is valid. A grid with three components is shown in Figure 15.
It depicts a coarse raster containing two high-resolution TINs (TIN 1 and 2). The validity
polygon of the raster is represented by the blue line, while the validity polygons of the TINs
are bordered in green and red. In this case, the validity polygon of the raster (grid) has two
holes where the raster (grid) is not valid, although it does exist. Instead, the high-resolution
TINs are used for the representation of the terrain in these regions. That means the validity
polygons of the TINs exactly fit the two holes in the validity polygon of the raster (grid).

3D Geodatabase for CityGML 2018 45

Figure 15: A relief, consisting of three components and its validity polygons
(from: [Pliimer et al., 2005])

In the simplest and most frequent case, the validity polygon of a grid corresponds exactly with
its Bounding box, i.e. the spatial extent of the grid.

2.2.4.6 Generic Objects and Attributes

The concept of generic objects and attributes has been introduced to facilitate the storage and
exchange of 3D objects, which are not covered by explicitly modelled classes within
CityGML or which requires additional attributes. These generic extensions are realised by the
class GenericCityObject and the data type genericAttribute (cf. Figure 16).

A GenericCityObject may have the attributes class, function, and usage are specified as
gml:CodeType. The class attribute allows an object classification within the thematic area
such as bridge, tunnel, pipe, power line, dam, or unknown. The function attribute describes to
which thematic area the GenericCityObject belongs (e.g. site, transportation, architecture,
energy supply, water supply, unknown etc.). The attribute usage can be used, if the object's
usage differs from its function. Each CityObject and all thematic subclasses can have an
arbitrary number of genericAttributes. Data types may be String, Integer, Double (floating
point number), URI (Unified Resource Identifier), Date, and gml:MeasureType. The attribute
type is defined by the selection of the particular subclass of _genericAttribute (stringAttribute,
intAttribute etc.). In addition, generic attributes can be grouped using the genericAttributeSet
class which is derived from _genericAttribute and thus is also realized as generic attribute. Its
value is the set of contained generic attributes.

46 3D Geodatabase for CityGML 2018

<<Geometry>> SARENTED _genericAttribute <<Dat.aTypE:\>>
gml::MultiCurve core::_CityObject . 1 . ffenarfcAttributs
+name : xs:string [1]
0.1 A
: : 1.*

_genericAttribute <<DataType>>
lodOTerrainlntersection * — stringAttribute
lod 1 Temrainlntersection n Ge:;l:;a:t;m;;ec‘ 0.1 +value : xs:string [1]

yOh) <<DataType>>
lod2Terrainintersection 3| rolass - gmi::CodeType [0.1] genericAttributeSet] <<DataType>>
*function : gml::CodeType [0."] +codeSpace : xs::anyURI [0..1] | intAttribute
lod3Terrainintersection +|+usage : gml::CodeType [0..%] +value : xszinteger [1]
lod4Terrainlntersection * <<DataType=>
b B R R b b R — doubleAttribute
lodOImplicitRepresentation lod0Geometry +value : xs::double [1]
lod 1lmplicitRepresentation lod1Geometry <<DataType>>
lod2ImplicitRepresentation lod2Geometry dateAttribute
+value : xs::date [1]
lod3ImplicitRepresentation lod3Geometry
lod4ImplicitRepresentation lod4Geometry <:Eiit:;:;ﬁ:>
0.1 0.1 +value : xs:anyURI [1]
<<Object>> <<Geometry>> <<DataType>>
core::ImplicitGeometry gml::_Geometry [measureAttribute
+value : gml::MeasureType [1]

Figure 16: GenericCityObject model

The geometry of a GenericCityObject can either be an explicit GML3 geometry or an
ImplicitGeometry. In the case of an explicit geometry, the object can have only one geometry
for each LoD, which may be an arbitrary 3D GML geometry object (class _Geometry, which
is the base class of all GML geometries, lodXGeometry, X in 0...4). Absolute coordinates
according to the reference system of the city model must be given for the explicit geometry.
In the case of an ImplicitGeometry, a reference point (anchor point) of the object and
optionally a transformation matrix must be given. In order to compute the actual location of
the object, the transformation of the local coordinates into the reference system of the city
model must be processed and the anchor point coordinates must be added. The shape of an
ImplicitGeometry can be given as an external resource with a proprietary format, e.g. a
VRML or DXF file from a local file system or an external web service. Alternatively, the
shape can be specified as a 3D GML3 geometry with local Cartesian coordinates using the
property relativeGeometry.

In order to specify the exact intersection of the DTM with the 3D geometry of a
GenericCityObject, the latter can have TerrainlntersectionCurves for every LoD. This is
important for 3D visualization but also for certain applications like driving simulators. For
example, if a city wall (e.g., the Great Wall of China) should be represented as a
GenericCityObject, a smooth transition between the DTM and the road on the city wall would
have to be ensured (in order to avoid unrealistic bumps).

3D Geodatabase for CityGML 2018 47

2.2.4.7 LandUse Model

LandUse objects describe areas of the earth’s surface dedicated to a specific land use. They
can be employed to represent parcels in 3D. Figure 17 shows the UML diagram of land use
objects.

Every LandUse object may have the attributes class (e.g. settlement area, industrial area,
farmland etc.), function (purpose, e.g. cornfield), and usage which can be used, if the way the
object is actually used differs from the function. Since the attributes usage and function may
be used multiple times, storing them in only one string requires a single white space as unique
separatorRelational database schema.

<<Feature>>
core::_CityObject

lod0MultiSurface

<<Feature>>
LandUse - lod 1MultiSurface

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..%]
+usage : gml:CodeType [0..7] - lod3MultiSurface

lod2MultiSurface P--1 <<Geometry>>
gml::MultiSurface

lod4MultiSurface

Figure 17: LandUse model

The LandUse object is defined for all LoD 0-4 and may have different geometries for each
LoD. The surface geometry of a LandUse object is required to have 3D coordinate values. It
must be a GML3 MultiSurface, which might be assigned appearance properties like material
(X3DMaterial) and texture (_AbstractTexture and its subclasses).

2.2.4.8 Transportation Model

The transportation model of CityGML is a multi-functional, multi-scale model focusing on
thematic and functional as well as geometrical/topological aspects. Transportation features are
represented as a linear network in LoDO0. Starting from LoD1, all transportation features are
geometrically described by 3D surfaces.

The main class is TransportationComplex (cf. Figure 19) which represents, for example, a
road, a track, a railway, or a square. It is composed of the parts TrafficArea and
AuxiliaryTrafficArea. Figure 18 depicts an example for a LoD2 TransportationComplex
configuration within a virtual 3D city model. The Road consists of several TrafficAreas for
the sidewalks, road lanes, parking lots, and of AuxiliaryTrafficAreas below the raised flower
beds.

48 3D Geodatabase for CityGML 2018

Auxiliary
traffic
areas

Figure 18: LoD2 representation of a transportation complex
(from: [Groger et al., 2008])

The road itself is represented as a TransportationComplex, which is further subdivided into
TrafficAreas and AuxiliaryTrafficAreas. The TrafficAreas are those elements, which are
important in terms of traffic usage, like car driving lanes, pedestrian zones and cycle lanes.

The AuxiliaryTrafficAreas are describing further elements of the road, like kerbstones, middle
lanes, and green areas.

<<Feature>>
core::_CityObject

1

<<Feature>>

_TransportationObject
<<Feature>> <<Feature>> - . <<Feature>>
TrafficArea trafficArea Transp omplex auxiliaryTrafficArea AuxiliaryTrafficArea
+class : gml::CodeType [0..1] M +class : gml::CodeType [0..1] O. ? +class : gml::CodeType [0..1]
+function : gml::CodeType [0.."] > * | +function : gml:CodeType [0.."] +function : gml::CodeType [0..]
+usage : gml::CodeType [0..*] +usage : gml::CodeType [0..*] +usage : gml:CodeType [0.."]
+ ial : G + ial : A
surfaceMaterial : gml::CodeType [0..1] Tl " l lodONetwork surfaceMaterial : gml::CodeType [0..1]
[1 ’
lod 1MultiSurface <<Feature>> <<Feature>> <<Geomelry>>
lod2MultiSurface Track Railway gml::GeometricComplex
lod3MultiSurface <<Feature>> <<Feature>>
lod2MultiSurface lod4MultiSurface Road Square
q 0.1
lod3MultiSurface lod2MultiSurface
0.1 Ll
lod4MultiSurface <<Geometry>> lod3MultiSurface
gml::MultiSurface lod4MultiSurface

Figure 19: UML model for transportation complex

TransportationComplex objects can be thematically differentiated using the subclasses Track,
Road, Railway, and Square. Every TransportationComplex has the attributes class, function
and wusage, referencing to the external code lists. The attribute class describes the
classification of the object. The attribute function describes the purpose of the object like, for

example national motorway, country road, or airport, while the attribute usage can be used, if
the actual usage differs from the function.

3D Geodatabase for CityGML 2018 49

In addition, both TrafficArea and AuxiliaryTrafficArea may have the attributes class, function,
usage, and surfaceMaterial. The attribute class describe the classification of the object. For
TrafficArea, the attribute function describes whether the object is a car driving lane, a
pedestrian zone, or a cycle lane, while the usage attribute indicates which modes of
transportation can use it (e.g. pedestrian, car, tram, roller skates). The attribute
surfaceMaterial specifies the type of pavement and may also be wused for
AuxiliaryTrafficAreas (e.g. asphalt, concrete, gravel, soil, rail, grass etc.). The function
attribute of the AuxiliaryTrafficArea defines, among others, kerbstones, middle lanes, or green
areas. The possible values are specified in external code lists.

TransportationComplex is a subclass of _TransportationObject and of the root class
_CityObject. The geometrical representation of the TransportationComplex varies through the
different levels of detail. In the coarsest LoDO, the transportation complexes are modelled by
line objects establishing a linear network. Starting from LoD1, a TransportationComplex
provides an explicit surface geometry, reflecting the actual shape of the object, not just its
centreline. In LoD2 to LoD4, it is further subdivided thematically into TrafficAreas, which are
used by transportation, such as cars, trains, public transport, airplanes, bicycles, or pedestrians
and in AuxiliaryTrafficAreas, which are of minor importance for transportation purposes, for
example road markings, green spaces or flower tubs.

2.2.4.9 Tunnel Model

The tunnel model is closely related to the building model. It supports the representation of
thematic and spatial aspects of tunnels and tunnel parts in four levels of detail, LODI1 to
LODA4. The UML diagram of the tunnel model is shown in Figure 21. The pivotal class of the
model is _AbstractTunnel, which is a subclass of the thematic class _Site (and transitively of
the root class _CityObject). AbstractTunnel is specialized either to a Tunnel or to a
TunnelPart. Since an AbstractTunnel consists of TunnelParts, which again are
_AbstractTunnels, an aggregation hierarchy of arbitrary depth may be realized. Both classes
Tunnel and TunnelPart inherit the attributes of _AbstractTunnel: the class of the tunnel, the
function, the usage, the year of construction and the year of demolition. In contrast to
_AbstractBuilding, Address features cannot be assigned to _AbstractTunnel.

Figure 20: Example of a tunnel modelled with two tunnel parts

50 3D Geodatabase for CityGML 2018

The geometric representation and semantic structure of an _AbstractTunnel is shown in
Figure 21. The model is successively refined from LOD1 to LOD4. Therefore, not all
components of a tunnel model are represented equally in each LOD and not all aggregation
levels are allowed in each LOD. An object can be represented simultaneously in different
LODs by providing distinct geometries for the corresponding LODs.

<<Feature>> <1 —| <<Featura>> 1
core::_CityObject core::_Site
e ————————— —————
lod3ImplicitRepresentation w1 <<Object>>
loddimpliciiRepresentation | Sore: mpEC tCeometry
0.1
Indd-lmphc\lRepresemalian"“ lnd 2ImnlicitRe nresentation
I A mpnlicitRe nresantation
lod4implicitRe prese ntation
= £ 0.1 InddimnlicitRe nresentation
lod4Geometry 0.1 0.1
=) <<Geomelry>> | lod2Geometry <<Feature>>
lod4Geometry gmi::_Geometry ‘ lod 3Geometry Tunnelinstallation
S
0.1 lod4Geometry « [+class : gmi:CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml:CodeType [0..]
<<Feature>>
Int T tallation outerTunnellnstallation
* | +class : gmi:CodeType [0.1]
+function : gml::CodeType [0..*]
+usage : gmi:CodeType [0..*]
.~ InterierTunnelinstallation
hollowSpacelnstalation
<<Feature>>
_Abstract Tunnel
<<Feature>>
—] TunnelFurnlture +class : gmizCodeType [0..1]
+function : gml::CodeType [0..*]
+dass : gml:CodeType [0..1] +usage : gmlzCodeType [0..*]
VAR 8 (LSOl SR | D +yearOfConstruction : xs::gYear [0..1] .
jasansRomt ocelynel DR +yearOfDemolition : xs:gYear [0..1] %
G gimeriorFumiture
0.1 0.1
<<Feature== o <<Feature>> <<Feature>>
HollowSpace . Tunnel | | TunnelPart
+class : gmlzCodeType [0..1] consistsOfTunnelPart
+function : gml::CodeType [0..*] interiorHollowSpace
+usage : gml:CodeType [0..*
98:9 ype [0-7] T8 lod TMultiSurface lod 1Termainintersection ledZMultiCurve
0.1 lod? Solid lod2MultiSurface lod2Terrainintersection lod 3MultiCurve
Ind3Snlid lod3MultiSurface lod3Terrainintersection lod4MultiCurve
0.1 IndaSnlid loddaMultiSurface [0-1 [lod4Terrainintersection
0.1 0.1
<<Geometry>> <<Geometry=> <<Geometry=>
L e it gml:;_Solid gml:: MultiSurface gml::MultiCurve
0.1
D..'\/P 0.1 0.1
<<Fealure>> lodaMultiSurface lod2MultiSurface
_Opening lod3MUltiSurface lod 3MultiSurface
lod4MultiSurface
D loddMultiSurface
<<Feature>> <<Feature>> .
Window Door boundedBy [<<Fealura>> boundedBy
_Bo ySurface > boundedB
0.2 * -boundedBy
[I I I 1 I 1
<<Feature>> <<Feature>> <<Feature>> =<<Feature>> <=<Feature>> <<Fealure>> <<Feature>>
RoofSurface WallSurfacee GroundSurface c rface CeilingSurface InteriorWallSurface FloorSurface
<<Feature>> <<Feature>>

OuterCeilingSurface

OuterFloorSurface

Figure 21: UML diagram of tunnel model

Similar to the building and bridge models (cf. chapters 2.2.4.2 and 2.2.4.3), only the outer
shell of a tunnel is represented in LODI1 — 3, which is composed of the tunnel’s boundary
surfaces to the surrounding earth, water, or outdoor air. The interior of a tunnel may only be

modelled in LOD4.

3D Geodatabase for CityGML 2018 51

In LODI, a tunnel model consists of a geometric representation of the tunnel volume.
Optionally, a MultiCurve representing the TerrainlntersectionCurve can be specified. The
geometric representation is refined in LOD2 by additional MultiSurface and MultiCurve
geometries. In LOD2 and higher LODs the outer structure of a tunnel can also be
differentiated semantically by the classes BoundarySurface and Tunnellnstallation. A
boundary surface is a part of the tunnel’s exterior shell with a special function like wall
(WallSurface), roof (RoofSurface), ground plate (GroundSurface), outer floor
(OuterFloorSurface), outer ceiling (OuterCeilingSurface) or ClosureSurface (see Figure 22).
The Tunnellnstallation class is used for tunnel elements like outer stairs, strongly affecting
the outer appearance of a tunnel. A Tunnellnstallation may have the attributes class, function

and usage.

RoofSurface / OuterCeilingSurface

il @ rface rface
o CeilingSurface s S;. & ‘6\\5\! gc? & @\Su
8 T ~ &] d.
@ 5 T §] £ &/ &
5 @ & - Y 5 2
2 2 T 3
¥ s s =z
= 8 E FloorSurface
= FloorSurface —
GroundSurface
Rectangular Cross Section Circular Cross Section Circular Cross Section
ace / Oy,
Sy,
Q-/_/' s "x,‘?‘p@
& é\\suriace > Gé\\-‘“g Urfag, \‘_\ %, &
.f ot‘\ / \B :,g CeilingSurface
] [3 N, £ |2 2
S e @ =4 =
g é é 3 = 3
T s s 5 = =
@ z zZ @ E E
FloorSurface = £ FloorSurface = i FloorSurface
S = =
A GroundSurface
Circular Cross Section Arbitrary Cross Section Arbitrary Cross Section

Figure 22: Different BoundarySurfaces of a tunnel

In LOD3, the openings in _BoundarySurface objects (doors and windows) can be represented
as thematic objects. In LOD4, the highest level of resolution, also the interior of a tunnel,
composed of several hollow spaces, is represented in the tunnel model by the class
HollowSpace. This enlargement allows a virtual accessibility of tunnels, e.g. for driving
through a tunnel, for simulating disaster management or for presenting the light illumination
within a tunnel. The aggregation of hollow spaces according to arbitrary, user defined criteria
(e.g. for defining the hollow spaces corresponding to horizontal or vertical sections) is
achieved by employing the general grouping concept provided by CityGML (cf. chapter
2.2.4.1). Interior installations of a tunnel, i.e. objects within a tunnel which (in contrast to
furniture) cannot be moved, are represented by the class IntTunnellnstallation. If an
installation is attached to a specific hollow space (e.g. lamps, ventilator), they are associated
with the HollowSpace class, otherwise (e.g. pipes) with _AbstractTunnel. A HollowSpace
may have the attributes class, function and usage whose possible values can be enumerated in

52 3D Geodatabase for CityGML 2018

code lists. The class attribute allows a general classification of hollow spaces, e.g. commercial
or private rooms, and occurs only once. The function attribute is intended to express the main
purpose of the hollow space, e.g. control area, installation space, and storage space. The
attribute usage can be used if the way the object is actually used differs from the function.
Both attributes can occur multiple times. The visible surface of a hollow space is represented
geometrically as a Solid or MultiSurface. Semantically, the surface can be structured into
specialized BoundarySurfaces, representing floor (FloorSurface), ceiling (CeilingSurface),
and interior walls (InteriorWallSurface). Hollow space furniture, like movable equipment in
control areas, can be represented in the CityGML tunnel model with the class
TunnelFurniture. A TunnelFurniture may have the attributes class, function and usage.

22410 Vegetation Model

The vegetation model of CityGML distinguishes between solitary vegetation objects like trees
and vegetation areas, which represent biotopes like forests or other plant communities. Single
vegetation objects are modelled by the class SolitaryVegetationObject, while for areas filled
with specific vegetation the class PlantCover is used.

SolitaryVegetationObje

PlantCover
(MultiSolid)

Figure 23: Image illustrates objects of the vegetation model
(from: [Groger et al., 2008])

The geometry representation of a PlantCover feature may be a MultiSurface or a MultiSolid,
depending on the vertical extent of the vegetation. For example, regarding forests, a
MultiSolid representation might be more appropriate (cf. Figure 23).

The UML diagram of the vegetation model is depicted in Figure 24. A SolitaryVegetation-
Object may have the attributes class (e.g. tree, bush, grass), species (species’ name, e.g. Abies
alba), wusage, and function (e.g. botanical monument), height, trunkDiameter and
crownDiameter. A PlantCover feature may have the attributes class (plant community),
usage, function (e.g. national forest) and averageHeight. Since both SolitaryVegetationObject
and PlantCover are CityObjects, they inherit all attributes of a city object, in particular its
name (gml:name) and an ExternalReference to a corresponding object in an external
information system, which may contain botanical information from public environmental
agencies.

3D Geodatabase for CityGML 2018 53

<<Feature>>

core::_CityObject

1

<<Feature>>

VegetationObject

lod1Geometry [1 * lod1
<<Feature>> <<Feature>>
<<Geometry>> 0..1 | lod2Geometry +| SolitaryVegetationObject PlantCover + _lod2MultiSurface |0..1 <<Geometry>>
- lass : gml::CodeType [0..1] +class : gml::CodeType [0..1] " > I::MultiSurf:
gml::_Geometry J*c g yp! . gml::MultiSurface
fodaGeomely +function : gmi::CodeType [0.] +function : gmi::CodeType [0.] oMU Suriace)
lod4Geometry «|+usage : gml::CodeType [0..] +usage : gml:CodeType [0..%] + lod4MultiSurface
+species : gml::CodeType [0..1] +averageHeight : gml::LengthType [0..1]
lod 1mplicitRepresentation _+ *height : gmi::LengthType [0..1] *___lod1MultiSolid
+trunkDiameter : gml::LengthType [0..1] 0.1 =G e
<<Object>> 0..1| lod2ImplicitRepresentation _#| +crownDiameter : gml::LengthType [0..1] « lod2MultiSolid S N en:”l‘i;yl‘d
. gmi::NultiSolu
core::ImplicitGeomet lod3ImplicitRepresentation 4 »__ lod3MultiSolid
lod4ImplicitRepresentation | * lod4MultiSolid

Figure 24: Vegetation Model

The geometry of a SolitaryVegetationObject may be defined in LoD 1-4 by absolute
coordinates, or prototypically by an ImplicitGeometry. Season dependent appearances may be
mapped using ImplicitGeometries. For visualisation purposes, only the content of the library
object defining the object’s shape and appearance has to be swapped.

A SolitaryVegetationObject or a PlantCover may have a different geometry in each LoD.
Whereas a SolitaryVegetationObject is associated with the _Geometry class representing an
arbitrary GML geometry (by the relation /lodXGeometry), a PlantCover is restricted to be
either a MultiSolid or a MultiSurface.

2.2.4.11 WaterBodies Model

The water bodies model represents the thematic aspects and 3D geometry of rivers, canals,
lakes, and basins. In LoD 2-4 water bodies are bounded by distinct thematic surfaces. These
surfaces are the obligatory WaterSurface, defined as the boundary between water and air, the
optional WaterGroundSurface, defined as the boundary between water and underground (e.g.
DTM or floor of a 3D basin object), and zero or more WaterClosureSurfaces, defined as
virtual boundaries between different water bodies or between water and the end of a modelled
region (cf. Figure 25). A dynamic element may be the WaterSurface to represent temporarily
changing situations of tidal flats.

WaterSurface

—<> WaterBody

WaterClosure
Surface

—

WaterGroundSurface

Figure 25: Definition of waterbody attributes (from: [Groger et al., 2012])

54 3D Geodatabase for CityGML 2018

Each WaterBody object may have the attributes class (e.g. lake, river, or fountain), function
(e.g. national waterway or public swimming) and usage (e.g. navigable) referencing to
external code lists. Since the attributes usage and function may be used multiple times, storing
them in only one string requires a unique delimiter.

WaterBody is a subclass of the root class CityObject. The geometrical representation of the
WaterBody varies for different levels of detail. The WaterBody can be differentiated
semantically by the class WaterBoundarySurface. A _WaterBoundarySurface is a part of the
water body’s exterior shell with a special function like WaterSurface, Water GroundSurface or
WaterClosureSurface. As with any _CityObject, WaterBody objects as well as WaterSurface,
WaterGroundSurface, and WaterClosureSurface objects may be assigned ExternalReferences
and GenericAttributes.

Both LoDO0 and LoD1 represent a low level of illustration and high grade of generalisation.
Here the rivers are modelled as MultiCurve geometry and brooks are omitted. Seas, oceans,
and lakes with significant extent are represented as MultiSurfaces. (cf. Figure 26)

<<Feature>>
core::_CityObject

[
0-1 jocoMultisurface <;Ffa‘;m.> > .
<<Geometry>>) _WaterObjec:
gml::MultiSurface lodTMultiSurface
<<Feature>> b X « lod2Surface
lod1Solid . WaterBo <
I heTroaa CodeType;)yﬂ boundedBy| <<Feature>> + lod3Surface i <<Geometry>>
i G ’ ’ WaterBoundarySurf: [o:
e ——— 0.1/ lod2Solid +function : gml::CodeType [0.] _WaterBoundarySurface I gml::_Surface
gmi::_Solid lod3Solid + |+usage : gml:CodeType [0.."]
lod4Solid
lodOMultiCi <<Feature>>
Of ultiCurve * -
WaterSurface
<<Genma?try>> . . <<Feature>> <<Feature>> o i ; T i
GBI MRS lcdIMULTEING WaterClosureSurface | | WaterGroundsurface | | "@ertevel -gml:CodeType 0..1]

Figure 26: Waterbody model

Starting from LoD1, water bodies may also be modelled as volumes filled with water,
represented by Solids. If a water body is represented by a Solid in LoD2 or higher, the surface
geometries of the corresponding thematic WaterClosureSurface, WaterGroundSurface, and
WaterSurface objects must coincide with the exterior shell of the Solid. This can be ensured,
if for one LoD X the respective lodXSurface elements (where X is between 2 and 4) of
WaterClosureSurface, WaterGroundSurface, and WaterSurface reference the corresponding
polygons (using XLink) within the CompositeSurface that defines the exterior shell of the
Solid. Furthermore, every WaterBoundarySurface must have at least one associated surface
geometry attached.

The water body model implicitly includes the concept of TerrainintersectionCurves (TIC),
e.g. to specify the exact intersection of the DTM with the 3D geometry of a WaterBody or to
adjust a WaterBody or WaterSurface to the surrounding DTM. The rings defining the
WaterSurface polygons implicitly delineate the intersection of the water body with the terrain
or basin.

3D Geodatabase for CityGML 2018 55

2.3 Relational database schema

2.3.1 Mapping rules, schema conventions

2.3.1.1 Mapping of classes onto tables

Generally, one or more classes of the UML diagram are mapped onto one table; the name of
the table is identical to the class name (a leading underscore indicating an abstract class is left
out). Classes are combined into a single table according to the class relations as shown in the
UML diagrams by using orange coloured boxes. The scalar attributes of the classes become
columns of the corresponding table with identical name.

The types of the attributes are customized to corresponding database (Oracle/PostgreSQL)
data types (see Table 1). Some attributes of the data type date were mapped to TIMESTAMP
WITH TIME ZONE to allow a more accurate storage of time values.

Data type mapping (excerpt)

UML Oracle PostgreSQL / PostGIS
String, anyURI VARCHAR2, CLOB VARCHAR, TEXT
Integer NUMBER NUMERIC
Double, gml:LengthType BINARY_DOUBLE DOUBLE PRECISION
Boolean NUMBER(1,0) NUMERIC
Date DATE, DATE,
TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE
Primitive Type (Color,
TransformationMatrix, VARCHAR?2 VARCHAR
CodeType etc.)
Enumeration VARCHAR2 VARCHAR
AL (CmmEiTy, SDO_GEOMETRY GEOMETRY

textureCoordinates

GML RectifiedGridCoverage | SDO_GEORASTER & SDO_RASTER RASTER

Texture (only reference of
type anyURI in CityGML) BLOB BYTEA

Table 1: Data type mapping

2.3.1.2 Explicit declaration of class affiliation

In the (meta) table OBJECTCLASS, all class names (attribute CLASSNAME) of the schema
are managed. The relation of the subclass to its parent class is represented via the attribute
SUPERCLASS_ID in the subclass as a foreign key to the ID of the parent class (see).

The table OBJECTCLASS 1is used to efficiently determine the affiliation to a class in the
superclass tables. In addition, the table CITYOBJECT contains the attribute

OBJECTCLASS ID which refers to the respective table OBJECTCLASS. This way, while
looking at a tuple in CITYOBJECT, the subclass and — if needed — the name of the class can
be determined directly. This mechanism has also been adopted in other tables that are used to
store different CityGML features, e.g. THEMATIC SURFACE (for all different
BoundarySurfaces of a Building feature) or BUILDING INSTALLATION (outer or interior)
etc. Please consider that using CityGML ADEs could lead to additional OBJECTCLASS 1Ds
in this table (please also refer to 2.3.3.1 Metadata Model).

56

3D Geodatabase for CityGML 2018

OBJECTCLASS
ID CLASSNAME SUPERCLASS_ID
0 Undefined
1 _GML
2 _Feature 1
3 _CityObject 2
4 LandUse 3
5 GenericCityObject 3
6 _VegetationObject 3
7 SolitaryVegetationObject 6
8 PlantCover 6
9 WaterBody 105
10 _WaterBoundarySurface 3
11 WaterSurface 10
12 WaterGroundSurface 10
13 WaterClosureSurface 10
14 ReliefFeature 3
15 _ReliefComponent 3
16 TINRelief 15
17 MassPointRelief 15
18 BreaklineRelief 15
19 RasterRelief 15
20 _Site 3
21 CityFurniture 3
22 _TransportationObject 3
23 CityObjectGroup 3
24 _AbstractBuilding 20
25 BuildingPart 24
26 Building 24
27 Buildinglnstallation 3
28 IntBuildingInstallation 3
29 _BuildingBoundarySurface 3
30 BuildingCeilingSurface 29
31 InteriorBuildingWallSurface 29
32 BuildingFloorSurface 29
33 BuildingRoofSurface 29
34 BuildingWallSurface 29
35 BuildingGroundSurface 29
36 BuildingClosureSurface 29
37 _BuildingOpening 3
38 BuildingWindow 37
39 BuildingDoor 37
40 BuildingFurniture 3
41 BuildingRoom 3
42 TransportationComplex 22
43 Track 42
44 Railway 42
45 Road 42
46 Square 42
47 TrafficArea 22
48 AuxiliaryTrafficArea 22
49 FeatureCollection 2
50 Appearance 2
51 _SurfaceData 2
52 _Texture 51
53 X3DMaterial 51
54 ParameterizedTexture 52
55 GeoreferencedTexture 52

3D Geodatabase for CityGML 2018

57

56 _TextureParametrization 1
57 CityModel 49
58 Address 2
59 ImplicitGeometry 1
60 OuterBuildingCeilingSurface 29
61 OuterBuildingFloorSurface 29
62 _AbstractBridge 20
63 BridgePart 62
64 Bridge 62
65 Bridgelnstallation 3
66 IntBridgelnstallation 3
67 _BridgeBoundarySurface 3
68 BridgeCeilingSurface 67
69 InteriorBridgeWallSurface 67
70 BridgeFloorSurface 67
71 BridgeRoofSurface 67
72 BridgeWallSurface 67
73 BridgeGroundSurface 67
74 BridgeClosureSurface 67
75 OuterBridgeCeilingSurface 67
76 OuterBridgeFloorSurface 67
77 _BridgeOpening 3
78 BridgeWindow 77
79 BridgeDoor 77
80 BridgeFurniture 3
81 BridgeRoom 3
82 BridgeConstructionElement 3
83 _AbstractTunnel 20
84 TunnelPart 83
85 Tunnel 83
86 Tunnellnstallation 3
87 IntTunnellnstallation 3
88 _TunnelBoundarySurface 3
89 TunnelCeilingSurface 88
90 InteriorTunnelWallSurface 88
91 TunnelFloorSurface 88
92 TunnelRoofSurface 88
93 TunnelWallSurface 88
94 TunnelGroundSurface 88
95 TunnelClosureSurface 88
96 OuterTunnelCeilingSurface 88
97 OuterTunnelFloorSurface 88
98 _TunnelOpening 3
99 TunnelWindow 98
100 TunnelDoor 98
101 TunnelFurniture 3
102 HollowSpace 3
103 TexCoordList 56
104 TexCoordGen 56
105 _WaterObject 3
106 _BrepGeometry 0
107 Polygon 106
108 BrepAggregate 106
109 Texlmage 0
110 ExternalReference 0
111 GridCoverage 0
112 _genericAttribute 0
113 genericAttributeSet 112

58 3D Geodatabase for CityGML 2018

2.3.2 Conceptual database structure

Starting from version 4.0.0, the 3DCityDB database schema has been slightly modified to
support the handling of CityGML ADEs (Application Domain Extensions). With this
enhancement, user-defined database schemas can be dynamically created and attached to a
3DCityDB instance for storing ADE data contents. In addition, every existing CityGML class
table is now equipped with an OBJECTCLASS ID column which allows to distinguisch the
stored data contents of different CityGML and ADE classses having inheritance relationships.
Moreover, a set of new metadata tables are introduced in addition to the existing
OBJECTCLASS table, for holding the relevant meta-information of the registered CityGML
ADEs. In general, all 3DCityDB tables now logically belong to one of the three modules
Metadata Module, Core Data Module, and Dynamic Data Module, whose relations are shown
in the following figure.

=
S~dl -7
e ——————————— R_______‘___x.< __________ i \~\:<”l ___________________ s ;_7 __________ _/:_ ___________ i

\\ ~o PR S~o 7’ 1
S~ -7 S~ e 1

_____________________________ A_______________\'_:__:7‘_______________‘i________7£_______________"_______________|
- ’V\ ‘\\ ’ 1
Dynamic Data Module Lem T TN Rt :
/’ i \\\~ 1
CityGML ADE 1 CityGML ADE 2

Modules = = =

| Many More ADEs |

Figure 27: New conceptual 3DCityDB database structure for handling CityGML ADEs

The green tables enclosed in the Core Data Module represent those database tables that are
responsible for storing the standard CityGML models such as Building, Transportation,
Tunnel, CityFurniture, CityObjectGroup, Generic, Appearance etc. This module comprises
basically the tables of the database schema of previous versions of the 3DCityDB (cf. the next
section for more details). For a given CityGML ADE, an additional group of database tables
forming a separate module belonging to the Dynamic Data Module (pink tables in the figure)
can be created and attached to the 3DCityDB database schema. In addition, the relationships
(e.g. generalization/specialization and associations) among the model classes of CityGML and
CityGML ADEs are adequately reflected using database foreign key constraints which allow
to ensure the data integrity and consistency within the database system. The Metadata Module
associated with the Dynamic Data Module is utilized for storing the relevant meta-
information (e.g. the XML namespaces, schema files, and class affiliations etc.) about ADEs
as well as the referencing relations among the ADE and CityGML application schemas. This

3D Geodatabase for CityGML 2018 59

way, the dependencies between the registered ADE application schemas can be directly read
from the 3DCityDB database schema to facilitate the database administration process, i.e. the
registration and deregistration of multiple CityGML ADEs within a 3DCityDB instance.

2.3.3 Database schema

In the following paragraph, the tables of the relational schema are displayed graphically and
described in detail. The description is based on the remarks on UML charts in chapter 2.2.
Focus is put on situations where the conversion into tables leads to changes in the model.

The figures are taken from Oracle JDeveloper, which allows to design different diagrams and
reuse already defined tables. JDeveloper (v12.2.1) was used to design the database schema
and extract SQL DDL scripts automatically for Oracle databases. It is a freeware IDE by
Oracle and can be downloaded at: http://www.oracle.com/technetwork/developer-tools/jdev.

For PostgreSQL databases the Open Source tool pgModeler (v0.8.2) has been used to
maintain the schema. Packed installers can be purchased at http://pgmodeler.com.br/ or the
user compiles the software from the source code available at GitHub
(https://github.com/pgmodeler/pgmodeler).

Starting from version 3.0.0 of the 3DCityDB the corresponding schema modelling projects
are shipped with the release and can be edited by the user to create customized SQL scripts.
However, the 3DCityDB Import/Export tool only supports the default schema, unless it is not
reprogrammed against the user’s new database schema.

2.3.3.1 Metadata Model

An overview of the relational structure of the Metadata Module is shown in Figure 28. The
table ADE serves as a central registry for all the registered CityGML ADEs each of which
corresponds to a table row and the relevant ADE metadata attributes are mapped onto the
respective columns. For example, each registered ADE shall own a globally unique ID value
for identification purpose. This ID value could be a UUID (Universally Unique Identifier)
which can be automatically generated and stored in the column ADEID while registering the
ADE. The columns NAME and DESCRIPTION are mainly used for storing the basic
description information of each ADE. The column VERSTION denotes the version number of
an ADE and allows to distinguish different release versions. In the 3DCityDB database
schema, the database objects like tables, indexes, foreign key constrains, and sequences of a
certain ADE shall be named by starting with a unique prefix. This allows applications to
rapidly fetch out the database schema of a certain ADE using a wildcard filter. In this way, it
is possible to automatically perform some kinds of statistics on the ADE data contents stored
in the individual tables. In addition, the column XML SCHEMAMAPPING FILE is used to
store the XML-formatted schema mapping information of each ADE and is henced defined
with the CLOB data type. Another CLOB-typed column is DROP DB SCRIPT where the
SQL statements for dropping the individual ADE database schema is saved and can be easily
retrieved and carried out at the database side. Moreover, the CREATION DATE and
CREATION PERSON are two application-specific attribute columns for providing the
information about who and when have operated the ADE registration process. This meta-

60

3D Geodatabase for CityGML 2018

information is typically helpful for 3DCityDB users to accomplish the administration work
e.g. searching and cleaning up those ADEs that are outdated or registered by certain database

users.

5] SCHEMA_REFERENCING
REFERENCING _ID : NUMBER
REFERENCED_ID : NUMBER

«PK=SCHEMA_REFEREMCING _PK: REFERENCING _ID, REFERENCED_ID
«FK=SCHEMA_REFEREMCING _FK1: REFERENCING _ID
«FH>SCHEMA_REFEREMNCING _FK2: REFERENCED_ID

REFERENCED_D | , 1| REFERENCING_ID
4 $
= SCHEMA

D : NUMBER

1S_ADE_ROOT : NUMBER(1, 0)
CITYGML_VERSION : VARCHAR2(0)
¥ML_NAMESPACE_URI | VARCHAR2(4000)
¥ML_NAMESPACE_PREFIX : VARCHAR2(50)
¥ML_SCHEMA_LOCATION : Y ARCHAR2(4000)
¥ML_SCHEMAFILE : BLOB
¥ML_SCHEMAFILE_T'YPE : VARCHAR2(256) .
ADE_ID : NUMBER

=PKSCHEMA_PK: ID
«FKSCHEMA_ADE_FK: ADE_D

0 ¥

SCHEMA_ID

* o]

= SCHEMA_TO_OBJECTCLASS
SCHEMA_ID : NUMBER
OBJECTCLASS_ID : NUMBER

«PK=SCHEMA_TO_OBJECTCLASS _PK: SCHEMA_ID, OBJECTCLASS_ID
«FK=SCHEMA_TO_OBJECTCLASS_FK1: SCHEMA_ID
«FK=SCHEMA_TO_CBJECTCLASS _FKZ: OBJECTCLASS_ID

] DATABASE_SRS
SRID : NUMBER(38, 0)
GML_SRS_NAME : VARCHAR2(1000)
UNVERSIONED TABLE

«PK=DATABASE_SRS_PK: SRID

= ADE

D : NUMBER

ADEID : VARCHAR2(256)

NAME : VARCHAR2(1000)
ADE o |PESCRIPTION : VARCHAR2(4000)

— | VERSION : VARCHAR2(50)

DB_PREFIY : VARCHAR2(10)
¥ML_SCHEMAMAPPING _FILE : CLOB
DROP_DB_SCRIPT : CLOB
CREATION_DATE : TIMESTAMP WITH TIME ZONE
CREATION_PERSON : VARCHAR2(256)

0.1

«PK=ADE_PK: ID

ADE_ID § 0.1

“|p ‘lop *|D
] OBJECTCLASS
1D - MUMBER
|5_ADE_CLASS : NUMBER(1, 0)
|S_TOPLEVEL : NUMBER(1, 0 0
CLASSMAME : VARCHARZ(256) |7y —
TABLEMAME : WV ARCHARZ{30) SUPERCLASS_D

SUPERCLASS _ID : NUMBER

BASECLASS_ID : NUMBER

ADE_ID : NUMBER 0.1

<PK>0BJECTCLASS_PK: ID

——*# :FK>0BJECTCLASS_ADE_FK: ADE_D

1 |«FKsOBJECTCLASS_BASECLASS_FK: BASECLASS_ID
<FK30BJECTCLASS _SUPERCLASS_FK: SUPERCLASS D

OBJECTCLASS_ID
BASECLASS_ID

CHILD_ID$ 1 PARENT_ID 1
