3D City Database for CityGML

3D City Database Version 2.0.2 to 2.0.6
Importer/Exporter Version 1.3.0 to 1.5.0

Addendum to the
3D City Database Documentation Version 2.0.1

21 January 2013

database

Institute for Geodesy and Geoinformation Science
Technische Universitat Berlin

Thomas H. Kolbe
Claus Nagel
Javier Herreruela

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

(Page intentionally left blank)

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Content

1 DISCLAIMER ...
FZ © XY o Y |
3 CHANGES IN 3D CITY DATABASE CONTENTS ...coooiiiiiiieeee,
3.1 ENVELOPE in CITYOBJECT TabI€....c.cceiieiiiiiieieie e

4 NEW FEATURES ...

4.1 Graphical Bounding Box Choice WINAOWcccocviiiininiiiienenc e,

o e [N T 1 Y = OSSP

4.3 KML/COLLADA EXPOIt....ciiiiiiiiiiiiiiiesiiaiseerie ettt st snessesneenens

4.3.1 Main parameters of the KML/COLLADA eXport........ccccccevvverviiieivernene.

4.3.2 PrEIEIBNCES.ciuiiiieieiee et

4.3.2.1 General PreferenCes........cooevieiiieiiee e

4.3.2.2 Rendering PreferenCes.........cooooviiiiiinienieieeese e,

4.3.2.3 Information Balloon Preferences..........ccccocvevviieivniesiiennninnnnn

4.3.2.4 Altitude/Terrain PreferenCesccooveveieereeie e seese e

4.3.3 BatCh MOUE ..o

4.3.4 Loading exported models in Google Earth............cccooveveiieiieciiccee

4.3.5 General setting recommendationsccccevvveveiieveere s

4.4 Support for Coordinate Reference Systems (CRS)ccoovvviiiinencncniniecee,

4.4.1 General INTOrmMAatioN........c.coveiiiieii e e

4.4.2 Definition of the CRS for a 3D City Database instance...........c.cccceevenene.

4.4.3 Management of user-defined CRSS........c.ccccevveii e

4.4.4 Usage of user-defined CRSS.......ccccvviiieiiiicseee e

4,45 Support fOor 3D CRS ..o

4.4.6 Support for Point and Line Geometries of GenericCityObjects

4.5 CityGML Import ENNANCEMENTS......ccviiiiieiieeiie sttt

4.5.1 AUAreSS STOTAQE. ...ccuviiieeieeitesie sttt
4.5.2 Affine Coordinate Transformationccccceeeeiieeiiiee e,
B.5.3 INUBXES......teieitiee ettt ettt ettt e et e et e e e be e e e rae e eareeeeans
4.5.4 XML Validationccoooiiiiiiiiiicciee et

4.6 CityGML EXport ENNANCEMENTS........coiiiiiiiieieiiesie s

4.6.1 Coordinate Transformation..........cccccccveiiiii i
4.6.2 CItYGIML VEISION......oiiiiiiii ettt e e e snne s
4.6.3 Address data reCoNSIIUCTION........ccviiiiiiiiiie e
4.6.4 Unique texXture FIlENAMES........ccoueiiiieiieeeie e e
A.6.5 THNG woiveiieiei e

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

4.7 Rework and Redesign of the Matching/Merging ToOl..........ccccccevvveviiieiieieeciee 77
4.8 Extensions to the Database tab and preferences..........cccocvevveveiicci e 80
4.9 Proxy support in PreferenCeScciveieiiieie e 86
4.10 New PL/SQL fUNCLIONAITYocviiiiiiiiiicieeee e 88

4.10.1 PL/SQL package GEODB_DELETE.........ccooiiiiiniiereeieneee e 88

4.10.2 Creating Read-Only USEIS........cccciiieiieiicie s 90
4.11 Test data and template flleS..........cooo i 92
REQUIREMENTS ..ottt e ettt e e e e e e e e s s e e e e e e e e e e nnns 93
UPGRADE FROM PREVIOUS VERSIONS OF THE 3D CITY DATABASE ... 95
CHANGELOGuuiiiiiiiiee ettt e e e e e e e e e e e e e e s s eeeeeeeas 101
7.1 Changelog for the 3D City Databasecccccceiieiverieiieseese e 101
7.2 Changelog for the Importer/EXPOITErcccoviiviiieie e 102

REFERENCES. e eeeees 105

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 5

1 Disclaimer

The 3D City Database and the Importer/Exporter developed by the Institute for Geodesy and
Geoinformation Science (IGG) at the Technische Universitat Berlin is free software under the
GNU Lesser General Public License Version 3.0. See the file LICENSE shipped together with
the software for more details. For a copy of the GNU Lesser General Public License see the
files COPYING and COPYING.LESSER or visit http://www.gnu.org/licenses/.

THE SOFTWARE IS PROVIDED BY IGG "AS IS" AND "WITH ALL FAULTS." IGG
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE QUALITY, SAFETY OR SUITABILITY OF THE SOFTWARE, EITHER
EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT.

IGG MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH,
ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR
MATERIALS CONCERNING THE SOFTWARE THAT IS CONTAINED ON AND
WITHIN ANY OF THE WEBSITES OWNED AND OPERATED BY IGG.

IN NO EVENT WILL IGG BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND
EVEN IF IGG HAVE BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 7

2 Overview

Welcome to the release of the 3D City Database version 2.0.6 and the Importer/Exporter
version 1.5.0. This document is an addendum to the previous documentation of the 3D
City Database version 2.0.1 (cf. [1]). It replaces the previous addenda issued for versions
1.3.0 and 1.4.0 of the Importer/Exporter. Corrections and enhancements documented for
those releases are also included in this guide and explicitly labeled by markers on the left
margin stating the version they were introduced with. The most recent changes brought by
this release 1.5.0 are extra highlighted with a light blue background. For a full overview of the
3D City Database and the Importer/Exporter please also refer to the version 2.0.1
documentation (shipped with the distribution package of this release as well). Version 1.5.0
(3D City Database 2.0.6) is a minor release. The next major release offering full support of
the CityGML 2.0.0 standard is scheduled for the first half of 2013. The main focus of 1.5.0 is
set on the extension of the KML/COLLADA export feature and some performance
improvements and stability fixes.

One of the most outstanding features brought by past releases was the KML/COLLADA
export capability of the Importer/Exporter. 3D City Database contents can be directly
exported in KML and COLLADA formats for presentation, viewing, and visual inspection in
a broad range of applications such as earth browsers like Google Earth, ArcGIS and ArcGIS
Explorer. Built-in support for object highlighting and generic creation of KML information
balloons facilitate the interactive exploration of your 3D city models.

This support has nevertheless been limited to the Building object type so far. While Building
is typically the most recurring top-level feature in a city model, it alone is insufficient for a
comprehensive modeling of urban space. The Importer/Exporter version 1.5.0 addresses this
issue by adding the possibility of exporting the remaining CityGML top-level feature types
(CityFurniture, LandUse, Transportation, etc.) in KML/COLLADA format, allowing different
and independent Rendering and Balloon settings for each top-level category.

In addition, the 1.5.0 release enhances CityGML import and export functionalities at a few
spots and includes numerous performance and stability fixes. The new features and
improvements are summarized in the following list:

e KML/COLLADA exports comprising all top-level feature types and LoDO support
(cf. chapter 4.3),

e Balloon template enhancement through SPECIAL_KEYWORDS for data that has to
be preprocessed before KML/COLLADA export (cf. chapter 4.3.2.3),

e Lossless storage and export of address data (cf. chapter 4.5.1 and 4.6.3),

e Support for point and line geometries of GenericCityObjects (cf. chapter 4.4.6) and

e Several bug fixes (cf. chapter 7)

The 3D City Database version remains unchanged for this release (2.0.6). It is a mandatory
dependency of the Importer/Exporter version 1.4.0 and 1.5.0. Thus, existing 3D City
Database instances of version 2.0.5 or below have to be upgraded to version 2.0.6 in order

8 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

to make use of the new features and improvements. An upgrade script is shipped with this
release. Please refer to chapter 6 for the documentation of the upgrade procedure. If the 3D
City Database instance is already running version 2.0.6 no action needs to be taken and the
Importer/Exporter 1.5.0 can be used right away.

Since release 1.4.0 (3D City Database 2.0.6) both the Importer/Exporter and the 3DCityDB
are no longer constrained to an Oracle Spatial installation but can alternatively work on top of
a PostgreSQL/PostGIS database. This is realized in the form of two separate software
packages, each of them specifically adapted for the database type they are intended to work
with (3DCityDB and Importer/Exporter for Oracle or 3DCityDB and Importer/Exporter for
PostgreSQL/PostGIS). The contents of these packages are not interchangeable, that is, the
3DCityDB scripts for Oracle must be executed on Oracle Spatial, the 3DCityDB scripts for
PostgreSQL/PostGIS on a PostgreSQL/PostGIS instance; the same applies for the
Importer/Exporter versions. Plugins (see 4.2) must also adhere to this principle. A unified
version of the Importer/Exporter supporting both spatial database systems will be addressed in
an upcoming release.

The functionality of both 3DCityDB and Importer/Exporter versions (Oracle or
PostgreSQL/PostGIS) is almost identical (the main exception being the history/workspace
management only supported by Oracle so far). This addendum and the version 2.0.1
documentation are therefore valid for both of them. PostgreSQL/PostGIS specific details as
well as some information about the software-porting process itself are collected and explained
in the extra documentation delivered with the PostgreSQL/PostGIS distribution package.
Further information, software downloads, ready-to-use demos, links to the source code
repository, and much more can be found at the official website of the 3D City Database at
http://www.3dcitydb.net.

Development efforts of the Importer/Exporter tool have been partially funded by the project
Digitaler Gestaltplan Potsdam carried out in 2010/2011 within the European Regional
Development Fund (ERDF) framework. Partners in this project were the City of Potsdam
(Germany) as well as the company virtualcitySYSTEMS GmbH (Berlin, Germany) that also
financially supported the development of the 3D City Database and the Importer/Exporter tool
beyond this project. Previous releases were additionally supported by the Berlin Partner
GmbH (Berlin, Germany) and the Berliner Senatsverwaltung fir Wirtschaft, Technologie und
Frauen (Berlin, Germany).

We thank all our partners for their kind support and also for the provision of the
demonstration datasets.

http://www.3dcitydb./

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 9

3 Changes in 3D City Database contents

3.1 ENVELOPE in CITYOBJECT Table

Due to compatibility issues with Oracle 11g versions, a small but significant adaption was
made on the contents of the table CITYOBJECT. It affects how the BoundingBox (column
ENVELOPE) is stored. The BoundingBox is realized by an Oracle data type
SDO_GEOMETRY, but from version 2.0.6 on this is no longer specified as a rectangle type
(SDO_INTERPRETATION = 3) using two opposite points, but as a simple 3D polygon
(SDO_GTYPE = 3003, SDO_ETYPE = 1003, SDO_INTERPRETATION = 1) using five
points, that join the minimum and maximum X, y and z coordinates of the BoundingBox and
define it completely. For backwards compatibility reasons (to Oracle 10g) the envelope
cannot be stored as a volume.

This means, with a practical example, the envelope of an object in version 2.0.5 of the 3D
City Database was stored as follows:

MDSYS.SDO_GEOMETRY(3003,32632,NULL,MDSYS.SDO_ELEM_INFO_ARRAY(1,1
003,3),MDSYS.SDO_ORDINATE_ARRAY (602158.6484,6102435.8133,14.22618,602167.1
064,6102442.3621,18.63145))

In version 2.0.6, the envelope of the same object will be stored as:

MDSYS.SDO_GEOMETRY(3003,32632,NULL,MDSYS.SDO_ELEM_INFO_ARRAY(1,1

003,1),MDSYS.SDO_ORDINATE_ARRAY (602158.6484,6102435.8133,14.22618,602167.1
064,6102435.8133,14.22618,602167.1064,6102442.3621,18.63145,602158.6484,6102442.36
21,18.63145,602158.6484,6102435.8133,14.22618))

Please note that the maximum and minimum coordinate values remain unchanged, but now
the connection between them has become explicit. This is a consequence of changing the
SDO_INTERPRETATION value from 3 to 1.

10 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Fig. 1: CityObject envelope storage in 2.0.5 (left: as a 3D rectangle specified by the two black points with
minimum and maximum coordinate values respectively) and in 2.0.6 (right: black polygon)

This new definition of how CityObject envelopes must be stored replaces the old one in
2.3.2.1 Core Model from the documentation of the 3D City Database Version 2.0.1 (cf.

[1]).

This change is required to guarantee a flawless working of spatial queries under Oracle 11g,
like for CityGML or KML/COLLADA exports when applying a spatial BoundingBox filter.
Using the 3D City Database 2.0.5 package on Oracle 11g installations is strongly discouraged
since this can lead to repeated spatial query failures (with the Importer/Exporter or other
tools).

The reason why the envelope is not simply stored as a volume results from the intended
backwards compatibility to Oracle 10g, which does not support 3D volumetric geometries
(only 3D polygons).

The upgrade script to version 2.0.6 includes the adaption of all CityObject envelope values in
all workspaces automatically without requiring any interaction from the user on this topic.

Since

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 11

4 New Features

4.1 Graphical Bounding Box Choice Window

A GUI component allowing for a better overview of the chosen BoundingBox (at the time of
choosing and afterwards) was added in release 1.4.0. The enhanced BoundingBox component
is present at the three main tabs: Import, Export, and KML/COLLADA Export and works
identically at all three.

| Bounding Box

‘Mh Reference system | Same as in database -

¥min | 4439661.3 Xmax |4491676.16
fmin |5320226.23 Ymax |3322203.93

Fig. 2: Enhanced BoundingBox component

The first noticeable difference to previous Importer/Exporter releases are the new icon buttons
on the top left corner whose functionality (also explained by a tooltip when the mouse is
hovering over) is from left to right: open map window to select a bounding box, copy
bounding box to clipboard and paste bounding box from clipboard.

When clicking on the open map window to select a bounding box icon button a new window
pops up showing a map of the selected bounding box in case the Xmin, Xmax, Ymin, Ymax
entries contain valid values or a world map with no selected area in case these entries are
empty. All map contents are provided by the OpenStreetMap service (no usage limits, internet
connection / network proxies, see chapter 4.9, must be properly configured).

The map window can also be opened from the main menu under the View element. In that
case the map window will show the area and values that were last used and will lack of the
Apply button on the upper right corner. Copying and pasting from and to the clipboard will
continue working though.

12 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

=]
&) 3D City Database Importer/Exporter - Map window ' ‘
[

-4 Bounding Box

52.5219659
13.418363 13.4252715
52.5191065

I , Address lookup
Use popup menu for queries
t" Show in Google Maps

@ Help

Click the link in the upper right corner
of the map for usage hints

Fig. 3: Selected bounding box displayed graphically; coordinates are automatically calculated and transformed.

Regardless of the reference system used in the original bounding box, coordinates in the map
window will always be shown in WGS84. This is required by the OpenStreetMap service. In
case the given bounding box is not defined in this reference system a conversion must take
place. A connection to a database supporting the given reference system must be established
in order to convert the coordinates. If this is not yet the case a pop-up dialog will ask you for
permission.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 13

& 3D City Database Importer/Exporter - Map window @
| .

¥ Show usage hints
! Bounding Box LR =)

[Show] [Clear

o 1
& Bounding box error @

The bounding box cannot be shown in the map.
The assocdiated spatial reference system is not WGS 84.

Q? Address lookup

Use popup menu for queries
E]. I Bounding Box
' xmin /¥min 44396613 / 5320226.23
) *max [Ymax 4491676, 16 / 5322203.98
@ Help Description Same as in database
SRID nfa

Click the link in the upper right corner
of the map for usage hints The coordinate values have to be transformed to WGS 84,

MNote: A connection to the database will be established.
The database has to support the given SRID.

‘ Transform | [Skip] [Close map

[81.038617, -127.265625] Map data © 'OpenStreetMap’ {&nd) contributors, CC-BY-SA [

Fig. 4: Asking for permission before connecting to a DB for coordinate conversion

Coordinates can be retrieved and set any time by means of the copy and paste graphic buttons
available on the map window and in the BoundingBox component present at the three main
tabs: Import, Export and KML/COLLADA Export. Exchange of these values always happens
through the clipboard.

The Apply button on the upper right corner of the map window is a shortcut for copying the
coordinate values to the clipboard and pasting them in the bounding box fields of the calling
tab. Furthermore, coordinate values can now be easily copied from one tab to another by
simply clicking on the Copy button in one of them, say Import tab, with filled bounding box
values, changing to another, say KML/COLLADA Export tab and clicking on the Paste button
there. Previously existing values in the bounding box fields of the KML/COLLADA Export tab
(if any) will be overwritten.

14 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

& 3D City Database Importer/Exporter - Map window @

| :
¥ Show usage hints

I Bounding Box LR =)

L

[Show] [Clear

Q? Address lookup

Use popup menu for queries E]

'

@ Help

Click the link in the upper right corner
of the map for usage hints

[81.038617, -127.265625] Map data © 'OpenStreetMap’ {&nd) contributors, CC-BY-SA [

Fig. 5: World map is shown when no bounding box coordinate values are set

In case no bounding box is selected you can navigate to the area of interest or, more
comfortably, make use of the of the geocoding service included in the map window. Simply
type any address in the top left field and click on the Go button, you will be automatically
redirected to the first matching area containing this address.

The geocoding service, based on a Google API, is limited to 2500 requests per day and IP
address.

The currently shown map extent can also be opened in Google Maps for further inspection or
comparison by clicking on the Show in Google Maps button. This will open a new web
browser window showing the corresponding map view in Google Maps.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 15
r@ 3D City Database Importer/Exporter - Map window @1
hd Apply

1: Alexanderplatz, 10178 Berlin, Garmanz >
3 match(es) returned from geocoder (0. 113 seconds)

I Bounding Box LR [E

e
r
I
7
=]
@
7

i Select bounding box

Stalexanderplatzi
N L
Berlin/Alexanderplatz S

“Berolinahaus

[52.5241854, 13.4122145]

Haus . .
g n o MEmharUszraﬂeQ — ﬂ e der Elekiroindustrie @ Hold:lt ke::nd left mouse button to select bounding box
= Memp, r Lookup address
o L a?.:r'aﬁe — ﬂ E L) N / Click right mouse button to open popup menu
"l arbile ~ . |, Zoomin/out
8 " B.Bonfini Memhiandstrake - = lse mous e
1 - .
; 5 ;{ﬂv/f = ﬂ .+ Zoom into selected area
[Shaw] [Clear | <) \ . Hold shift key and left mouse button to select area
¥ ~ -
2 y % B > Move map
Q? Add lookup S8 : U B . Hold left mouse button to move the map
‘I/\@:_ \) £>;¢ Center map and zoom in
Use popup menu for queries 4 . Pm : e Double-diick left mouse button to center map
y N \ B = Use popup menu for further actions
[3 - 5 = Click right mouse button to open popup menu
Show in Google Maps P =1 " = 7 ol H
‘ Blfiger a. / der
King . 4
@ nelp - g N =
(=i alr: 4 J Alexandgrplatz
Click the link in the upper right corner . - 4 a
of the map for usage hints S - 4
o
) Snackexpress Mexanderplatz
4

Map data © 'OpenStreetMap’ (&ng)) contributors, CC-BY-5A

Haus
des|Lehrers

-
bec Berliner
Congrecs)

Center) |

Fig. 6: Usage of the geocoding service

Once you are near the area of interest you can slide with the mouse (by holding the left button
down) to the exact position you are interested in. The mouse wheel is used for zooming in and
out of the map. A comprehensive list of usage hints is shown (and hidden) by clicking on the

link at the upper right map corner. These hints are:

Select bounding box: hold alt key and left mouse button to select bounding box. By

dragging the mouse while holding down the alt key and left mouse button the
bounding box is interactively displayed in a light magenta color over the map
contents. Once the left mouse button is released, the coordinates of the bounding box
are automatically filled in the fields left of the map. The procedure can be repeated
any number of times until the desired bounding box is selected. By clicking on the
Apply button on the upper right corner of the window, which has now become active,
the window will be closed and the bounding box values transferred to the clipboard
and to the calling tab in the main Importer/Exporter tool window.

Lookup address: click right mouse button to open popup menu. When the right

mouse button is clicked on a point of the map surface a context menu appears offering
several options. The last of them being Lookup address here. If this option is chosen,
the point will be highlighted by a green arrow and its address will be displayed on the
column left of the map (see Fig. 7). This information is supplied by a reverse

16 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

geocoding service, also based on a Google API and also limited to 2500 requests per

day and IP address.

e Zoom in/out: use mouse wheel.

e Zoom into selected area: hold shift key and left mouse button to select area.
Similarly to Select bounding box, by dragging the mouse while holding down the shift
key and left mouse button a bounding box is interactively displayed in a light grey
color over the map contents. Once the left mouse button is released, the selected area
will be zoom in and fill the map window completely. This feature can be used to
recursively come closer to a zone whose coordinates are not precisely known but its
topological properties are. When the maximum zoom level is reached this action has

no further effect.

-
&) 3D City Database Importer/Exporter - Map window

===

3 match(es) returned from geocoder (0.094 seconds)

! Bounding Box LI A 8 s .. LasOlas/ &/
W/
B <- Memhards:raggq . .
] Memhar‘l_i'srm@e /

BerlinAlExanderplatz, N

Berplinahaus

N B
\

47 e N
AT 4 ﬁ'

Show] [Clear] \/ & N 4‘

Alexanderplatz, 10178 Berlin, Germany -

/

Zoom in
Zoom out

Center map here

erin
Anschnit
32

/ h \/%%% | ;‘{;
s

Haus HatelfArens
der Elektroindustrie
5

i 4 S Dewische B nk__".-
Address lookup ! P&Fk / y N Get map bounds -
& a7 . 4 A N j y
AlexanderstraBe 1 # y 4 Parfnn Lookup address here - U . iy
10178 Berlin y N A - Flay Berin: &
Germany b - £
y AN -
. X b
52.5240751, 13.41386 - " Burocy y = . 4
b in Google Maps
1
@ Help
Click the link in the upper right corner) .
of the map for usage hints SN»'-\Iexanderpl\atz\'\, 4]

Haus
des Lehrers

4
g bee Berlingr
Canter)

Fig. 7: Reverse geocoding in the graphical bounding box choice window

e Move map: hold left mouse button to move the map.

e Center map and zoom in: double click left mouse button to center map. Double
clicking on any point of the map surface will increase the current zoom level one step
and set the exact clicked on point to be the center of the newly displayed area. When
the maximum zoom level is reached only the new centering will take place.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 17

Use popup menu for further actions: click right mouse button to open popup menu.
The context menu triggered by a right mouse click offers additional access to some
functions, like Zoom in, Zoom out and Center map here for the case the mouse has no
wheel or does not support double clicking. Plus the options Get map bounds,
equivalent to selecting all visible content in the map window as a bounding box, which
will be accordingly shown in light magenta color and have its coordinates
automatically transferred to the fields left of the map, and Lookup address here, that
was previously explained.

Since

18 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

4.2 Plugin API

Functionalities in the Importer/Exporter can now be extended in a modular way with the
installation of plugins that add specific abilities for interacting with the 3D City Database or
external data. A plugin may provide a new tab or a new menu bar extension possibly
accompanied by a preferences extension and/or a project configuration file extension. Plugins
are self-contained and each of them can be added separately to the main program. No
interdependence among plugins can exist (plugins cannot extend the functionality of other

plugins).

The plugin API can be added to the Importer/Exporter path at installation time if the user
decides to do so (not selected by default). It will be copied to its own plugin-api subfolder
containing the 3dcitydb-impexp-plugin-api.jar file itself, a readme file, license information
and javadoc documentation. A more extensive plugin API guide will be offered on the
www.3dcitydb.org site in the near future.

Currently, two plugins are already available: Matching/Merging (formerly integral part of the
Importer/Exporter up to version 1.3.0) and Spreadsheet Generator (a new development that
allows general purpose exports of 3D City Database contents in table/spreadsheet suitable
form, either to a local .csv file with variable formatting or directly to an online spreadsheet
hosted in the Google Docs cloud). The source code of both plugins is freely available to be
reviewed and studied as a sample for the realization of future plugins.

Plugin installation is simple. Just download the plugin .zip file, unzip it and add the plugin
folder as is into the plugins subfolder of the Importer/Exporter installation path. Start the
Importer/Exporter again. Plugins will be automatically detected and started with the
application.

Note: Since release 1.4.0 (3D City Database 2.0.6) the Importer/Exporter and the
3DCityDB can alternatively work on top of a PostgreSQL/PostGIS database. This is
realized in the form of two separate software packages, each of them specifically
adapted for the database type they connect to. Plugins are also coded differently
depending on the database vendor system they are intended to work with. A Plugin
written for the Oracle version of the Importer/Exporter will not run when added to
PostgreSQL/PostGIS version and vice versa.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 19

= [B | |

i -
H 3D City Database Importer/Exporter

Eile Project Extensions View Help

| Import | E:q:lortl KML/COLLADA Export| SPSHG | Database Preﬁaren::e5|

Columns

Load a template file or make a new one manually

Browse

New || Edt |

Content Source

Generate data for all &1 Building
following feature dasses

Versioning
Workspace |LIVE Timestamp (DD.MM.YYY)

Bounding Box

Reference system :Same as in database v:

Xrnir ¥max
¥'min Ymax
Dutput
@ CSVFile
Separator Character(s) | [Comma] &4
(") Directly into the Cloud
Cloud server Google Spreadsheet Service

Email Address
Passward

Spreadsheet Mame

& A

Database disconnected

Ready

Fig. 8: Importer/Exporter started with the Spreadsheet Generator plugin installed

20 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

4.3 KML/COLLADA Export

Important Warning: starting with version 7 (and at least up to version 7.0.2.8415) Google
Earth has changed the way transparent or semi-transparent surfaces are rendered. This is
especially relevant for visualizations containing highlighting surfaces (explained in chapter 0).
When viewing KML/COLLADA export results in Google Earth it is strongly recommended
to use an older Google Earth 6 version or, from Google Earth 7 upwards switch to the
OpenGL graphic mode for an optimal viewing experience. Changing the Graphic Mode can

be achieved by clicking on Tools, Options entry, 3D View Tab.

g Google Earth Options

2. -t |

30 View | Cache I Touring I Mavigation

General

Texture Colors
() High Color {16 bit)
@ True Color (32 bit)

Compress

Show LatfLong
(") Decimal Degrees
@ Degrees, Minutes, Seconds
() Degrees, Decmal Minutes
() Universal Transverse Mercator

Terrain

Owerview Map

Anisotropic Filtering
T Off

@ Medium

i) High

Units of Measurement

@ System default
() Feet, Miles

() Meters, Kilometers

Elevation Exaggeration (also scales 3D buildings and trees):

[Use high quality terrain (disable for quicker resolution and faster rendering)
[T Use 30 Imagery (disable to use legacy 30 buildings)

LabelsTcon Size

Graphics Mode

) Small @ OpenGL

@ Medium () Directx

) Large [7] use safe mode
Fonts

Choose 3D Font

(0.01-3)

Map Size: small D Large
Zoom Relation: infinity 1:1 D Linfinity
Restore Defaults oK] [Cancel] [Apply]

Fig. 9: Setting the Graphics Mode in Google Earth

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 21

2 00gle earth
(+(R4

Fig. 11: The same scene rendered in OpenGL modus

22 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Starting from version 1.3.0 of the Importer/Exporter, it is possible to export data from a 3D
City Database (3DCityDB) instance directly into KML/COLLADA format, ready for
visualization in earth browsers such as Google Earth, ArcGIS, and ArcGIS Explorer. With
release 1.5.0, export of all CityGML top-level feature types like vegetation, transportation
complex, etc. can be accomplished.

The KML/COLLADA Export tab shown in Fig. 12 collects all parameters required for the
export in a similar fashion as for a CityGML export. On the preferences tab a menu node
called KML/COLLADA Export containing four subnodes — General, Rendering, Balloon, and
Altitude/Terrain — makes customization of these exports possible.

o
[3D City Database Importer/Exporter : ssd - berlin3d_visual =NECI X

File Project View Help

KML/COLLADA Export JDatabase | Preferences

ersioning
Workspace |LIVE Timestamp (DD.MM. YY)
Expart contents
71 Single object
gml:id
@ Bounding Box
L Reference system :Same as in databaze v:
Xmin Xmax
Yrmir Ymax
Tiling
@ Motlng) Automatic () Manual Rows |2 Columns |2
Export from level of detail Display as
Footprint visible from |0 pixels
:highestLoD available v: [[] Extruded visible from pixels
Geometry visible from | 150 pixels
COLLADA visible from |300 pixels

Appearance/Theme .\risual = Fetch themes from DB

Feature Classes

=[] CityObject
-] Building
- [] WaterBody
- [LandUse
- [] vegetation
[Transportation
- [] ReliefFeature
-] CityFurniture
-] GenericCityObject
- [C] CityObjectGroup

Ready Database connected

Fig. 12: The KML/COLLADA Export tab allowing for exporting KML/COLLADA models from the
3DCityDB.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 23

Note: KML/COLLADA formatted exports come straight from the 3D City Database. No
direct file transformation CityGML - KML/COLLADA is provided. If a CityGML
file shall be converted to KML/COLLADA, the CityGML content must be imported
into the database first and then exported into the KML/COLLADA format.

4.3.1 Main parameters of the KML/COLLADA export
The input data fields on the KML/COLLADA Export tab are from the top down:

Output file selection
Type the filename directly into the text field or activate the file dialog provided by the
operating system after pushing the Browse button.

Versioning

The Workspace Manager provided by Oracle is a comprehensive tool for version and history
management. If the workspace management is activated, it works widely transparent for
applications connected to the database. Workspace name and timestamp can be entered here
in order to use a certain planning alternative and/or a given point in time as the basis for the
KML/COLLADA exports.

If version management is disabled or the current state of the database should be exported, the
default workspace name LIVE must be entered and the timestamp field must remain empty.

Export contents
These fields allow for specifying/selecting the objects of interest for the export. These can be
single objects or whole areas delimited by a bounding box.

e Single object: Enter the GML IDs of the object(s) of interest. Multiple IDs have to be
separated by commas.

e Bounding Box: Enter the coordinates of a bounding box defining the area of interest.
Obijects are exported if they are fully covered by the specified bounding box or if they
intersect with its left or bottom borders. This strategy also applies to tiled exports
(objects in a tile are only exported when fully covered by the tile's bounding box or
intersecting with the tile's left or bottom borders). This is done in order to avoid
exporting the same object twice when the object lies at the same time on more than
one tile. The reference system used for defining the bounding box can be the same as
the one used in the database or any other one supported by Oracle. With release 1.4.0,
the possibility to add further user-defined reference systems was introduced (cf.
chapter 4.4 for more details). New reference systems can be added to the
Import/Export tool (preferences tab, node Database, subnode Reference systems) as
long as they are supported by the Oracle DB server.

24 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Tiling only applies to exports of areas defined by a bounding box. Tiled exports are used in
order to load and unload parts of the exported model depending on their current visibility
when viewed, for example, in Google Earth. Since the Earth Browser's responsiveness
decreases greatly with single files larger than 10 Mb, tiled exports (with tile file sizes usually
a lot smaller than that) are highly recommended. As mentioned above, only objects fully
covered by the tile's bounding box or intersecting with the tile's left or bottom borders will be
exported.

There are three tiling modes available for a KML/COLLADA export:

e no tiling: as the name implies, no tiling takes place. Just a single file is exported. This
is only advisable when the resulting file is at most 10 Mb in size.

e automatic: the area enclosed by the bounding box will be exported in tiles having
roughly the side length set on the preferences tab under the node KML/COLLADA
Export, subnode Rendering (default value is 125m.). The amount of exported rows and
columns will be calculated by dividing the length and width (in unit of meters) of the
delimiting bounding box by the preferred tile side length and rounding up the result.
For example: if the user wants to export a 1000m x 1100m bounding box with a
preferred tile side length of 300m, 4x4 tiles will be generated since 1000/300 = 3.333
and 1100/300 = 3.666. This also implies: in case of automatic tiling it cannot be
guaranteed that tiles will be perfectly square, but they will tend to.

e manual: the number of rows and columns can be freely set by the user. The area will
be divided in equally spaced portions horizontally and vertically and the resulting tile
sizes and forms will adapt to the values specified.

All these tiling modes can be combined with the (Preferences -> General) option “Each
CityObject in an own region”, which for each object exported defines a region limited by its
envelope coordinates. The single object regions may have different visibility settings to those
of the tiles containing them, so it can be possible that while a tile as a whole is visible some
objects inside are not because their own region visibility conditions are not yet matched.

Untiled exports (no tiling) and tiled exports of type automatic or manual will contain one
main kml file, so-called master file, pointing to all export contents. In case of tiled exports
each tile filename will be enhanced with the tile's row and column number as a suffix.

Export from level of detail

The Level of Detail as defined by the CityGML specification [2] which should be used as
basis information for the KML/COLLADA export. For the same city object higher levels of
detail usually contain many more geometries and these geometries are more complex than in
lower levels. For instance, a building made of 40 polygons in LoD2 may consist of 3000
polygons in LoD3. This means LoD3 based exports are a lot more detailed than LoD2 based
exports, but they also take longer to generate, are bigger in size and therefore load more
slowly in the Earth browser.

A single constant LoD can be used as basis for all exports or it can be left to the
importer/exporter tool to automatically determine which the highest LoD available for each
cityobject is and then use it as the basis for the KML/COLLADA exports.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 25

Display as
Determines what will be shown when visualizing the exported dataset in Google Earth.

Footprint: objects are represented by their ground surface projected onto the earth
surface. This is a pure KML export.

Extruded: objects are represented as blocks models by extruding their footprint to their
measured height (thematic CityGML attribute), which must be filled with a proper
value in m. Pure KML export.

Geometry: shows the detailed geometry of ground, wall, and roof surfaces of buildings
and appearance information. It shows the different thematic surfaces by means of
coloring them (textures are not supported by KML) according to the settings in the
preferences tab, KML/COLLADA Export node, Rendering subnode. If not explicitly
modeled, thematic surfaces will be inferred for LoD1 or LoD2 based exports
following a trivial logic (surfaces touching the ground —that is, having a lowest z-
coordinate- will be considered wall surfaces, all other will be considered roof
surfaces), in LoD3 or LoD4 based exports surfaces not thematically modeled will be
colored as wall surfaces. Pure KML export.

COLLADA: shows the detailed geometry including support for textures. The
Appearance/Theme combo box below allows choosing from all possible appearance
themes (as defined in the CityGML specification [2]) available in the currently
connected 3DCityDB. The list is workspace- and timestamp sensitive and will be
filled on demand when clicking on the fetch button. Default value is none, which
renders no textures at all and colors all surfaces in a neutral gray tone. Export consists
of KML and COLLADA parts.

Depending on the level of detail chosen as basis some display form checkboxes will become
enabled or disabled, depending on whether the level of detail offers enough information for
this display form or not. Footprint can be exported from any CityGML LoD (0 to 4), Extruded
and Geometry require LoD1 or higher, COLLADA exports are possible from LoD2 upwards.
Exports will have their filename enhanced with a suffix specifying the selected display form.
This applies for both tiled and untiled exports.

26 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Fig. 13: The same building displayed as (top down and left to right) footprint, extruded, geometry, COLLADA.

With the visibility field next to each display form the user can control the KML element
<minLodPixels>, see [3]: measurement in screen pixels that represents the minimum limit
of the visibility range for a given <Region>. A <Region> is in the generated tiled exports
equivalent to a tile. The <maxLodPixels> value is identical to the <minLodPixels> of
the next visible display form, so that display forms are seamlessly switched when the viewer
zooms in or out. The last visible display form has a <maxLodPixels> value of -1, that is,
visible to infinite size. Visibility ranges can start at a value of 0 (they do not have to, though).
Please note that the region size in pixels depends on the chosen tile size. Thus, if the tile size
is reduced also the visibility ranges should be reduced. Increases in steps of a third of the tile
side length are recommended. An example of a good combination for a tile size of about
250m x 250m could be: Footprint, visible from 50 pixels, Geometry, visible from 125 pixels,
COLLADA, visible from 200 pixels. Some display forms, like Extruded in this example, can
be skipped.

The visibility field only becomes enabled for bounding box exports; single building exports
are always visible.

Since

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 27

Feature Classes

Similar to CityGML imports and exports it is now possible to select what top-level feature
types shall be displayed in a KML/COLLADA export. Prior to version 1.5.0 this choice was
exclusively limited to Buildings. With the newly introduced selection tree it is possible to pick
each category individually and also leave single categories out, i.e.: export CityFurniture and
WaterBodies only, or export everything but Buildings and so on. Between LoD1 and LoD4 all
feature types are available. For LoDO only those top-level feature types offering LoDO
geometry in the CityGML 1.0 schema (Waterbody, LandUse, Transportation and
GenericCityObject) are selectable, whereas the rest of the feature class checkboxes will
become automatically disabled.

Each one of the top-level feature categories has its own Rendering and Balloon settings under
Preferences. The most complex Rendering and Balloon settings for Buildings, will be
explained as an example in the following sections. Settings for all other top-level features are
either identical or simpler.

Note: Support for Relief features in KML/COLLADA exports is currently limited to the
type TIN_RELIEF. Other Relief types are not rendered currently. Also, due to the
usually wide-streched area of Relief features and the non-clipping nature of the
BoundingBox filter it is recommended to export Relief features in a single step
making use of the no tiling option and using an extensive enough BoundingBox

As an alternative, the digital terrain model data can be divided in smaller
ReliefComponents tailored to match the tiling settings of the desired export (their
area contained in or equal to the resulting tiles). This requires altering the original
data nevertheless and, as such, it must be done before the CityGML contents are
imported into the database at all.

28 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

4.3.2 Preferences

4.3.2.1 General Preferences
Some common features of the exported files, especially those related to tiling options, can be
set under the preferences tab, node KML/COLLADA Export, subnode General.

P -

lﬂ 3D City Database Importer/Exporter = | B ki

Eile Project View Help

[Import | Export | KML/COLLADA Export | Databas Preferences)
e i

Preferences
- CityGML Import
--CityGML Export

=K Skl 4 Export Exportin .kmz format
@_’ Show bounding box barders
RReEg

General

G}-Balloon Show tile borders

i----.ﬁ.lﬁb_ldefl'errain
i Tile side length for automatic tilin 250.0 m.
[H-Database d d
[+-General [] Each CityObject in an own region

wvisible from |50.0 pixels
view refresh mode | onRegion
view refresh time 1.0 Be
Write JSOM file
of type JSOMP

with callback method name | handle_3DCityDE_data

Restore] [Default] [Apply]

Ready Database disconnected

Fig. 14: General settings for the KML/COLLADA export.

Export in kmz format

Determines in which format single files and tiled exports should be written: kmz when
selected, kml when not. Whatever format is chosen, the main file (so called master file,
pointing to all others) will always be a kml file, all other files will comply with this setting.

Tests have shown shorter loading times (in Google Earth) for the kml format (as opposed to
kmz) when loading from the local hard disk. The Earth Browser's stability also seems to
improve when using the uncompressed format. On the other hand, when loading files from a
server kmz reduces the amount of requests considerably, thus increasing performance. Kmz is
also recommended for a better overview since kml exports may lead to a large number of
directories and files.

Since

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 29

Show bounding box borders

When exporting a region of interest via the bounding box option in the KML/COLLADA
Export tab, this checkbox specifies whether the borders of the whole bounding box will be
shown or not. The frame of the bounding box is four times thicker than the borders of any
single tile in a tiled export.

Show tile borders
Specifies whether the borders of the single tiles in a tiled export will be shown or not.

Tile side length for automatic tiling

Applies only to automatically tiled exports and sets the approximate square size of the tiles.
Since the Bounding Box settings in the KML/COLLADA Export tab are the determining factor
for the area to be exported and have priority over this setting, the resulting tiles may not be
perfectly square or have exactly the side length fed into this field.

Each CityObject in an own region

The visibility of the objects exported can be further fine-tuned by this option. While the
visibility settings on the main KML/COLLADA Export tab apply to the whole area (no tiling)
or to each tile (automatic, manual) being exported, this checkbox allows to individually
define a KML <Region> for every single city object. The limits of the object’s region are
those of the object’s CityGML Envelope.

Following the KML Specification [3], each KML <Region> is defined inside a KML
<NetworkLink> and has an associated KML<Link> pointing to a file. This implies when this
option is chosen a subfolder is created for each object exported, identified by the object’s
gmlld. The object’s subfolder will contain any KML/COLLADA files needed for the
visualization of the object in the Earth browser. This folder structure (which can contain a
large number of subfolders) is required for the KML <Region> visibility mechanism to work.

When active, the parameters affecting the visibility of the object’s KML <Region> can be set
through the following related fields.

The field visible from determines from which size on screen the object’s KML <Region>
becomes visible, regardless of the visibility value of the containing tile, if any. Since this
value is the same for every single object and they have all different envelope sizes a good
average value should be chosen.

The field view refresh mode specifies how the KML <Link> corresponding to the KML
<Region> is refreshed when the geographic view changes. May be one of the following:

e never - ignore changes in the geographic view.

e onRequest - refresh the content of the KML <Region> only when the user explicitly
requests it.

e onStop - refresh the content of the KML <Region> n seconds after movement stops,
where n is specified in the field view refresh time.

e onRegion - refresh the content of the KML <Region> when it becomes active.

Since

Since
1.5.0

30 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

As stated above, the field view refresh time specifies how many seconds after movement stops
the content of the KML <Region> must be refreshed. This field is only active and its value is
only applied when view refresh mode is onStop.

Write JSON file

After exporting some cityobjects in KML/COLLADA you may need to include them into
websites or somehow embed them into HTML. When working with tiled exports referring to
a specific object inside the KML/COLLADA files can become a hard task if the contents are
loaded dynamically into the page. It is impossible to tell beforehand which tile contains which
object. This problem can be solved by using a JSON file that is automatically generated when
this checkbox is selected.

In the resulting JSON file each exported object is listed, identified by its gmlld acting as a key
and some additional information is provided: the envelope coordinates in CRS WGS84 and
the tile, identified by row and column, the object belongs to. For untiled exports the tile’s row
and column values are constantly 0.

This JSON file has the same name as the so-called master file and is located in the same
folder. Its contents can be used for indexed search of any object in the whole
KML/COLLADA export.

JSON file example:
{

"BLDG _0003000b0013felf": {
"envelope": [13.411962, 52.51966, 13.41277, 52.520091],

"tile": [1, 11},

"BLDG _00030009007£8007": {
"envelope": [13.406815, 52.51559, 13.40714, 52.51578],

"tile": [0, 0]}

From version 1.5.0 the JSON file can automatically be turned into JSONP (JSON with
padding) by means of adding a function call around the JSON contents. JSONP provides a
method to request data from a server in a different domain, something typically forbidden by
web browsers since it is considered a cross-site-scripting attack (XSS). Thanks to this
minimal addition the JSON file contents can be more easily embedded into webpages or
interpreted by web kits without breaking any rules. The function call name to be added to the
original JSON contents is arbitrary and must only be entered in the callback method name
field.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

31

4.3.2.2 Rendering Preferences
Most aspects regarding the look of the KML/COLLADA exports when visualized in Google
Earth can be customized under the preferences tab, node KML/COLLADA Export, subnode
Rendering, sub-subnode Feature Class. For the sake of clarity only the Building Rendering
settings (that happen to be the most complex) will be explained here. The content of the
rendering preferences for all other CityGML top-level features is either identical or simpler.

-~

[3D City Database Importer/Exporter : ssd - berlin3d_visual o | E |t

Eile Project View Help

[import | Export | KML/COLLADA Export | Databas(| Preferences [

Preferences
F-CityGML Import
[+ CityGML Export
=-KML/COLLADA Export
General
E-Re i

--LandUse
----- Vegetation

- Relief

- CityFurniture

- GenericCityObject
- CityObjectGroup
[+-Balloon

- AltitudeTerrain
[+-Databasze

[+-zeneral

Building
Footprint and extruded display options
Alpha-value (0-255) 200 =
Fill color Line color

Highlight when onMouseQver

Highlighted fill color Highlighted line color

Geametry display options
Alpha-value (0-255) | 200 =

wall fill color

Roof fill color -

Highlight when onMouseOwver

Wall line color -
Roof line color -

Highlighted fill color

Highlighted line color -

Surface distance (0-10m) |0.75

COLLADA display options
[] Ignore surface orientation {<double_sided =1+ /double_sided =)
Generate texture atlases with algorithm TPIM - |

Texture atlas sizes must be powers of 2

Scale texture images by (0.0-1.0) 0.5
~1 Put objects together in groups of 1

@ Highlight when onMouseCQver
Highlighted fill color

Highlighted line color -

Surface distance (0-10m) |0.75

Restore] [Default l [Apply]

Ready

Database connected

-

Fig. 15: Rendering settings for the KML/COLLADA Building export.

32 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

All settings in this menu are grouped according to the display form they relate to.

Footprint and extruded display options

In this section the fill and line colors can be selected. Additionally, it can be chosen whether
the displayed objects should be highlighted when being run over with the mouse or not.
Highlighting colors can only be set when the highlighting option is enabled. The alpha value
affects the transparency of all colors equally: 0 results in transparent (invisible) colors, 255 in
completely opaque ones. A click on any color box opens a color choice dialog.

Geometry display options

This parameter section distinguishes between roof and wall surfaces and allows the user to
color them independently. The alpha value affects the transparency of all roof and wall
surface colors in the same manner as in the footprint and extruded cases: O results in
transparent (invisible) colors, 255 in completely opaque ones. A click on any color box opens
a color choice dialog.

As previously stated: when not explicitly modeled, thematic surfaces will be inferred for
LoD1 or LoD2 based exports following a trivial logic (surfaces touching the ground —that is,
having a lowest z-coordinate- will be considered wall surfaces, all other will be considered
roof surfaces), in LoD3 or LoD4 based exports surfaces not thematically modeled will be
colored as wall surfaces.

The highlighting effect when running with the mouse over the exported objects can also be
switched on and off. Since the highlighting mechanism relies internally on a switch of the
alpha values on the highlighting surfaces, the alpha value set in this section does not apply to
the highlighted style of geometry exports, only to their normal style. For a detailed
explanation of the highlighting mechanism see the following section.

COLLADA display options

These parameters control the export of textured models. The first option addresses the fact
that sometimes objects may contain wrongly oriented surfaces (points ordered clockwise
instead of counter-clockwise) as a result of errors in some previous data gathering or
conversion process. When rendered, wrongly oriented surfaces will only be textured on the
inside and become transparent when viewed from the outside. Ignore surface orientation
informs the viewer to disable back-face culling and render all polygons even if some are
technically pointing away from the camera.

Note: This will result in lowered rendering performance. Correcting the surface orientation
data is the recommended solution. This option only provides a quick fix for
visualization purposes.

Surface textures can be stored in an image file each, or grouped into large canvases containing
all images clustered together, so called texture atlases, that significantly increase loading
speed. Grouping images in an atlas or not and the algorithm selected for the texture atlas
construction (differing in generation speed and canvas efficiency) can be set here. Depending

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 33

on the algorithm and size of the original textures an object can have one or more atlases, but
atlases are not shared between separate objects.

The texture atlas algorithms address the problem of two dimensional image packing, also
known as 'knapsack problem’, in different ways (see [8] and [12]):

e BASIC: the most elementary one. Images are sorted according to decreasing height.
Their total width when put next to each other is computed and the square root of this
value is taken as the atlas width limit. Texture images are then added left to right
following their decreasing heights. When the atlas width limit is reached a new row of
images is started within the atlas.

e SLEA: Sleater's algorithm (see [11]). Consists of four steps: (1) all items of width
greater than 1/2 are packed on top of one another in the bottom of the strip. Suppose
h0 is the height of the resulting packing All subsequent packing will occur above hO.
(2) Remaining items are ordered by non-increasing height. A level of items are packed
(in non-increasing height order) from left to right along the line of height h0. (3) A
vertical line is then drawn in the middle to cut the strip into two equal halves (note this
line may cut an item that is packed partially in the right half). Draw two horizontal line
segments of length one half, one across the left half (called the left baseline) and one
across the right half (called the right baseline) as low as possible such that the two
lines do not cross any item. (4) Choose the left or right baseline which is of a lower
height and pack a level of items into the corresponding half of the strip until the next
item is too wide. A new baseline is formed and Step (4) is repeated on the lower
baseline until all items are packed.

e TPIM: touching perimeter (see [9] and [10]). Sorts images according to non-increasing
area and orients them horizontally. One item is packed at a time. The first item packed
is always placed in the bottom-left corner. Each following item is packed with its
lower edge touching either the bottom of the atlas or the top edge of another item, and
with its left edge touching either the left edge of the atlas or the right edge of another
item. The choice of the packing position is done by evaluating a score, defined as the
percentage of the item perimeter which touches the atlas borders and other items
already packed. For each new item, the score is evaluated twice, for the two item
orientations, and the highest value is selected.

e TPIM_WO_R: touching perimeter without rotation. Same as TPIM, but not allowing
for rotation of the original images when packing. Score is evaluated only once since
only one orientation is possible.

From all these algorithms BASIC is the fastest (shortest generation time), TPIM the most
efficient (highest used area/total atlas size ratio).

Scaling texture images is another means of reducing file size and increasing loading speed. A
scale factor of 0.2 to 0.5 often still offers a fairly good image quality while it has a major
positive effect on these both issues. Default value is 1.0 (no scaling). This setting is
independent from the atlas setting and both can be combined together. It is possible to
generate atlases and then scale them to a smaller size for yet shorter loading times in Google
Earth.

34 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Buildings can be put together in groups into a single model/placemark. This can also speed up
loading, however it can lead to conflicts with the digital terrain model (DTM) of the Earth
browser, since buildings grouped together have coordinates relative to the first building on the
group (taken as the origin), not to the Earth browser's DTM. Only the first building of the
group is guaranteed to be correctly placed and grounded in the Earth browser. If the objects
being grouped are too far apart this can result in buildings hovering over or sinking into the
ground or cracks appearing between buildings that should go smoothly together.

Up to Google Earth 7, no highlighting of model placemarks loaded from a location other than
Google Earth's own servers is supported natively (glowing blue on mouse over). Therefore a
highlighting mechanism of its own was implemented in the KML/COLLADA exporter:
highlighting is achieved by displaying a somewhat "exploded" version of the city object being
highlighted around the original object itself. "Exploded” means all surfaces belonging to the
object are moved outwards, displaced by a certain distance orthogonally to the original
surface. This "exploded"” highlighting surface is always present, but not always visible: when
the mouse is not placed on any building (or rather, on the highlighting surface surrounding it
closely) this "exploded” highlighting surface has a normal style with an alpha value of 1,
invisible to the human eye. When the mouse is place on it, the style changes to highlighted,
with an alpha value of 140 (hard-coded), becoming instantly visible, creating this model
placemark highlighted feel.

The displacement distance for the exploded highlighting surfaces can be set here. Default
value is 0.75m.

This highlighting mechanism has an important side effect: the model's polygons will be
loaded and displayed twice (once for the representation itself, once for the highlighting),
having a negative impact in the viewing performance of the Earth browser. The more complex
the models are, the higher the impact is. This becomes particularly noticeable for models
exported from a LoD3 basis upwards. The highlighting and grouping options are mutually
exclusive.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 35

Fig. 16: Object exported in the COLLADA display form being highlighted on mouseOver.

4.3.2.3 Information Balloon Preferences

KML offers the possibility of enriching its placemark elements with information bubbles, so-
called balloons, which pop up when the placemark is clicked on. This is supported by the
Import/Export tool regardless of the display form the object is exported in.

Note: When exporting in the COLLADA display form it is recommended to enable the
"highlighting on mouseOver" option, since model placemarks not coming from
Google Earth servers are not directly clickable, but only through the sidebar.
Highlighting geometries are, on the contrary, directly clickable wherever they are
loaded from.

The contents of the balloon can be taken from a generic attribute called Balloon_Content
associated individually to each city object in the 3DCityDB. They can also be uniform for all
objects in an export by using an external HTML file as a template, or a combination of both:
individually and uniformly set, the Balloon_Content attribute (individually) having priority
over the external HTML template file (uniform). A few Balloon HTML template files can be
found after software installation in the subfolder templates/balloons of the installation
directory.

36 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

The balloons can be included in the doc.kml file generated at export, or they can be put into
individual files (one for each object) written together into a "balloon” directory. This makes
later adaption work easier if some post-processing (manual or not) is required. When balloon
contents are put into a separate file for each exported object, access to local files and personal
data must be granted in Google Earth (Tools - Options = General) for the balloons to show.

Balloon preferences can be set independently for each CityGML top-level feature type. That
means every object can have its own individual template file (so that for instance, WaterBody
balloons display a different background image as Vegetation balloons), and it is perfectly
possible to have information bubbles for some object types while some others have none. The
following example is set around Building balloons but it applies exactly the same for all
feature classes.

F 5

Iﬂ, 3D City Database Impoerter/Exporter : s5d - berlin3d_visual =RACE X

Eile Project Wiew Help

[Import | Export | KML/COLLADA Export | Databasdl Preferences)
S e———

Preferences

s Building
f--CltyGML Import
+- CityGML Export
;--KI'_V‘ILICOLLADA Export Placemarks must indude <description= (balloon)
i-General
J}---Rendering Balloon content source
generic attribute "Balloon_Content™
@ selected file
: D:Yworkspace\Balloon_Templates\BalloonSource_template 2, html
--Vegetation
i Transportation) selected file only when no generic attribute available
--Relief
E""Cit'jl'FLII'I'liU.II'E [] Exportballoon contents into a separate file for each object
;----GenericCityObject tal ta local files in Goodle Earth
-..CityObjectGroup (must allow access to local files in Google Earth)
- AltitudeTerrain
T--Datahase
+-General
Restore I I Default I I Apply I
Ready Database connected

Fig. 17: Building Balloon settings.

The balloon contents do not need to be static. They can contain references to the data
belonging to the city object they relate to. These references will be dynamically resolved (i.e.:
the actual value for the current object will be put in their place) at export time in a way similar
to how Active Server Pages (ASP) [5] work. Placeholders embedded in the HTML template,
beginning with <3DCityDB> and ending with </3DCityDB> tags, will be replaced in the
resulting balloon with the dynamically determined value(s). The HTML balloon templates can
also include JavaScript code.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 37

For all concerns, including dynamic content generation, it makes no difference whether the
template is taken from the Balloon_Content generic attribute or from an external file.Balloon
template format

As previously stated, a balloon template consists of ordinary HTML, which may or may not
contain JavaScript code and <3DCityDB> placeholders for object-specific content. These
placeholders follow several elementary rules:

Rules for simple expressions

expressions begin with <3DC1ityDB> and end with </3DCityDB>. Expressions are
not case-sensitive.

expressions are coded in the form "TABLE/[AGGREGATION FUNCTION]
COLUMN [CONDITION]". Aggregation function and condition are optional. When
present they must be written in square brackets (they belong to the syntax). These
expressions represent an alternative coding of a SQL select statement: SELECT
[AGGREGATION FUNCTION] COLUMN FROM TABLE [WHERE
condition]. Tables refer to the underlying 3DCityDB table structure (see [1] for
details).

Each expression will only return those entries relevant to the city object being
currently exported. That means an implicit condition clause somewhat like
"TABLE.CITYOBJECT ID = CITYOBJECT.ID" is always considered and does
not need to be explicitly written.

Results will be interpreted and printed in HTML as lists separated by commas. Lists
with only one element are the most likely, but not exclusively possible, outcome.
When only interested in the first result of a list the aggregation function FIRST
should be used. Other possible aggregation functions are LAST, MAX, MIN, AVG, SUM
and COUNT.

Conditions can be defined by a simple number (meaning which element from the
result list must be taken) or a column name (that must exist in underlying 3DCityDB
table structure) a comparison operator and a value. For instance: [2] or [NAME =

'abc'].

Invalid results will be silently discarded. Valid results will be delivered exactly as
stored in the 3DCityDB tables. Later changes on the returned results - like substring()
functions - can be achieved by using JavaScript.

All elements in the result list are always of the same type (the type of the
corresponding table column in the underlying 3DCityDB). If different result types
must be placed next to each other, then different <3DC1ityDB> expressions must be
placed next to each other.

38

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Since

1.5.0 Special keywords in simple expressions

Starting from the Importer/Exporter version 1.5.0 balloon template files have been
enhanced with new additional placeholders for object-specific content, called
SPECIAL KEYWORDS. They refer to data that is not retrieved “as is” in a single step
from a table in the 3DCityDB but has to undergo some processing steps (not
achievable by simple JavaScript means) in order to calculate the final value before
being exported to the balloon. A typical processing step is the transformation of some
coordinate list into a CRS different from the one the 3DCityDB is originally set in.
The coordinates in the new CRS cannot be included in the balloon with their original
values as read from the database (which was the case with all other expression values
so far), but must be transformed prior to their addition to the balloon contents.

Expressions for special keywords are not case-sensitive. Their syntax is similar to
ordinary simple expressions, start and end are marked by <3DCityDB> and
</3DCityDB> tags, the table name must be SPECIAL KEYWORDS (& non-existing
table in the 3DCityDB), and the column name must be one of the following:

CENTROID WGS84 (coordinates of the object’s centroid in WGS84 in the following
order: longitude, latitude, altitude)

CENTROID WGS84 LAT (latitude of the object’s centroid in WGS84)

CENTROID WGS84 LON (longitude of the object’s centroid in WGS84)

BBOX WGS84 LAT MIN (minimum latitude value of the object’s envelope in
WGS84)

BBOX WGS84 LAT MAX (maximum latitude value of the object’s envelope in
WGS84)

BBOX WGS84 LON MIN (minimum longitude value of the object’s envelope in
WGS84)

BBOX WGS84 LON MAX (maximum longitude value of the object’s envelope in
WGS84)

BBOX WGS84 HEIGHT MIN (minimum height value of the object’s envelope in
WGS84)

BBOX WGS84 HEIGHT MAX (maximum height value of the object’s envelope in
WGS84)

BBOX WGS84 LAT LON (all four latitude and longitude values of the object’s
envelope in WGS84)

BBOX WGS84 LON LAT (all four longitude and latitude values of the object’s
envelope in WGS84)

No aggregation functions or conditions are allowed for SPECIAL KEYWORDS. If
present they will be interpreted as part of the keyword and therefore not recognized.

The SPECIAL KEYWORDS list is also visible and available in its current state in the
updated version of the Spreadsheet Generator Plugin. The list can be extended in
further Importer/Exporter releases.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 39

Examples for simple expressions:

<3DCityDB>ADDRESS/STREET</3DCityDB>
returns the content of the STREET column on the ADDRESS table for this city object.

<3DCityDB>BUILDING/NAME</3DCityDB>
returns the content of the NAME column on the BUILDING table for this city object.

<3DCityDB>CITYOBJECT GENERICATTRIB/ATTRNAME</3DCityDB>
returns the names of all existing generic attributes for this city object. The names will
be separated by commas.

<3DCityDB>CITYOBJECT GENERICATTRIB/REALVAL

[ATTRNAME ;-'H_Trauf_Min']</3DCityDB>
returns the value (of the REALVAL column) of the generic attribute with attrname
H Trauf Min for this city object.

<3DCityDB>APPEARANCE/ [COUNT] THEME</3DCityDB>
returns the number of appearance themes for this city object.

<3DCityDB>APPEARANCE/THEME [0]</3DCityDB>
returns the first appearance for this city object.

<3DCityDB>SPECIAL KEYWORDS/CENTROID WGS84 LON</3DCityDB>
returns the longitude value of this city object’s centroid longitude in WGS84.

<3DCityDB> simple expressions can be used not only for generating text in the balloons,
but any valid HTML content, like clickable hyperlinks:

<a href="<3DCityDB>EXTERNAL REFERENCE/URI</3DCityDB>">
click here for more information
returns a hyperlink to the object's external reference,

or embedded images:

<img src= "<3DCityDB>CITYOBJECT GENERICATTRIB/URIVAL
[ATTRNAME='TIllustration']</3DCityDB>" width=400>

This last example produces, for instance, in the case of the Pergamon Museum in Berlin:

<img src="http://upload.wikimedia.org/wikipedia/commons/d/
dl/FrisocaltarPergamo.jpg" width=400>

http://upload.wikimedia.org/wikipedia/commons/d/d1/FrisoaltarPergamo.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d1/FrisoaltarPergamo.jpg

40 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

BLDG_00030000001829f9

Pergamon Museum

X

b
i

Address:
Bodestr. 1
10178, Berlin

Fig. 18: Dynamically generated balloon containing an embedded image (image taken from Wikimedia).

Simple expressions are sufficient for most use cases, when only a single value or a list of
values from a single column is needed. However, sometimes the user will need to access more
than one column at the same time with an unknown amount of results. For these situations
(listing of all generic attributes along with their values is one of them) iterative expressions
were conceived.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 41

Rules for iterative expressions

Iterative expressions will adopt the form:
<3DCityDB>FOREACH

TABLE/COLUMN [, COLUMN] [, COLUMN] [...] [, COLUMN] [CONDITION]
</3DCityDB>
[...]
HTML and JavaScript code (column content will be referred to as %1, %2, etc. and
follow the columns order in the FOREACH line. %0 is reserved for displaying the
current row number)
[...]
<3DCityDB>END FOREACH</3DCityDB>

No aggregation functions are allowed for iterative expressions. The amount of
columns is free, but they must belong to the same table. Condition is optional. Implicit
condition (data must be related to the current city object) applies as for simple
expressions.

FOREACH means truly "for each™. No skipping is possible. If skipping at display time
is needed it must be achieved by JavaScript means.

The generated HTML will have as many repetitions of the HTML code between the
FOREACH and END FOREACH tags as lines the query result has.

No inclusion of simple expressions or SPECIAL KEYWORDS between FOREACH and
END FOREACH tags is allowed.

No nesting of FOREACH statements is allowed.

Examples for iterative expressions:
Listing of generic attributes and their values:

<script type="text/javascript">
function ga value as tooltip(attrname, datatype, strval,
intval, realval)

{

document.write ("<span title=\"");
switch (datatype) {

case "1": document.write(strval);
break;

case "2": document.write(intval);
break;

case "3": document.write(realval);
break;

default: document.write ("unknown") ;

}s

42

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

document.write ("\">" + attrname + "");

<3DCityDB>FOREACH
CITYOBJECT GENERICATTRIB/ATTRNAME, DATATYPE, STRVAL,

INTVAL, REALVAL</3DCityDB>
ga value as tooltip("%1", "%2", "%3", "%4", "%5");
<3DCityDB>END FOREACH</3DCityDB>

</script>

BLDG_0003000b006907e8

Address:
Rochstr. 9
Berlin

Available in: LoD2

Appearances: 1

Measured height: 78.05785 m

Existing generic attributes (mouseOver for values): ANZ_LOC,
EIG_KL_PV, EIG_KL_ST, FOLIE, GE_LoD2_zOffset, GMDE,
H_First_Max, H_First_Min, HNR, H_Trauf_Max, H_Trauf_Min, Kachel,
KREIS, LAND, LFD, OAR, RBEZ, STR, TexVersion

External reference name: 0003000b006907e8

’
o
~

AN\

Ay

AR LR RN NS
\\\\\‘\\ A

N\

.

\\\\ ‘\ \\

NN

.
N
N\

N\

|maqc ; e » w(‘l()()glc

’/él

Fig. 19: Model placemark with dynamic balloon contents showing the list of generic attributes.

Since
1.4.0

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 43

4.3.2.4 Altitude/Terrain Preferences

With reference systems other than WGS84 (the reference system used in Google Earth) in the
underlying 3DCityDB, some adjustments on the z coordinate for the exported datasets may be
necessary for a perfect display in the Earth browser.

. B

I;ﬂ 3D City Database Importer/Exporter : ssd - berlin3d_visual NN X
File Project View Help
| Import | Export | KML/COLLADA Export | Dambas
PF:EFE_FEHEES Altitude /Terrain
--Clty'GML Import
--CityGML Export
[=-KML/COLLADA Export [[] Use original z-Coordinates without transformation
. -General
. [E-Rendering Altitude mode
- absolute -
[&-Dal® _
[}-Genera Altitude offset
~1 Mo offset
@ Constant(inm) 0.0
“1 Use generic attribute "GE_LoDn_zOffset”™
Call Google's elevation API when no data available
Restore] [Default] [Apply]
Ready Database connected
L

Fig. 20: Altitude/Terrain settings.

Use original z-Coordinates without transformation

Depending on the Oracle version (10g or 11g) of the database used, the transformation of the
original coordinates to WGS84 will include transformation of the z-coordinates (11g) or not
(10g). To make sure only the planimetric (x,y) and not the z-coordinates are transformed this
checkbox must be selected. This is useful when the used terrain model is different from
Google Earth’s and the z-coordinates are known to fit perfectly in that terrain model.

Another positive side-effect of this option is that GE_LoDn_zOffset attribute values
(explained in the following section) calculated for Oracle 10g keep being valid when imported
into Oracle 11g. Otherwise, when switching database versions and not making use of this
option, GE_LoDn_zOffset values must be recalculated again.

GE_LoDn_zOffset attribute values calculated for Oracle 10g are consistent for all
KML/COLLADA exports from Oracle 10g. The same applies to Oracle 11g. Only cross-

44 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

usage (calculation in one version, export from the other) creates inconsistencies that can be
solved by turning z-coordinate transformation off.

This setting affects the resulting GE_LoDn_zOffset if used when a cityobject has none such
value yet and is exported in KML/COLLADA for the first time, so it is recommended to
remember its status (z-coordinate transformation on or off) for all future exports.

Altitude mode

Allows the user to choose between relative (to the ground), interpreting the altitude as a value
in meters above the terrain, or absolute, interpreting the altitude as an absolute height value in
meters according to the vertical reference system (EGM96 geoid in KML).

This means, when relative altitude mode is chosen, the z-coordinates of the exports represent
the vertical distance from the digital terrain model (DTM) of the Earth browser, which should
be O for those points on the ground (the building's footprint) and higher for the rest (roof
surfaces, for instance). However, z-coordinate values of the city objects stored in a 3DCityDB
usually have values bigger than 0, so choosing this altitude mode will result most times in
exports hovering over the ground.

Ss——|mage,© 2011 AeroWest
Wimage ©2011yDigitalGlobe
Image'@R201,GeoContent

Ls0oqle
C

Fig. 21: Possible export result with relative altitude mode.

When absolute altitude mode is chosen, the z-coordinates of the exports represent the vertical
distance from the vertical datum - the ellipsoid or geoid which most closely approximates the
Earth curvature, for Google Earth this is the WGS84 EGM96 Geoid, see KML documentation
[3] -, regardless of the DTM at that point. This implies, choosing this altitude mode may result

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 45

in buildings sinking into the ground wherever the DTM indicates there is a hill or hovering
over the ground wherever the DTM indicates a dent.

For a proper grounding, a positive or negative offset value can be applied to all z-coordinates
of the exports, moving the city objects up and down along the z-axis until they match the
ground.

Altitude offset

A value, positive or negative, can be added to the z coordinates of all geometries in one export
in order to place them higher or lower over the earth surface. This offset can be O for all
exported objects (no offset), it can be constant for all (constant), or it can have an individual
value for each object stored in the object's generic attribute GE_LoDn_zOffset (where n stands
for the corresponding level of detail in CityGML sense).

The first two options, no offset and constant, are appropriate for exports of a single city ob-
ject, allowing some fine tuning of its position along the z-axis. When exporting regions - via
bounding box settings -, the Use generic attribute "GE_LoDn_zOffset" option is recom-
mended. Whenever possible (restrictions explained below) settings should be as displayed in
Fig. 20, including absolute altitude mode. The GE_LoDn_zOffset generic attribute value can
be automatically calculated by the KML/COLLADA exporter if not available. This
calculation uses data returned by Google's Elevation API [4]. After calculation the value will
be stored in the CITYOBJECT GENERICATTRIB table of the 3DCityDB for future use.

Since city objects may have different geometries for different LoDs, the anchoring points and
their elevation values may also differ for each LoD. This explains the need for having
GE_LoD1_zOffset, GE_LoD2_zOffset, etc. generic attributes for one single object.

The algorithm used to calculate the individual zOffset for an object iterates over the points
with the lowest z-coordinate in the object, calling Google's elevation API in order to get their
elevation. The point with the lowest elevation value will be chosen for anchoring the object to
the ground. The zOffset value results from subtracting the point's z-coordinate from the
point's elevation value.

When calling Google's elevation API for calculating the zOffset of an object a message is
shown: "Getting zOffset from Google's elevation service for BLDG_0003000e008c4dc4".

Google's elevation API imposes strong usage restrictions: non-premium users can issue a
maximum of 2,500 requests per day. This limit may be reached fast when exporting areas
where no city objects have GE_LoDn_zOffset values assigned. When the daily usage limit is
reached a warning message is shown: "Elevation service returned OVER_QUERY _LIMIT".
The usage limit is bound to the caller's IP address. It is advisable to use several different
computers (or IP addresses) when filling the 3DCityDB with GE_LoDn_zOffset values (or
become a premium user).

A second usage restriction allows for no more than 10 requests per second. The Import/Export
tool takes care of not exceeding this limit by pausing between requests when required. That
will slow down KML/COLLADA exports when done for the first time. Subsequent exports

46 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

will be faster since the GE_LoDn_zOffset attribute value is already in the 3DCityDB and does
not have to be calculated again.

Saving the building's height offset in the form of a generic attribute ensures this information
will be present in every export in CityGML format (and therefore at every re-import) and can
thus be transported across databases. Please note, that not the DTM height value of Google
Earth will be stored but the difference of the individual building’s minimum z value and the
value reported by the Google Elevation Service. Following this approach further usage
restrictions of the Google Elevation Service are avoided.

In some unusual cases, even after automatic calculation of the GE_LoDn_zOffset value the
object may still not be perfectly grounded to the Earth surface for a number of reasons; e.g.
wrong height data of the model, or low resolution of the DTM at that area. In those cases a
manual adjustment of the value in the 3DCityDB is needed. After the content of
GE_LoDn_zOffset has been fine tuned to a proper value it should be persistently stored in the
database.

sse———|mage®.2011 AeroWest

image ©2011jDigitalGlobe . <
S Q
Image'®@R201,GeoContent A0 ‘(\I\

Fig. 22: Points sent to Google's Elevation API for calculation of the zOffset.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 47

sse——lmagei® 2011 AeroWest
Yimage 01iliRigitalGlobe S -
O
Image 0jl1,GeoContent S '”“(\Ik

e

Fig. 23: Export with absolute altitude mode and no offset.

Ssme———imagei© 2011 AeroWest
dimage ©201i1iDigitalGlobe
Image'@R01,.GeoContent

Lsoogle
C
— B _‘J—

Fig. 24: Export with absolute altitude mode and use of GE_LoDn_zOffset.

48 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

4.3.3 Batch mode
Analog to the CityGML imports and exports, KML/COLLADA exports can also be executed
from the shell without opening a graphical user interface. The command line syntax is:

java [options] -jar impexp.jar -shell —-kmlExport
<export filename> -config <config filename>

[options] refers to all possible settings in the Java Virtual Machine (JVM) itself. One
recommended option is —Xmx1024m, which sets the maximum heap size to 1GB. The user
can adapt this value according to his/her hardware for optimal performance. Bigger heap sizes
mean less often garbage collections and therefore improved performance. For a
comprehensive list of all JVM options see [7].

e -shell tells the Import/Export tool to execute in a shell environment without
graphical user interface.
e <export filename> indicates the target file for the resulting exports.

e <config filename> points to a configuration file containing the project settings.
Configuration files can be explicitly created and stored by the Importer/Exporter tool
by clicking on the menu "Project”, "Save Project As...". Configuration files are written
in .xml format and can be adapted with any text editor.

4.3.4 Loading exported models in Google Earth

Usage of the most up-to-date Google Earth version is highly recommended. Some of the
features described in this documentation, like highlighting, require version 6.0.1 to work
flawlessly (they do work in older versions, but not as smooth).

Displaying a file in Google Earth can be achieved by opening it through the menu ("File",
"Open") or double-clicking on any kml or kmz file if these extension are associated with the
program (default option at Google Earth's installation time).

Loaded files can be refreshed when generated again after loading (if for example the balloon
template file was changed) by choosing the "Revert" option in the context menu on the
sidebar. There is no need to delete and load them again or shutdown or restart the Earth
browser.

For best performance, cache options ("Tools", "Options"”, "Cache") should be set to their
maximum values, 1024MB for memory cache size, 2000MB for disk cache. Actual
maximums may be lower depending on the computer's hardware.

Recommended graphics mode ("Tools", "Options”, "3D View") on Windows platforms is
DirectX.

Show Terrain ("Tools", "Options", "3D View") should be enabled, quality set at around 1/3.
Disable it only in the case exports cannot be seen although shown as loaded in Google Earth's
sidebar: they are probably buried into the ground (see chapter 4.3.2.4), and remember to
enable showing of the terrain again when loading the next unrelated exports.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 49

When exporting balloons into individual files (one for each object) written together into a
balloon directory access to local files and personal data must be allowed ("Tools", "Options",
"General"). Google Earth will issue a security warning that must be accepted, otherwise the
contents of the balloons (when in individual files and not as a part of the doc.kml file) will not
be displayed.

It is also possible to upload the generated KML/COLLADA files to a web server and access
them from there as a Network Link in Google Earth or via internet browser with installed
Google Earth Plugin. In this case, as stated in chapter 4.3.2.1, export in kmz format is
recommended and balloon content must be part of the doc.kml file. Due to security risks, the
Plugin has no option for allowing access to local files and personal data.

4.3.5 General setting recommendations

When the original data are defined in a 3D reference system the Importer/Exporter will detect
this before exporting to KML/COLLADA and automatically choose the target system with
the same dimensionality (WGS84 for 2D, WGS84 3D for 3D) that must be applied for the
coordinate transformation.

Depending on the quality and complexity of the 3DCityDB data, export results may vary
greatly in aesthetic and loading performance. Experimenting will be required in most cases
for a fine tuning of the export parameters. However, some rules apply for almost all cases:

e kmz format use is recommended when the files will be accessed over a network. Kml
format seems to have a positive effect on the stability of the Earth browser.

e Visibility values for the different display forms should be increased in steps of around
one third of the tile side length.

e Visibility from 0 pixels (always visible) should be avoided, especially for large or
complex exports, because otherwise the Earth browser will immediately load all data
at once since it all must be visible.

e Tile side length (whether tiling is automatic or manual) should be chosen so that the
resulting tile files are smaller than 10MB. When single files are bigger than that
Google Earth gets unresponsive. For densely urbanized areas, where many placemarks
are crimped together a tile side length value between 50 and 100m should be used.

e When not exporting in the COLLADA display form, files will seldom reach this 10MB
size, but Google Earth will also become unresponsive if the file loaded contains a lot
of polygons, so do not use too large tiles for footprint, extruded or geometry exports
even if the resulting files are comparatively small.

e Do not choose too small tile sizes, many of them may become visible at the same time
and render the tiling advantage useless.

e Using texture atlas generation when producing COLLADA display form exports
always results in faster model loading times.

e From all texture atlas generating algorithms, BASIC is the fastest (shortest generation
time), TPIM the most efficient (highest used area/total atlas size ratio).

e Texture images can often be scaled down to 0.2 - 0.5 without noticeable quality loss.
This depends, of course, on the quality of the original textures.

50

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Highlighting puts the same polygons twice in the resulting export files, one for the
buildings themselves, one for their highlighting. This has a negative impact on the
viewing performance. The more complex the buildings are the worse the impact.
When highlighting is enabled for exports based on a CityGML LoD3 or higher Google
Earth may become quite slow.

Balloon generation is slightly more efficient when a single template file is applied for
all exported objects.

Optimal altitude/terrain settings for a proper grounding of the exports are as shown in
Fig. 20: absolute altitude mode, use of generic attribute GE_LoDn_zOffset and call
Google's elevation APl when no data is available.

When the Google's elevation API daily quota limit is reached you can continue the
export on another computer, or you can change your IP address (or become a Google
premium user). Repetitive running of the KML/COLLADA export may be required
over several days until error message "OVER_QUERY _LIMIT" no longer appears.

Since

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 51

4.4 Support for Coordinate Reference Systems (CRS)

4.4.1 General information

When setting up a new instance of the 3D City Database, a Coordinate Reference System
(CRS) has to be provided as mandatory setup parameter. This CRS is used as default
reference system for all spatial objects which are created and stored in the database instance
as well as for building spatial indexes and performing spatial functions.

Oracle provides comprehensive support for different types CRSs. Both Oracle 10g and 11g
support 2D coordinate systems which are classified into two types: Geographic2D and
Projected. The first type of coordinate system specifies the longitude and latitude on the earth
surface approximated by a reference ellipsoid and is also referred to as Geodetic coordinate
system. Projected types of 2D coordinate systems specify how to project longitude and
latitude values on a reference Geographic2D system to a two-dimensional Euclidean
coordinate system. Starting from Oracle 11g, support for 3D coordinate systems has been
added which are classified into the following three types: Geographic3D (Geographic2D plus
ellipsoidal height), Geocentric (specifies x,y,z values with reference to the center of the
earth), and Compound (combines either Geographic2D or Projected (2D) with a vertical
coordinate system specifying height based on gravity, above mean sea level, etc.).

The 3D City Database and the Importer/Exporter are designed to support both Oracle 10g
(R2) and Oracle 11g (R1 and R2). When using Oracle 11g, both 2D and 3D reference systems
are supported. Exports to CRS different from the original (see 4.6.1) require the
dimensionality of the target and source system to be identical. That means, 2D reference
systems must be transformed into 2D reference systems, 3D reference systems into 3D
reference systems. Cross-dimensionality transformation (2D to 3D or 3D to 2D) is not
supported. Oracle 11g comes with a few predefined 3D CRS. Their coverage is limited, so a
manual definition of a new 3D CRS is usually required for most areas. An Importer/Exporter
plugin is currently being developed especially for this purpose (definition of 3D CRS).

Regardless of the CRS associated with a spatial object, the spatial data types offered by both
Oracle 10g and 11g fully support three-dimensional coordinate values. This is important with
respect to the storage of geometries in the 3D City Database: Since the 3D City Database is
meant to store and manage virtual 3D city models based on CityGML, and CityGML is a true
3D standard, all geometries are stored with three-dimensional coordinate values in the 3D
City Database. There are only very few exceptions to this rule, where geometries with two-
dimensional coordinate values are allowed in CityGML (please refer to the CityGML
specification [2] for details).

Note: Transformation of stored three-dimensional coordinates which refer to a 2D CRS can
result in some small degree of inaccuracy affecting not only the output height of a
transformation, but also possibly the longitude and latitude, see [15] for details.

4.4.2 Definition of the CRS for a 3D City Database instance
The definition of the CRS for setting up a new instance of the 3D City Database consists of
two components: 1) a valid Oracle Spatial Reference Identifier (SRID) and 2) an OGC GML

Since

52 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

conformant definition identifier for the CRS. Both components are stored in the table
DATABASE SRS. The CRS definition is fixed and shall not be changed at any later point in
time (please refer to the chapter 3.2 of the previous 3D City Database 2.0.1 documentation [1]
for more information about the setup procedure).

The SRID is an integer value key pointing to spatial reference information within Oracle’s
MDSYS.CS SRS table. Oracle is shipped with a large number of predefined spatial reference
systems. At setup time, the SRID chosen as default value for the 3D City Database instance
must already exist in MDSYS.CS_SRS.

The GML conformant CRS definition identifier is used as value for the gml:srsName
attribute on GML geometry elements when exporting database contents to CityGML instance
documents. It should follow the OGC recommendation for the Universal Resource Name
(URN) encoding of CRSs given in the OGC Best Practice Paper Definition identifier URNS in
OGC namespace [13]. At setup time, please make sure to provide a URN value which
corresponds to the spatial reference system identified by the default SRID of the database
instance. Since CityGML is a 3D standard, the URN encoding shall always represent a
three-dimensional CRS which, for example, can be denoted as compound coordinate
reference systems [13]. The general syntax of a URN encoding for a compound reference
system is as follows:

urn:ogc:def:crs,crs:authority:version:code,crs:authority:
version:code

Authority, version, and code depend on the information authority providing the CRS
definition (e.g. EPSG or OGC). The following example shows a possible combination of an
SRID (here referring to a 2D CRS) and CRS URN encoding (3D) to set up an instance of the
3D City Database:

SRID: 31466
URN: urn:ogc:def:crs,crs:EPSG:7.7:31466,crs:EPSG:7.7:5783

The example SRID is referencing a Projected CRS defined by EPSG (DHDN / 3-degree
Gauss-Krtiger zone 2; used in the western part of Germany; EPSG-Code: 31466). The URN
encodes a compound coordinate reference system which adds a Vertical CRS as height
reference (DHHN92 height, EPSG-Code: 5783).

4.4.3 Management of user-defined CRSs

Version 1.2.2 of the Importer/Exporter already introduced the possibility to pass coordinate
values given in a different CRS than the internal database CRS as input values for a spatial
bounding box filter when importing/exporting CityGML documents. However, the support for
further CRSs was still preliminary in such that a user could only choose from a predefined
and fixed number of CRSs.

Release 1.4.0 of the Importer/Exporter brought full support for user-defined CRSs. Similar to
the CRS information that has to be provided at setup time of a new 3D City Database
instance, a user-defined CRS consists of both an Oracle SRID and a GML conformant URN

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 53

encoding of the CRS. For the management of user-defined CRSs, a new user dialog was
added to the Preferences tab as shown in the Fig. 25.

-

ﬂ 3D City Database Importer/Exporter : ssd - berlin3d_visual l — | (5] |_ih]

Eile Project View Help

| Import | Export | KML/COLLADA Export | Databas 1l

Preferences

: Reference systems
[+-Import
[-Export
[#-KML/COLLADA Export User-defined reference systems
: Reference system ‘Same as in database -

SRID 81933002

aml:srsiame urn:ogc:defiors, ors:EPSG:6. 12: 3068, ors:EPSG:6. 12: 5783
Description Same as in database
Database name |Soldner Koordinaten Metzga (Berlin)

SRS type Projected

Apply [Mew] [Copy] Delete

Impart/expart of user-defined reference systems

Filename
[Add] [Replace with] [Save]
Restore] [Default] [Apply]
Ready Database connected

Fig. 25: Support for user-defined CRSs in the Preferences tab.

The management of user-defined CRSs can be found in the Reference systems subnode of the
Database preferences node (the latter one is also introduced with release 1.4.0, cf. chapter
4.8). On top of the preferences page, a combo allows for choosing a CRS for display and
editing from the list of user-defined CRSs. The list contains at minimum one predefined entry
called Same as in database which represents the internal CRS of the 3D City Database
instance. This entry will always show the SRID and CRS URN encoding of the currently
connected database instance. Since the internal CRS shall not be changed after database setup,
the fields of the Same as in database entry cannot be edited (cf. Fig. 25.).

54 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

A new user-defined CRS can be added to this list after clicking the New button. Please
provide an Oracle SRID in the corresponding SRID input field of the user dialog and pass a
corresponding URN encoding to the gml:srsName input field (optional). A short, meaningful
textual description of the CRS has to be given in the Description field. This description is
used as key value for the list of user-defined CRSs displayed in the combo box on top (and
also in similar combo boxes on further tabs of the Importer/Exporter). The new CRS is added
to the list of user-defined CRSs by clicking on the Apply button. The following screenshot
provides an example.

| Import | Export | KML/COLLADA Export | Database | Preferences |

Preferences
[+-Impart
[+-Export
[+]-KML JCOLLADA Export User-defined reference systems

I?_I--D._atahase Reference system :DHDN | 3-degree Gauss-Kruger zone 2 / DHHNS2 -

SRID 31466

--General
aml:srsMame urn:ogcideficrs, ors:EPSG: 7, 7: 31466, ors:EPSG: 7. 7: 5783

Reference systems

Description DHDOM f 3-degree Gauss-Kruger zone 2 f DHHNGZ2
Database name |DHDM [Gauss-Kruger zone 2

SRS type Projected

[Apply] [Mew] [Copy] [Delete

Importfexport of user-defined reference systems

Filename

Browse

[Add] [Replace with] [Save]

Restore] [Default] [Apply]

Fig. 26: Adding a new CRS to the list of user-defined CRSs.

The Copy button allows for adding a further CRS by copying and editing the information of
an already existing user-defined CRS. The currently selected CRS is deleted from the list by
clicking the Delete button. The Check button next to the SRID input field facilitates to verify
whether the provided SRID is supported by the currently connected 3D City Database
instance. After a successful check the non-editable fields Database name and SRS type will be
filled with the corresponding information collected from the currently connected 3D City

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 55

Database instance. If the Importer/Exporter is not connected to a database instance, the Check
button is disabled.

The result of the SRID verification may vary between different 3D City Database instances
due to the fact that a) the list of predefined spatial reference systems differs between different
versions of Oracle Spatial (e.g., between 10g R2 and 11g R2) and b) the fact, that Oracle also
supports the definition of user-defined spatial reference systems (please check the Oracle
Spatial documentation for further guidance on how to create spatial reference systems in
Oracle). In order to add a user-defined CRS to the Importer/Exporter which is not supported
by the underlying Oracle Spatial database by default, this CRS has first to be registered with
the internal Oracle tables. As soon as the CRS is announced to Oracle, it can be added to the
list of user-defined CRSs in the Importer/Exporter.

The list of user-defined CRSs is automatically stored in the project settings of the
Importer/Exporter and loaded upon application start. It can additionally be exported into an
extra file without the remaining project settings. This allows for easily sharing user-defined
CRSs between different Importer/Exporter installations. Please provide a valid filename in the
corresponding input field Filename (clicking on the Browse button opens a dialog which
allows for choosing a file) and click on Save. There are two options for importing such an
external list of CRSs: 1) the CRSs listed in the external file can be added to the current list of
CRSs (Add button) or 2) the external list can be used to replace the current list (Replace with
button).

The Importer/Exporter is shipped with a number of predefined CRSs organized in subfolders
of templates/CoordinateReferenceSystems within the installation folder of the
Importer/Exporter. Each CRS definition is stored in its own file and, thus, can be easily
imported and added to the list of user-defined CRSs. The URN encoding of the predefined
CRSs generally lacks a height reference system which has to be added before using this CRS
as target reference system for CityGML exports (cf. chapter 4.6.1 for more details).

4.4.4 Usage of user-defined CRSs
User-defined CRSs can be used at the following locations within the Importer/Exporter:

1. Defining the CRS for the bounding box filter on the CityGML Import tab,

2. Defining the CRS for the bounding box filter on the CityGML Export tab,

3. Defining the CRS for the bounding box filter on the KML/COLLADA Export tab (cf.
chapter 4.3), and

4. Defining the target CRS for a coordinate transformation during CityGML exports on
the Export tab (cf. chapter 4.6.1).

The following Fig. 27 shows an example usage of the CRS which has been added to the list of
user-defined CRSs in the previous chapter. The CRS is applied to the spatial bounding box
filter on the CityGML Import tab by choosing the corresponding value from the combo box.
The Importer/Exporter will use this CRS information for the interpretation of the coordinate
values passed to the Xmin, Xmax, Ymin and Ymax input fields and automatically transform
them to the internal CRS of the 3D City Database instance in order to apply the spatial filter.

56 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

Often the bounding box used as a spatial filter for a CityGML import/export or
KML/COLLADA export is derived from querying a public web-based map service such as
Google Maps, Microsoft Bing Maps, or OpenStreetMap. Usually, points on these maps have
latitude and longitude values according to the WGS84 ellipsoid and datum. If you want to
directly make use of the map coordinate values in the spatial bounding box filters of the
Importer/Exporter, you first have to add a user-defined CRS for WGS84 and choose this as
reference system for the corresponding filter. The Importer/Exporter is shipped with a
predefined CRS definition for WGS84. This can be loaded from an external file which is
located in the subfolder templates/CoordinateReferenceSystems within the
installation folder of the Importer/Exporter.

s T ——
. 3D City Database Importer/Exporter | (S e -

-

File Project Window Help

Impart | Exportl KML/COLLADA Exportl Matching | Database | Preferences

C:\some_CityGML_test_file.gml Browse
Versioning
Workspace |LIVE

gml:id

choose

Complex Filter (checked options are AND-linked)

] gml:name

choose

[7] dtyCbjectMember [appearanceMember [featureMey

from # to #

Bounding Box Referghce system ;Same as in database - |

Same as in database
DHDM | 3-degree Gauss-Kruger zone 2 f DHHNS2

Xmin

‘Ymin

[7] Feature Classes L
= ‘ CityObject
’ Building
WaterBody
’ LandUse E
- [] vegetation I
’ Transportation
- [] ReliefFeature |
[] CityFurniture <
Just validate
Ready Database connected

Fig. 27: Example usage of a user-defined CRS for specifying the reference system of the spatial bounding box
filter applied to a CityGML import.

Since not every user-defined CRS is necessarily supported by the Oracle Spatial database, the
Importer/Exporter verifies all CRSs upon every database connection. If a user-defined CRS is
not supported by the Oracle Spatial database underlying the 3D City Database, a
corresponding warning message is logged in the console window. The CRS combo boxes on

Since

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 57

the CityGML Import/Export tab and KML/COLLADA Export tab are smart in such they only
offer a subset of CRSs which is supported by the currently connected database.

4.4.5 Support for 3D CRS

Support for 3D CRS was improved with release 1.4.0. The 3D City Database can be set up on
a compound or geographic 3D system and the Importer/Exporter shall support all data
operations including import, export and KML/COLLADA export the same as for all 2D CRS
so far. Consequently, 3D CRS are managed through the same Preferences tab, Database
node, Reference systems subnode as their 2D counterparts.

A geographic 3D CRS consists of a geographic 2D CRS plus ellipsoidal height, with
longitude, latitude, and height based on the same ellipsoid and datum. A compound CRS
consists of either a geographic 2D CRS plus gravity-related height or of a projected 2D plus
gravity-related height.

When a CRS belonging to one of these two types is met it can be immediately recognized by
the contents of the SRS type field, see Fig. 28.

58 Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

-

.
l#®. 3D City Database Importer/Exporter : newton - ign_paris = | B -
File Project View Help
| Import | Export | KML/COLLADA Export | Database | Preferences

Pr:eferences Reference systems
---Impu:urt
FH-Export
--Wﬁ"ILfCOLLADA Export IUser-defined reference systems
E--Database Reference system Same as in database v
[+-General
SRID 12345
gml:srsiame Paris_3D_Test
Description Same as in database
Database name Paris 30 Test
i SRS type Compaound
Apply [MNew] [Copy] Delete
Importfexport of user-defined reference systems
Filename
[Add] [Replace with] [Save]
Restore] [Default] [Apply]
Ready Database connected
e

Fig. 28: A compound 3D CRS

When exporting 3D City Database contents into CityGML format the choice list Reference
Systems on the Export tab will be automatically adapted to only show suitable 3D CRS the
original data can be transformed into plus Same as in database (no transformation). Exporting
to a 2D CRS when the original data comes from a 3D CRS will not be possible.

When exporting 3D City Database contents into KML/COLLADA format the
Importer/Exporter will automatically identify whether the original data were defined in a 2D
or in a 3D CRS and choose the target system WGS84 2D or WGS84 3D accordingly.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 59

4.4.6 Support for Point and Line Geometries of GenericCityObjects
The feature type GenericCityObject as defined within CityGML’s Generics module (see [2])
allows for modeling and exchanging of 3D city objects which are not covered by any other
thematic module of the CityGML data model. In every LOD, the spatial characteristics of a
GenericCityObject can be described by an arbitrary 3D geometry object being a subtype of
gml:_Geometry (the root of the GML geometry hierarchy). Thus, a GenericCityObject may be
geometrically represented by one or more points, lines, surfaces, or volume objects per LOD.

As for example, GenericCityObjects can be used to model network structures such as water or
power supply networks (which are not predefined by the current CityGML specification) with
every GenericCityObject representing either a junction or an edge of the network. In LOD1,
this network might be spatially embedded using point and line geometries. However, until
release 1.5.0 of the Importer/Exporter, only surface-based and volumetric representations of
generic city objects were supported and kept in the SURFACE_GEOMETRY table. The
exemplified network structure would hence be lost during the database import.

This limitation has been resolved in 1.5.0 which additionally enables the storage of point and
line geometries. In order to keep the 3DCityDB database model unchanged for this minor
release, non-surface-based representations of generic city objects are saved in the table
CITYOBJECT_GENERICATTRIB according to the following scheme:

1. The ATTRNAME column follows the pattern “LODn_Geometry”, where n stands
for the LOD of the GenericCityObject which is captured by the geometry object
(i.e., LODO_Geometry, LOD1 Geometry, etc.).

2. The geometry itself is mapped onto an instance of SDO_GEOMETRY and stored
in the GEOMVAL column. The SDO_TYPE field of the SDO_GEOMETRY
object is restricted to 3001 for point geometries and to 3002 respectively 3006 for
line strings (whose vertices are required to be connected by straight line segments).

3. The DATATYPE field takes the value “6” which encodes a geometry attribute.

When exporting a GenericCityObject, first the SURFACE_GEOMETRY table is scanned
whether it holds a geometry representation of the feature for a given LOD. If no surface-based
geometry is found, the CITYOBJECT_GENERICATTRIB table is searched for a point or line
geometry associated with the feature by looking for a tuple whose ATTRNAME agrees with
the pattern “LODn_Geometry” and matches this LOD. If such a tuple exists, its GEOMVAL
value is used to populate the respective “lodnGeometry” property of the GenericCityObject
being exported.

Note: According to the CityGML specification, a GenericCityObject feature may have at
most one gml:_Geometry representation in each LOD. Correspondingly, per LOD, a
tuple in GENERIC_CITYOBJECT may either reference a surface-based geometry
stored in SURFACE_GEOMETRY or a single point respectively line geometry from
CITYOBJECT_GENERICATTRIB but not both.

Note: The spatial representation of a GenericCityObject can be given as complex geometry
using a gml:GeometricComplex which is allowed to contain geometric elements from
different dimensions (e.g., a heterogeneous collection of points, lines, and surface-

60

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0

based geometries). Although Oracle Spatial generally supports storing heterogeneous
collections of geometric elements in a single SDO_GEOMETRY object, very few of
its spatial functions can be applied to such collections. For this reason, only
homogeneous elements of the complex are considered when importing. First, the
complex is checked whether it merely contains points or lines, in which case the
point respectively line geometry is stored in CITYOBJECT _GENERICATTRIB as
explained above. If this check fails, surface-based primitives contained in the
complex are saved in the SURFACE_GEOMETRY table while silently discarding
all non-surface-based primitives. The latter conforms to the behavior of previous
releases.

Documentation of the 3D City Database v2.0.6 and the Importer/Exporter v1.5.0 61

4.5 CityGML Import Enhancements

4.5.1 Address storage

CityGML relies upon the OASIS Extensible Address Language (XAL) standard for the
representation and exchange of address information. XAL provides a flexible and generic
framework for encoding address data according to arbitrary address schemes. The columns of
the ADDRESS table of the 3DCityDB however only map the most common fields in address
records. Moreover, the Importer/Exporter currently does not support arbitrary xAL fragments
but is tailored to the parsing of two XAL templates which are documented in [2] and presented
below.

<bldg:Building>

<bldg:address>
<Address>
<xalAddress>
<!-- Bussardweg 7, 76356 Weingarten, Germany -->
<xAL:AddressDetails>
<xAL:Country>
<xAL:CountryName>Germany</xAL:CountryName>
<xAL:Locality Type="City">
<xAL:LocalityName>Weingarten</xAL:LocalityName>
<xAL:Thoroughfare Type="Street">
<xAL:ThoroughfareNumber>7</xAL:ThoroughfareNumber>
<xAL:ThoroughfareName>Bussardweg</xAL:ThoroughfareName>
</xAL:Thoroughfare>
<xAL:PostalCode>
<xAL:PostalCodeNumber>76356</xAL:PostalCodeNumber>
</xAL:PostalCode>
</xAL:Locality>
</xAL:Country>
</xAL:AddressDetails>
</xalAddress>
</Address>
</bldg:address>
</bldg:Building>

<bldg:Building>

<bldg:address>

<Address>
<xalAddress>
<!-- 46 Brynmaer Road Battersea LONDON, SWll 4EW United Kingdom -->
<!-- source: http://xml.coverpages.org/xnal.html -->

<xAL:AddressDetails>
<xAL:Country>
<xAL:CountryName>United Kingdom</xAL:CountryName>
<xAL:Locality Type="City">
<xAL:LocalityName>LONDON</xAL:LocalityName>
<xAL:DependentlLocality Type="District">
<xAL:DependentLocalityNam