3D City Database for CityGML

Version 4.0

Documentation

2018

I u I I virtualcitySYSTEMS o —
Geoinformationssysteme

2 3D Geodatabase for CityGML 2018

The images on the cover page were provided by:

— Chair of Photogrammetry and Remote Sensing & Chair of Cartography, Technische
Universitit Miinchen

— Geobasisdaten: © Stadtvermessung Frankfurt am Main
- IDAC Ltd, UK.
— virtualcitySYSTEMS GmbH, Berlin, Germany

— Chair of Geoinformatics, Technische Universitdt Miinchen. Image created based on
master thesis work of Matthias Korner, jointly supervised with HTW Dresden

— 3D City Model of Berlin © Berlin partner GmbH

- M.O.S.S. Computer Grafik Systeme GmbH, Taufkirchen, Germany

3D Geodatabase for CityGML 2018

Active participants in development

Name Institution Email

Thomas H. Kolbe Chair of Geoinformatics, thomas.kolbe@tum.de

Son H. Nguyen Technische Universitdt Miinchen son.nguyen@tum.de
Kanishk Chaturvedi kanishk.chaturvedi@tum.de
Bruno Willenborg b.willenborg@tum.de
Andreas Donaubauer andreas.donaubauer@tum.de
Claus Nagel virtualcitySYSTEMS GmbH, Berlin cnagel@pvirtualcitysystems.de
Zhihang Yao zyao@virtualcitysystems.de
Harald Schulz M.O.S.S. Computer Grafik Systeme GmbH, hschulz@moss.de

Philipp Willkomm Taufkirchen, Germany pwillkomm@moss.de
Gyorgy Hudra ghudra@moss.de

Felix Kunde Beuth University of Applied Sciences felix-kunde@gmzx.de

Participants in earlier developments

3D City Database Version 4.0.0 and its tools are based on earlier versions. During the
development phase 2006-2012 at the Institute for Geodesy and Geoinformation Science, TU

Berlin, the following individuals contributed to the development:

Name

Institution

Email

Thomas H. Kolbe
Claus Nagel
Javier Herreruela
Gerhard Konig
Alexandra Lorenz
(geb. Stadler)
Babak Naderi

Institute for Geodesy and Geoinformation
Science, Technische Universitidt Berlin

Felix Kunde

University of Potsdam

During the development phase 2004-2006 at the Institute for Cartography and Geo-
information, University of Bonn, the following individuals contributed to the development:

Name

Institution

Email

Thomas H. Kolbe
Lutz Plimer
Gerhard Groger
Viktor Stroh

Jorg Schmittwilken

Institute for Cartography and Geoinformation,
University of Bonn

Andreas Poth
Ugo Taddei

lat/lon GmbH, Bonn

mailto:thomas.kolbe@t

3D Geodatabase for CityGML 2018

3D Geodatabase for CityGML 2018 5

Table of Contents

DISCLAIMER ... rr s s sss s s s mmms s s s e s e nnmmm s s nnn s s e nnnns 1
1 INTRODUCGTION.... .ot rrrrssssss s sssmsss s s s s nmmss s s e e s nmmmnnnas 13
1.1 Main features of 3DCILYDB.c.ccccooieeiiieiieee e 15
1.2 System and deSign deCiSIONS.................ccceevvueieiiieeeiiieeiieeeee et 20
1.3 List of changes between SOftWaAre Ve SIONS.............cccoeeeveeeeeeeeiieeeiieesieeeereeenenens 21
1.3.1 Notable changes between 4.0.0 and 3.3.0.......c.cccceeviiienieniiienieeieeieee 21

1.4 Development RISTOTY...........cccoeieueiieeiiieeeeee ettt 23
1.5 AcknOWIEAZEMENLScccoociiiiiiiieiece e 24
2 DATA MODELLING AND DATABASE DESIGNccooiiiiiirrrieeiinneeeeenes 27
2.1 Simplification compared to CityGML 2.0.0c.cccoovvimiviaiiiiiiiiiieieeieen, 27
2.1.1 Multiplicities, cardinalities and r€CUrSIONScccueerueeriersieereeeiiienieeieans 27

2.1.2 Data type adaptationcceeeoueeriiieiieeniieeieeeie ettt 28

2.1.3 Project specific classes and class attributes..........cceeeeeeieeriienieeniencieeinens 28

2.1.4 Simplified design of GML geometry classescccceevveerivenieeniienieennnens 28

2.2 UML class di@Uami................cccocoueiuiiiiieieiie et 28
2.2.1 Geometric-topological Model..........cccoeiiiiiiiiiiiniiieeeeeeeee 29

2.2.2 ImPHCIt GEOMELIY.....eiiiiiiiiiiiiieiie ettt et et 30

2.2.3 Appearance MOdel.........cooiiiiiiiiiiiiiiiee e 31

2.2.4 Thematic MOdelcoceevuiiiiiiiiiiiiirieeeeeeee s 34
2.2.4.1 Core MOdel......oruiiiiiiiiiieniieiectetee et 34

2.2.4.2 Building modelccocuiiiiiiiiiiieiiieee e 36

2.2.4.3 Bridge Model........ccoiiiiiiiiiiiiieiecieeeee e 39

2.2.4.4 CityFurniture Model..........coooiiiiiiiieiiieeeecieeee e 42

2.2.4.5 Digital Terrain Model..........ccooveeiiiieiiieeiieeieeeeeeee e 43

2.2.4.6 Generic Objects and AHIIDULEScccveeereveeeiieeeiieeeiie e 45

2.2.47 LandUse Modelcoouiiiiiiiiiiiiieieeeeee e 47

2.2.4.8 Transportation Modelccoeoiiriiiiiiniiieieeeeceeeeee e 47

2.2.4.9 Tunnel Modelcoooiiiniiiiiiiiiiieneeeeeeee e 49

2.2.4.10 Vegetation Modelcoooveeiiieiiiniiieiieiiieiece e 52

2.2.4.11 WaterBodies Model...........cocoviiniiiiniiniiienieiccieeeeeesieee 53

2.3 Relational database SCREM.....................ccccoeceeeiiieiiiiiieiiieeie e 55
2.3.1 Mapping rules, schema CONVENtIONS.........ceveerrieerieriiienieeieenieeiee e 55
2.3.1.1 Mapping of classes onto tables...........ccoeeueevieriiienieniiieieeieeiens 55

2.3.1.2 Explicit declaration of class affiliation...........cccccecerveneriinennens 55

2.3.2 Conceptual database StrUCtUIEccceeeeuiiriierieiieeiieeie et 58

2.3.3 Database SChemMa..........coeeiirieriirieiieieeesee e 59

2.3.3.1 Metadata MOdE]L.....cooeeeeeeee e 59

3D Geodatabase for CityGML 2018

2.3.3.2 Core MOdel......ooiiiiiiiiiiiiieeee e 62

2.3.3.3 Tables for geometry representation.............cceeeveereerveerieenveennnans 64

2.3.3.4 Appearance Modelcccoeviieiiiiniiiinieiiieieee e 71

2.3.3.5 Building Model.........coocuiiiiiiiieiiiiiiciee e 76

2.3.3.6 Bridge Model........ccoiiiiiiiiieiiieiieceeeee e 82

2.3.3.7 CityFurniture Model...........cooouiieiiiieiiieeieecieeee e 84

2.3.3.8 Digital Terrain Model..........cccveeviiieiiieeiieceeeeceee e 85

2.3.3.9 Generic Objects and AHIIDULEScccveeevvieeiieeeiieeeiieeeiee e 87

2.3.3.10 LandUse Modelcoouiiiiiiiiiiiieniieieeseeee e 89

2.3.3.11 Transportation Modelccoeoiiriieiiiniiiiiieeieeeee e 89

2.3.3.12 Tunnel Modelcoouiiiiniiiiiiiiieieeeeeeseeee e 91

2.3.3.13 Vegetation Modelccccveeiiieiiiiiiieiieniieiece e 93

2.3.3.14 WaterBody Modelccoeviieiiiiiiiiiiiieeece e 94

2.3.4 SEQUEIICES oottt ettt ettt et ettt s 95

2.3.5 Definition of the CRS for a 3D City Database instance...........c...ccecueeueee 96
IMPLEMENTATION AND INSTALLATION........cooiiiiiiriiiereirer e 99
3.1 SYSTEM FOGUITEIMENLSeoeeeee et e et e e et e e e e ntaeeeeeesaeeeenn 99
3.1.1 3D City Database......ccceevuieeieiiiieeiieiieeie ettt ettt 99

3.1.2 Importetr/EXporter TOOL........ccooiiiiiiiiiiiiiiee e 99

3.2 Installation of the Importer/Exporter and the 3D City Database SQL Scripts... 100
3.3 Setting up the database SCREMQ.ccceevvuieeieeiciiieeiieeeciee e 102
33,1 Shell SCTIPLS ...viieiiieiieiie ettt ettt ettt enee s 102

3.3.2 SQL SCTIPLS.cutiiiiieiieeiieeieeeie ettt ettt ettt e teesteesbeebaeenaeeseessseeseens 103

3.3.3 Installation steps on Oracle Databasesccccccveveeeiiienieeiiieniieeieeiens 103

3.3.4 Installation steps on PostgreSQL.........cccoeiiiiiiiiiiienieiieeieeeeee e 106

3.4 Working with multiple database SCREMASccccoevveveiieeiieiiiiieenieeeieen, 108
3.4.1 Create and address database schemas..........c..cccceeveniiiinieniencnicnenee 108

3.4.2 Read and write access to @ SChema..........ccceceevierieniinieniencciceeee 109

3.4.3 Schema support in stored proceduresccooueevuierieeiieenieeiiienieeieeeeans 109

3.5 Migration from previous major releases................cccccouccieeeeeeciasieeeieanieeieannenns 110
3.5.1 V2 to V4 Migration on Oracle..........ccoviiiiiiiiiiiiiniiiiieiceeeeeieeee 111

3.5.2 V2 to V4 Migration on PostgreSQL..........cccoooiiiiiiiiiiiiiiineeeeieeeee 113

3.5.3 V310 VA MIGLationcoevieiiiieiieiieeiiesiieeieeite ettt st eiae i e seaeene s 113

3.6 Upgrade between minor releasesccccceuvueeeeeiiianeeiiieiieeeeeeeeeeins 113
STORED PROCEDURES AND ADDITIONAL FEATURES.............cceeeeeeeee. 115
4.1 User-defined dat@ tyPes.............ccooeueioiiiieeiiiaiieee et 115
4.2 CITYDB UTIL.......c.ocouiiiiiiaiiieeeee ettt 116
4.3 CITYDB CONSTRAINTccooiiiiiieieeee ettt 117
4.4 CITYDB IDX.....cccooiiiiiiiiiiieee ettt et 118
4.5 CITYDB SRS.....oooiiiiiieeeee ettt 119

3D Geodatabase for CityGML 2018 7

4.0 CITYDB STAT ..ottt 120
4.7 CITYDB OBJCLASS. ..ottt 120
4.8 CITYDB DELETE.........ccoiitiiiiieitee ettt 120
4.9 CITYDB ENVELOPEccocooiiiiiieieeeeee et 123
5 IMPORTER / EXPORTER......ccoiiiiiiiiei s 125
5.1 Running and using the Importer / EXPOFLErc..cccouvievieeiiaiieaiiaiienieeean. 125
5.2 Database connections and OPErationsccccoeeeeecreeeeaceeeseeeiieaneeeeeeneens 128
5.2.1 Managing and establishing database connectionsccecceeveeriennncene 128

5.2.2 Executing database OpPerations...........cceceeeueerierieeniiesieeniee e esiee e 130

5.3 Importing CityGML filescccoooeouiieiiiieiiee e 137
5.4 Exporting to CityGML...........cccooooiiiiiiiaiiiiie e 142
5.5 Exporting to KML/COLLADA/GITEcccveoiiiiiiieeeiieeeceeeeie et 145
5.5.1 Support of GenericCityObject having any geometry types..................... 152

5.5.2 Loading exported models in Google Earth and Cesium Virtual Globe... 153

5.0 PFEIEIONCES ...t 156
5.6.1 CityGML import preferencesoocueereerieenieniieenieeieeieeeieeiee e 157
5.6.1.1 CONINUALION ...eeovvieiieeiieiieeiieeie et e sire et e eteebee e eseeeaeenseesenes 157

5.6.1.2 gml:id handling.......c.ccoccoeiiiniiiiiiiniieiee e 158

5.6.1.3 Bounding DOXccceeeeiiiiiiiiieieeiieee et 159

5.6.1.4 AdAIESS ..couiieiiiiiieeeeee s 159

5.6.1.5 APPEATANCEeeveeiiiiieeeiiiieeeeiiee et e et e e et e e e e e eaaee s 162

5.6.1.6 GEOMELIY ..oeoiiiiiieeiiiee ettt ettt e e e e e e e e eaaee s 162

5.6.1.7 INAEXES...coiuiiiiiiiiieiieeeee e 164

5.6.1.8 XML validationccceceueeiiieniieiienieeieeeie e 165

5.6.1.9 XSL Transformation............ccceeeveeeiierieeniienieeiieeie e 166

5.6.1.10 IMPOTE LOZ ..veeneiieiiieiieeieeiie ettt 167

5.6.1.11 RESOUICES. ...ccuuiiruiiiiiiniiieiieeieete ettt 168

5.6.2 CityGML eXpOrt PreferenCes......coueiueeriieriieniieeieeniie et esiee e 171
5.6.2.1 CityGML VEISION ...ccvviieiiiieiieeeiieeeiie et svee e 171

5.6.2.2 Bounding boXcceeeeuiiiiiuiiiiiiieciieeee e 171

5.6.2.3 CityODbJECtGTIOUD ..veeevreeeeiieeiieeeiieeeieeeeieeesreeesreeesaeeeeeaee e 173

5.6.2.4 AdAIEsSoouiiiiiiiiieiieeee s 174

5.6.2.5 APPECATANCEeeevuviieeiiiieiiieeeiee ettt et 175

5.6.2.6 XLINKS .eouviiiiiiieiiiiesieeieeee ettt 176

5.6.2.7 XSL Transformation............ccceecveevuienieeniienieeiiesie e 177

5.6.2.8 RESOUICES...ccouuiiiiiiiiiiiiiiiiee ettt ettt s 178

5.6.3 KML/COLLADA/gITF export preferences..........ccoceeevueeneeriieenieeniennienns 179
5.6.3.1 General Preferences..........coceeveeiiiiniiiiienieeenceeeeeeeeee 179

5.6.3.2 Rendering Preferences........coooveveieeeciieeeciieeeieeeee e 183

5.6.3.3 Information Balloon Preferences............cccooueeveeniiniiinicnncnnen. 192

5.6.3.4 Altitude/Terrain Preferencesooovvvveveeeeeiiieiieeeiieieieeeeeeeeeeenenn. 199

3D Geodatabase for CityGML 2018

5.6.3.5 General setting recommendationsccceceeereieeencieeenveeennen. 204

5.6.4 Management of user-defined coordinate reference systems.................... 206

5.6.5 General PreferenCesoouiiriiiiiierieeiieeiie ettt 208
5.6.5.1 CaAChE ..oouiiiiiiiiiece s 208

5.6.5.2 Import and export pathcccceeeviieriieiiinieeece e, 209

5.6.5.3 NEtWOTK PIOXIES ..vveeevrreeiieeeiieeeirieeeieeeeieeesreeesreeesseeessaeeennneas 209

5.6.5.4 LOZEING .evviieiiieeiieeeee ettt e 210

5.6.5.5 Language SEleCtiONnccceeeeuveeriuieeeiiieeeiie e eeiee e eevee e 212

5.7 Map window for bounding box Selections...............ccccocvveveveeviieeesiiereniieeennans 213
5.8 Using the command line interface (CLI)............cccccocuevvveiviiieiiiiieiiieesieeeeieens 216
IMPORTER / EXPORTER PLUGINS.........cooiiiiirrrrrrrerrrrr s 219
6.1 Introduction to the plugin architeCtureccovevcuveecceeeeiieeeiieeeeeeeeeeennn, 219
6.2 Spreadsheet Generator Plugin (SPSHG)cc.cccoovoiiiiiiiiiiiiiiiieiieee e, 220
0.2.1 DEIINITION. ...cotiiiiiiiieie ettt sttt 220

6.2.2 Plugin installationcccooiiiiiiiiiiiie e 220

6.2.3 USer INterfacecocueeiuiiiiiiii e 221
6.2.3.1 Main Parameters...........cocuerieeniiiiiienieeiieseeee e 221

6.2.3.2 COIUMDS.eiiiiiiiieee e 222

6.2.3.3 COontent SOUICEcccueeruiieiiiriieiieeieeneteee et 227

0.2.3.4 OULPUL...oueiiiiiiiiiecieeeee ettt 227

6.3 ADE Manager PIUGINccccccooiiiiiiiiiiieiieeeee e 234
0.3.1 DEIINITIONcotiiiiiiiiieie ettt sttt 234

6.3.2 Plugin installationcccooiiiiiiiiiiiieeee e 234

6.3.3 USer INETaCE ..c..eeuvieiiiiieiiiieee e 236
6.3.3.1 ADE RegiStrationcccceevueeriieiiienieeiienieeieeeee e 236

6.3.3.2 ADE Transformation.........c.cceceveeneriieneenenieneeneseeseeeeeeee e 239

6.3.4 Workflow of extending the Import/Export Toolcccceeeuierrenirnnnn. 242
WEB FEATURE SERVICEccoi s 249
7.0 SYSEeM FEGUITEIMENLScoeeeeeeeeeeiie ettt e e e eaae e e e e e e eeaeee s 249
7.2 INSEAILIATION. ...t e 250
7.3 Configuring the Web Feature ServiCe...............ccocouvouievieeaiiieeeiieeiiieesieeenneaans 252
7.3.1 Database SETHNZScccveeruierieeiieiieeieeeiee et erieeeteesteeereeseeeaeeseessaeeeeens 252

7.3.2 Capabilities SEHINEScccuieriieiiieriieeiieriie et eee et ere e saeeeeae e 255

7.3.3 Feature type SEHINESeevuierieeiieeiieeiieeiie ettt ettt et eaeebeeseaeeee 256

7.3.4 OPErations SETHINZSceeruieriieriieeiiieeieeriie et eniee et e steeste et e saeenbeesaaeebee s 257

7.3.5 PoOStProcessSiNg SEHNZScccueeruieruieiiieriieeieeiee et e sttt siee st siee s 258

7.3.0 SEIVEI SETIINZS. coueeietieiieeiieiie ettt ettt ettt et st be e st beesaaeebee s 259

7.3.7 CaChE SEHINES ...ueeiiitieiieiiieiee ettt sttt e 260

7.3.8 CONSraINtS SETINZS ..ccuveitieriieiiieitieeieeeite ettt ettt sttt e sbeesaaeeee s 260

7.3.9 LOZEING SELHNEZS ..ecuveeeiieiieiieeieeeiie et eeite ettt et esteesreeseeeaeeseessneenseens 261

3D Geodatabase for CityGML 2018 9

7.4 Using the Web Feature ServiCecccccccuauueiiiaieieiieiieeie e 262

7.4.1 Basic functionalitycccooiiiiiiiiiiiieieee e 262

T7.4.1.1 WES OPETatioNnSccccuvieeiiieeiieeeiieeeieeeeieeeereeesreeesreeeseaeeennneas 262

7.4.1.2 Service URLccoooiiiiiiiiieieceeeeee e 263

7.4.1.3 Service DINAINGSccccveeeeuieieiieeiieeeee et 264

7.4.1.4 CityGML feature tyPes......ccceerieeriierieeiienieeieeeie e eee e 264

7.4.1.5 EXCEPLION TEPOTLS..c.ueierieriieeiieiieeiienireeteesiieereeseeeeseesaeeseesnnas 265

7.4.2 GetCapabilities OPETatiONceevuveeiiierieeiieiie et esiee et eiee e eee e 265

7.4.3 DescribeFeatureType Operation...........cccueecveeruieeiiieniieeiieeniieeieesieesieeeeans 266

7.4.4 ListStoredQUETies OPETatiONcc.eeruieriieriieiieeieenieeeeeeieeeaeeieesete e 268

7.4.5 DescribeStoredQUEry OPETationcocceeeueerieriieeniieeieeniee e esiee e 269

7.4.6 GetFeature OPErationcooueirieerieeiieniie ettt ettt sttt et e 271

7.5 Web-based WF'S CLIENL................ccccooeeeieiiiiieiiieeeiee e 273

8 3DCITYDB-WEB-MAP-CLIENTcooueiiiieenenns 275
8.1 SYSIEM FOGUITEIMENLSoeeeieeeeeee et e e e e et e e e e aaaee s 276

8.2 Installation and cONfIQUIALION.................ccooeeuiiiieiiieiieee et 276

8.3 USing the 3D Web CLIENLcccocueeiiiiiiieeiieeeee e 278

8.3.1 Overview of the relevant features and functionalities.............cccccccuenen. 278

8.3.2 Handling KML/gITF models with online spreadsheetccccecnee. 283

8.3.3 Handling Web Map Service data..........c.coeceeeiiiiiiiiiiiiiiiicieeeeieeee 290

8.3.4 Handling Digital Terrain Modelscoocueiiiiniiiiiiiiiiieieceeieeee 292

8.3.5 Interaction with 3D ObJECtS....cc.eeiiiiiiiiiiiiiiee e 294

8.3.6 Mobile Support EXtENSIONccceecuiiriieiieiiieiieeie ettt 300

8.3.7 Using the 3D Web Client from the 3DCityDB homepage....................... 302

9 3DCITYDB DOCKER IMAGES........... .o 303
9.1 GeING STATLE ...ttt 303

9.2 FUFPLREY TMAZESccoveeee ettt e e niaaeeenaeeen 304

10 REFERENGCES..........o o 305
APPENDIX A CHANGELOG........coooiiiiiiiirirrirrr s 309
A.1 3D City Database relational SCHEMacccocceeeeeeieiiieeniieeeiieeeiie e, 309
A.L.1 General Changes...........ccveruiieiiieiiieiiecie et 309

A.2 3D City Database SCTIDLScc.covueeeeiaiieeieeieeeiee ettt 309

A.3 3D City Database stored proceduresccoecueioeeciesiieeiiaiieeeeeieeeeen, 310
A.3.1 General Changes........cc.veeiiieeiiieeiee et eee e e e e sbeeeeaaeeen 310

A3.2 UTIL PACKAZE ...coiiieiieeiieie ettt e 310

A.3.3 IDX PACKAZE ..c.veeeiiieiieeiieiie ettt ettt et 310

A.3.4 SRS PACKAZEeeeiiieiieeiieeeeee et 310

A.3.5 STAT PACKAZE ...cvvieniieeiieiie ettt ettt ettt 310

A.3.6 DELETE PaCKa@eccovieiiieiieiiieiieeie ettt 310

10 3D Geodatabase for CityGML 2018

A.3.7 DELETE BY LINEAGE package........ccceceriririieieieierienieseeieeeeneenen 311

A.3.8 ENVELOPE packagecccccceeviiiiiiiiiieiieeieetee et 311

A.4 3D City Database Importer/EXPOTLEr..............ccocveeeieieeaiiaiieeeeeieee e, 311

A4l General ChaneS........ccveeeiieeiiieeiee et e e e e sbeeeeareeen 311

A4.2 CityGML IMPOTL...c.eeiiieiiieerieeeiieit ettt esaesteereeseeneas 311

A3 CityGML EXPOTt ..ocvvevieiieieiesieeieeeettee ettt eesaessesaeeseseeesaeneas 312

A.4.4 KML/COLLADA/ZITE €XPOIt....cccciiiiiiiiieniieiienieeiieeieeiee e 312

A5 Web FeQtUre ServViCecccoeiiiiiiiiaiiiiiiieetee ettt 312

A6 3D Web Map CLENL ..o 312
APPENDIXB 3DCITYDB @ TU MUNCHEN...........cceceeerrreeeeeeeeeeeeeesesseeneas 313
B.1 Interactive Cloud-based 3D Webclientc.ccocuevivciniiineiiiiieeieee. 313

B.2 Research Projects in which 3DCityDB is being usedccccccoceveevennn.ne. 314

B.3 Current and future work on 3DCItyDBccccccovviiiieiiieiieeieceee e, 314
APPENDIXC 3DCITYDB @ VIRTUALCITYSYSTEMS.........cccooiiiirrrreeene 315
C.1 VIirtualcityDATABASEcc.ooooiiiiiieieeeeeeee e 315

C.2 virtualcitySUITE — The 3D City Platform............cccccooveevcieiiiiiiiaiieieeeeen, 316
APPENDIX D 3DCITYDB @ M.O.S.S. ... 317
D.1 novaFACTORY at @ QLANCEcccoeveieiieiiiiieeeeeeee e 317

D.2 novaFACTORY 3D GDIccccooiiiiiiiiiiiiiiiiieeeeeee e 318

3D Geodatabase for CityGML 2018 11

Disclaimer

The 3D City Database (3DCityDB) version 4.0.0 has been developed in collaboration of the
Chair of Geoinformatics, Technische Universitit Miinchen (TUMGI), virtualcitySYSTEMS
GmbH, and M.O.S.S. Computer Grafik System GmbH. 3DCityDB is free and Open Software
licensed under the Apache License, Version 2.0. See the file LICENSE file shipped together
with the software for more details. You may obtain a copy of the license at
http://www.apache.org/licenses/LICENSE-2.0.

Please note that releases of the software before version 3.3.0 continue to be licensed under
GNU LGPL 3.0. To request a previous release of the 3D City Database under Apache License
2.0 create a GitHub issue at https://github.com/3dcitydb.

THE SOFTWARE IS PROVIDED BY TUMGI "AS IS" AND "WITH ALL FAULTS."
TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE QUALITY, SAFETY OR SUITABILITY OF THE SOFTWARE,
EITHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH,
ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR
MATERIALS CONCERNING THE SOFTWARE THAT IS CONTAINED ON AND
WITHIN ANY OF THE WEBSITES OWNED AND OPERATED BY TUMGI.

IN NO EVENT WILL TUMGI BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND
EVEN IF TUMGI HAVE BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

http://www.apache.org/licenses/LICENSE-2.0
https://github.com/3dcitydb

12

3D Geodatabase for CityGML 2018

3D Geodatabase for CityGML 2018 13

1 Introduction

Virtual 3D city and landscape models are provided for an increasing number of cities, regions,
states, and even countries. They are created and maintained by public authorities like national
and state mapping agencies as well as by cadastre institutions and private companies. The 3D
topography of urban and rural areas is essential for both visual exploration and a range of
different analyses in, for example, the urban planning, environmental, energy, transportation,
and facility management sectors.

3D city models are nowadays used as an integrative information backbone representing the
relevant urban entities along with their spatial, semantic, and visual properties. They are often
created and maintained with full coverage of entire cities and even countries, i.e. all real
world objects of a specific type like buildings, roads, trees, water bodies, and the terrain are
explicitly represented. In most cases the 3D city model objects have well-defined identifiers,
which are kept stable during the lifetime of the real world objects and their virtual
counterparts. Such complete 3D models are a good basis to organize different types of data
and sensors within Smart City projects as they build a stable platform for information linking
and enrichment.

In order to establish a common understanding and interpretation of the urban objects and to
achieve interoperable access and exchange of complete 3D models including the geometric,
topologic, visual, and semantic data, the Open Geospatial Consortium (OGC) has issued the
CityGML standard [Kolbe 2009]. CityGML defines a feature catalogue and data model for
the most relevant 3D topographic elements like buildings, bridges, tunnels, roads, railways,
vegetation, water bodies, etc. The data model is mapped to an XML-based exchange format
using OGC’s Geography Markup Language (GML).

The 3D City Database (3DCityDB) is a free Open Source package consisting of a database
schema and a set of software tools to import, manage, analyse, visualize, and export virtual
3D city models according to the CityGML standard. The database schema results from a
mapping of the object oriented data model of CityGML 2.0 to the relational structure of a
spatially-enhanced relational database management system (SRDBMS). The 3DCityDB
supports the commercial SRDBMS Oracle (with ‘Spatial’ or ‘Locator’ license options) and
the Open Source SRDBMS PostGIS (which is an extension to the free RDBMS PostgreSQL).
3DCityDB makes use of the specific representation and processing capabilities of the
SRDBMS regarding the spatial data elements. It can handle also very large models in multiple
levels of details consisting of millions of 3D objects with hundreds of millions of geometries
and texture images.

3DCityDB is in use in real life production systems in many places around the world and is
also being used in a number of research projects. For example, the cities of Berlin, Potsdam,
Munich, Frankfurt, Zurich, Rotterdam, Singapore all keep and manage their virtual 3D city
models within an instance of 3DCityDB. The companies virtualcitySYSTEMS (VCS) and
M.O.S.S., who are also partners in development, use 3DCityDB at the core of their
commercial products and services to create, maintain, visualize, transform, and export virtual

14 3D Geodatabase for CityGML 2018

3D city models (see Appendix B, Appendix C, and Appendix D for examples how and where
TUM, virtualcitySYSTEMS, and M.O.S.S. employ 3DCityDB in their projects). Furthermore,
the state mapping agencies of all 16 states in Germany store and manage the state-wide
collected 3D building models in CityGML LODI1 and LOD2 using 3DCityDB. In 2012 the
previous version of 3DCityDB and the developer team received the Oracle Spatial Excellence
Award, issued by Oracle USA.

Since 3DCityDB is based on CityGML, interoperable data access from user applications to
the database can be achieved in at least two ways:

1) by using the included high-performance CityGML Import/Export tool or the included
basic Web Feature Service 2.0 in order to exchange the data in CityGML format
(Version 2.0 or 1.0), and

2) by directly accessing the database tables whose relational structures are fully
explained in detail within this document. It is easy to enrich a 3D city model by
adding information to the database tables in some user application (using e.g. the
database APIs of programming language like C++, Java, Python, or of ETL tools like
the Feature Manipulation Engine from Safe Software). The enriched dataset then can
be exchanged or archived by exporting the city model to CityGML without
information loss. Analogously, 3DCityDB can be used to import a CityGML dataset
and then access and work with the city model by directly accessing the database tables
from some application programs or ETL software.

The Import/Export tool also provides functionalities for the direct export of 3D visualization
models in KML, COLLADA, and gITF formats. A tiling strategy is supported which allows
to visualize even very large 3D city and landscape models in geoinformation systems (GIS) or
digital virtual globes like Google Earth or CesiumJS Virtual Globe. The Import/Export tool
comes with an API to create further importers, exporters, and database administration tools.
One export plugin coming with the software installer package is the so-called ‘Spreadsheet
Generator Plugin’ (SPSHG) which allows to export thematic data of 3D objects into tables in
CSV and Microsoft Excel format that can be easily uploaded to and published as online
spreadsheets, for instance, within the Google Cloud. Starting from release 3.3.0, the
3DCityDB software package comes with the CesiumJS-based 3D viewer called “3DCityDB-
Web-Map-Client” which can link the 3D visualization models with online spreadsheets and
facilitates interactive visualization and exploration of 3D city models over the Internet within
web browsers on desktop and mobile computers. The most significant new functionality in
release 4.0.0 is the support of CityGML Application Domain Extensions (ADEs). ADEs
extend the CityGML datamodel by domain specific object types, attributes, and relations.

This document describes the design and the components of the 3D City Database as well as
their usage for the new major release 4.0.0 which has been developed and implemented by the
three partners in development, namely the Chair of Geoinformatics at Technische Universitdt
Miinchen, virtualcitySYSTEMS, and M.O.S.S. The development is continuing the previous
work carried out at the Institute for Geodesy und Geoinformation Science (IGG) of the Berlin
University of Technology and the Institute for Cartography and Geoinformation (IKG) of the
University of Bonn.

3D Geodatabase for CityGML 2018 15

This document has been completely reworked, integrated, extended, and edited from the
previous 3DCityDB documentations (version 3.3.0, version 2.0.1, and the documentation
addendum on 3DCityDB version 2.1.0 and the Importer/Exporter tool version 1.6.0). Some
figures and texts are cited from the OpenGIS City Geography Markup Language (CityGML)
Encoding Standard, Version 2.0.0 [Groger et al. 2012].

1.1 Main features of 3DCityDB

Many (but not all) of the features referring to object modelling and representation are implied
by following the CityGML standard 2.0.0 issued by the Open Geospatial Consortium.

CityGML 2.0.0 and 1.0.0 compliant database: The implementation defines the
classes and relations for the most relevant topographic objects in cities and regional
models with respect to their geometrical, topological, semantical, and appearance
properties. Included are generalization hierarchies between thematic classes,
aggregations, relations between objects, and spatial properties. These thematic
information go beyond graphic exchange formats and allow to employ virtual 3D city
models for sophisticated analysis tasks in different application domains.

Implementation on the basis of a spatially-enhanced relational database manage-
ment system (Oracle 10G R2 or higher with Spatial/Locator option; PostgreSQL
9.1 or higher with PostGIS extension 2.0 or higher): For the representation of all
vector and grid geometry the built-in data types provided by the SRDBMS are used
exclusively. This way, special solutions are avoided and different geoinformation
systems, CAD/BIM systems, and ETL software systems can directly access (read and
write) the geometry objects stored in the SRDBMS.

Support for CityGML Application Domain Extensions (ADEs): Semantic 3D city
models are employed for many different applications from diverse domains like
energetic, environmental, driving, and traffic simulations, as-built building infor-
mation modeling (as-built BIM), asset management, and urban information fusion. In
order to store and exchange application specific data aligned and integrated with the
3D city objects, the CityGML datamodel can be extended by new feature types,
attributes, and relations using the CityGML ADE mechanism. ADEs are specified as
(partial) GML application schemas using the modeling language XML Schema.
Starting from release 4.0.0 the 3DCityDB database schema can be dynamically
extended by arbitrary ADEs like the Energy ADE, UtilityNetwork ADE, Dynamizer
ADE, or national CityGML extensions like IMGeo3D (from The Netherlands). Since
ADEs can define an arbitrary number of new elements with all types and numbers of
spatial properties, a transformation method has been developed to automatically derive
the relational database schemas for arbitrary ADEs from the ADE XML schema files.
Since we intended to follow similar rules in the mapping of the object-oriented ADE
models onto relational models as we used for the (manual) mapping of the CityGML
datamodel onto the 3DCityDB core schema, the Chair of Geoinformatics at TUM
developed a new transformation method based on graph transformation systems. This

16

3D Geodatabase for CityGML 2018

method is described in detail in [Yao & Kolbe 2017] and is implemented within the
“ADE Manager” plugin for the Importer/Exporter software tool. It performs a
sophisticated analysis of the XML schema files of an ADE, the automatic derivation
of additional relational table structures, and the registration of the ADE within the
3DCityDB. Furthermore, SQL scripts are generated for each ADE for e.g. the deletion
of ADE objects and attributes from the database. Please note that in order to support
also the import and export of CityGML datasets with ADE contents, a Java library for
the specific ADE has to be implemented. This library has to perform the handling of
the CityGML ADE XML elements and the reading from and writing into the
respective ADE database tables using JDBC and SQL. An example how to develop
such a Java library is given for a Test ADE in the 3DCityDB github repository'.

Tool for importing and exporting CityGML data: The included Importer/Exporter
software tool allows for high performance importing and exporting of CityGML
datasets according to CityGML versions 2.0 and 1.0. The tool allows processing of
very large datasets (>> 4 GB), even if they include XLinks between CityGML features
or XLinks to 3D GML geometry objects. The multi-threaded programming exploits
multiprocessor systems or multikernel CPUs to speed up the processing of complex
XML-structures, resulting in high performance database access. Objects can be
filtered during import or export according to spatial regions (bounding box), their
object IDs, feature types, names, and levels of detail. Bounding boxes can be
interactively selected using a map window based on OpenStreetMap (OSM). A tiling
strategy is implemented in order to support the export of very large datasets. In case of
a very high number of texture images they can be automatically distributed in a
configurable number of subdirectories in order to avoid large directories with millions
of files which can render a Microsoft Windows operating systems unresponsive. The
Importer can also validate CityGML files and can be configured to only import valid
features. It considers CityGML ADE contents, if the ADEs have been registered in the
database and specific Java libraries for reading/writing the ADE contents from/into the
ADE database tables is provided (see above). The Importer/Exporter tool can be run in
interactive or batch mode.

Tool for exporting visualization models in KML, COLLADA, and gITF formats:
This tool exports city models from the 3D city database in KML, COLLADA, and
gITF formats which can directly be viewed and interactively explored in
geoinformation systems (GIS) or digital virtual globes like Google Earth or Cesium
WebGL Virtual Globe. A tiling strategy is supported where only tiles in the vicinity of
the viewer’s location are being loaded facilitating the visualization of even very large
3D city and landscape models. Information balloons for all objects can be configured
by the user. The exported models are especially suited to be visualized using the
3DCityDB-Web-Map-Client (see below), an Open Source 3D web viewer that is
based on the CesiumJS Webglobe framework with many functional extensions.

! https://github.com/3dcitydb/extension-test-ade

https://github.com/3dcitydb/extension-test-ade

3D Geodatabase for CityGML 2018 17

Tool for exporting data to spreadsheets: The ‘Spreadsheet Generator’ (SPSHG)
allows exporting thematic data of 3D objects into tables in CSV and Microsoft Excel
format which can be uploaded to a Google Spreadsheet within the Google Document
Cloud. For every selected geoobject one row is being exported where the first column
always contains the GMLID value of the respective object. The further columns can
be selected by the user. This tool can be used to export attribute data from e.g.
buildings like the class, function, usage, roof type, address, and further generic
attributes that may contain information like the building energy demand, potential
solar energy gain, noise level on the facades etc. The spreadsheet rows can be linked
to the visualization model generated by the KML/COLLADA/gITF Exporter. This is
illustrated in Appendix B.

Tool for 3D visualization and interactive exploration of 3D models on the web:
The ‘3DCityDB-Web-Map-Client’ is a WebGL-based 3D web viewer which extends
the Cesium Virtual Globe to support efficient displaying, caching, prefetching,
dynamic loading and unloading of arbitrarily large pre-styled 3D visualization models
in the form of tiled KML/gITF datasets generated by the KML/COLLADA/gITF
Exporter. It provides an intuitive user interface to facilitate rich interaction with 3D
visualization models by means of the enhanced functionalities like highlighting the
objects of interests on mouseover and mouseclick as well as hiding, showing, and
shadowing them. Moreover, the 3DCityDB-Web-Map-Client is able to link the 3D
visualization model with an online spreadsheet (Google Fusion Table) in the Google
Cloud and allows viewing and querying the thematic data of every city object
according to its GMLID. For details see also [Chaturvedi et al. 2015, Yao et al. 2016].

Web Feature Service (WFS) 2.0: The 3DCityDB comes with an OGC compliant
implementation of a basic WFS 2.0 allowing web-based access to the 3D city objects
stored in the database. WFS clients can directly connect to this interface and retrieve
3D content for a wide variety of purposes. The implementation currently satisfies the
Simple WFS conformance class. The WFS considers CityGML ADE contents, if the
ADEs have been registered in the database and specific Java libraries for reading/
writing the ADE contents from/into the ADE database tables is provided (see above).
An implementation of a full, transactional WFS is commercially available from one of
the development partners, see Appendix C.

Support of different kinds of multi-representations: Levels of detail, different
appearances, (and with Oracle RDBMS only) planning versions and history:
Every geoobject as well as the DTM can be represented in five different resolution or
fidelity steps (Levels of Detail, LOD). With increasing LOD, objects do not only
obtain a more precise and finer geometry, but do also gain a thematic refinement.

Different appearance data may be stored for each city object. Appearance relates to
any surface-based theme, e.g. infrared radiation or noise pollution, not just visual
properties. Consequently, data provided by appearances can be used as input for both
presentation and analysis of virtual 3D city models. The database supports feature

18

3D Geodatabase for CityGML 2018

appearances for an arbitrary number of themes per city model. Each LOD of a feature
can have individual appearances. Appearances can represent — among others — textures
and georeferenced textures. All texture images can be stored in the database.

The version and history management employs Oracle’s Workspace Manager and,
hence, is only available for 3DCityDB instances running on an Oracle RDBMS. It is
largely transparent to application programs that work with the database. Procedures
saved within the database (Stored Procedures) are provided, which allow for the
management of planning alternatives and versions via application programs.

Complex digital terrain models: DTMs may be represented in four different ways in
CityGML and therefore also in the 3D city database: regular grids, triangular irregular
networks (TINs), 3D mass points and 3D break lines. For every level of detail, a
complex DTM consisting of any number of DTM components and DTM types can be
defined. Besides, it is possible to combine certain kinds of DTM representations for
the same geographic area with each other (e.g. mass points and break lines or grids
and break lines). In Oracle Spatial (but not Locator) Grid-based DTMs may be of
arbitrary size and are composed from separate tiles to a single overall grid using the
Oracle GeoRaster functionality. Please note that the Import/Export tool provides
functions to read and write TIN, mass point, and break line DTM components, but not
for raster based DTMs. GeoRaster data would have to be imported and exported using
other tools from e.g. Oracle, ESRI, or Safe Software.

Complex city object modelling: The representation of city objects in the 3D city
database ranges from coarse models to geometrically and semantically fine grained
structures. The underlying data model is a complete realization of the CityGML data
model for the levels of detail (LOD) 0 to 4. For example, buildings can be represented
by simple, monolithic objects or can consist of an aggregation of building parts.
Extensions of buildings, like balconies and stairs, can be classified thematically and
provided with attributes just as single surfaces can be. LOD4 completes a LOD3
model by adding interior structures for 3D objects. For example, LOD4 buildings are
composed of rooms, interior doors, stairs, and furniture. This allows among other
things to select the floor space of a building, so that it can later be used e.g. to derive
SmartBuildings or to form 3D solids by extrusion [Doéllner et al. 2005]. Buildings can
be assigned addresses that are also stored in the 3D city database. Their implemen-
tation refers to the OASIS xAL Standard, which maps the address formats of the
different countries into a unified XML schema. In order to model whole complexes of
buildings, single buildings can be aggregated to form special building groups. The
same complex modelling applies to the other CityGML feature types like bridges,
tunnels, transportation and vegetation objects, and water bodies.

Representation of generic and prototypical 3D objects: Generic objects enable the
storage of 3D geoobjects that are not explicitly modelled in CityGML yet, for example
dams or city walls, or that are available in a proprietary file format only. This way,
files from other software systems like architecture or computer graphics programs can

3D Geodatabase for CityGML 2018 19

be imported directly into the database (without interpretation). However, application
systems that would like to use these data must be able to interpret the corresponding
file formats after retrieving them back from the 3D geodatabase.

Prototypical objects are used for memory-efficient management of objects that occur
frequently in the city model and that do not differ with respect to geometry and
appearance. Examples are elements of street furniture like lanterns, road signs or
benches as well as vegetation objects like shrubs, certain tree types etc. Every instance
of a prototypical object is represented by a reference to the prototype, a base point and
a transformation matrix for scaling, rotating and translating the prototype.

The geometries (and appearances like textures, colors etc.) of generic objects as well
as prototypes can be stored either using the geometry datatype of the spatial database
management system (Oracle Spatial/Locator or PostGIS) or in proprietary file formats.
In the latter case a single file may be saved for every object, but the file type (MIME
type), the coordinate transformation matrix that is needed to integrate the object into
the world coordinate reference system (CRS) and the target CRS have to be specified.

o Extendable object attribution: All objects in the 3D geodatabase can be augmented
with an arbitrary number of additional generic attributes. This way, it is possible to
add further thematic information as well as further spatial properties to the objects at
any time. In combination with the concept of generic 3D objects this provides a highly
flexible storage option for object types which are not explicitly defined in the
CityGML standard. Every generic attribute consists of a triple of attribute name, data
type, and value. Supported data types are: string; integer and floating-point numbers;
date; time; binary object (BLOB, e.g. for storing a file); geometry object according to
the specific geometry data type of Oracle or PostGIS respectively; simple, composite,
or aggregate 3D solids or surfaces. Please note that generic attributes of type BLOB or
geometry are not allowed as generic attributes in CityGML (and will, thus, not be
exported by the CityGML exporter). However, it may be useful to store binary data
associated with the individual city objects, for example, to store derived 3D computer
graphics representations.

e Free, also recursive grouping of geoobjects: Geoobjects can be grouped arbitrarily.
The aggregates can be named and may also be provided with an arbitrary number of
generic attributes (see above). Object groups may also contain object groups, which
leads to nested aggregations of arbitrary depth. In addition, for every object of an
aggregation, its role in the group can be specified explicitly (qualified association).

o External references for all geoobjects: All geoobjects can be provided with an
arbitrary number of references to corresponding objects in external data sources (i.e.
hyperlinks / linked data). For example, in case of building objects this allows to store
e.g. the IDs of the corresponding objects in official cadasters, digital landscape models
(DLM), or Building Information Models (BIM). Each reference consists of an URI to
the external data store or database and the corresponding object ID or URI within that
external data store or database.

20 3D Geodatabase for CityGML 2018

e Flexible 3D geometries: The geometry of most 3D objects can be represented through
the combination of solids and surfaces as well as any - also recursive - aggregation of
these elements. Each surface may has attached different textures and colors on both its
front and back face. It may also comprise information on transparency. Additional
geometry types (any geometry type supported by the spatial database management
system Oracle Spatial/Locator or PostGIS) can be added to the geoobjects by using
generic attributes.

e Open Source and Platform Independence: The entire software is freely accessible
to the interested public. The 3DCityDB is licensed under the Apache License, Version
2.0, which allows including 3DCityDB in commercial systems. You may obtain a
copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0. Both
the Importer/Exporter tool and the Web Feature Service are implemented in Java and
can be run on different platforms and operating systems.

e Docker support: We now provide Docker images for 1) a complete 3DCityDB
installation pre-installed within a PostGIS SRDBMS, 2) a webserver with an installed
3DCityDB-Web-Map-Client, 3) a 3DCityDB WFS. We also provide a Docker-
compose script to launch all three Docker containers in a linked way with just a single
command. Details are given in Section 9 and in the respective github repositories.
Docker is a runtime environment for virtualization. Docker encapsulates individual
software applications in so-called containers, which are — in contrast to virtual
machines — light-weight and can be deployed, started and stopped very quickly and
easily. Using our Docker images a 3DCityDB can be installed by a single command.

1.2 System and design decisions

The 3D City Database is implemented as a relational database schema using the spatial
datatypes provided by a spatially-enhanced relational database management system
(SRDBMS). Above, external software applications and database stored procedures are
provided working on this database schema. Since only Oracle with the Spatial or Locator
licensing option (10G R2 or higher) and PostgreSQL (9.3 or higher) with PostGIS extension
(2.0 or higher) offer comprehensive support for 3D spatial data, the 3D City Database schema
is being provided for these two systems only.

In addition to the general advantages arising from the usage of a widely used relational
database management system (RDBMS), both Oracle Spatial/Locator and PostgreSQL/
PostGIS offer some important performance characteristics that allow an efficient implemen-
tation of the required functionalities:

e Both RDBMS support spatial data types with coordinates ranging from 2D to 4D.
Spatial indexes and filters can be 2D or 3D allowing for efficient spatial selections in
very large city models. Furthermore, the spatial data types are supported by a number

2 https://github.com/tum-gis

https://github.com/tum-gis

3D Geodatabase for CityGML 2018 21

of commercial and Open Source GIS that provide a database connection as for
example ESRI’s ArcGIS/ArcSDE or Safe Software’s Feature Manipulation Engine
(FME). This enables such systems to directly access the data stored in the 3D
geodatabase.

e Rules can be implemented using stored procedures and trigger mechanisms which
propagate updates of objects to likewise affected objects in the database (transparent
for the user).

The data model of the 3D City Database is based on the CityGML 2.0 standard. The object-
oriented data model of CityGML has been mapped to a purely relational data model with the
exception that geometry objects are mapped to the spatial datatypes provided by the SDBMS.
In order to achieve high performance for data manipulations and queries the mapping was
done manually with a number of optimizations. A few simplifying assumptions where made
regarding the usage of the CityGML concepts in the real world helping to increase
performance. These are documented in chapter 2.1.

Surface-based geometries like Polygons, TINs, MultiSurfaces as well as Solids are stored in a
special way: they are decomposed into their primitive surfaces and each surface is stored as an
individual tuple in one big surface table. The reason for this is that each surface can be
assigned multiple appearances (e.g. textures) in CityGML and, thus, each appearance must be
explicitly linkable to the corresponding surface. For Solids also the solid geometry objects are
stored in addition to their decomposed boundary surfaces allowing to apply spatial operations
on them like the computation of the volume.

The provided software tools like the Importer/Exporter application are implemented in the
Java language in order to be platform independent. The tools have been confirmed to run
under Microsoft Windows, Linux, and Apple Mac OS X. High performance is achieved by
exploiting multi-threading on multiprocessor or multi-core CPU systems.

1.3 List of changes between software versions

1.3.1 Notable changes between 4.0.0 and 3.3.0

New features and functionalities:

e Management and storage of arbitrary CityGML ADEs with the 3DCityDB, the
Importer/Exporter ADE Manager Plugin and the 3DCityDB WFS

e New 3DCityDB Docker images to support continuous integration workflows

e New metadata tables ADE, SCHEMA, SCHEMA REFERENCING and
SCHEMA TO OBJECTCLASS for registering CityGML ADEs

e New prefilled metadata table AGGREGATION INFO that supports the automatic
generation of DELETE and ENVELOPE scripts

e New function to create entries in USER_SDO GEOM METADATA view (Oracle)

22

3D Geodatabase for CityGML 2018

Function objectclass id to table name now has a counterpart:
table name to objectclass ids returning an array of objectclass ids
(CITYDB OBJCLASS package in Oracle, part of a data schema in PostgreSQL)

New database procedures to enable/disable foreign key constraints to speed up bulk
write operations (CITYDB CONSTRAINT package in Oracle, part of the
citydb pkg schema in PostgreSQL)

New SQL script to create additional data schemas in one database (PostgreSQL)

New shell and SQL scripts to grant read-only or full read-write access to another
schema.

Importer/Exporter can connect to different database schemas with the same user
Enabling XSL transformations on CityGML imports and exports as well as WFS
responses

New database operation panel to change the spatial reference system used in the
database (incl. optional coordinate transformation)

New LoD filter for CityGML exports

3DCityDB WEFS allows for exporting into the CityJSON format

Improved and updated features and functionalities:

Moved interactive prompts from SQL to batch/shell scripts for better setup automation
Added OBJECTCLASS ID column to all feature tables to distinguish objects from
CityGML ADEs. Also extended OBJECTCLASS table by more feature-specific
details and inserted new entries for feature properties such as geometry, generic
attributes etc.

Improved performance on stored procedures by reducing amount of dynamic SQL.
Therefore, schema name parameter has been removed from DELETE and ENVELOPE
scripts. Under PostgreSQL these scripts (as well as the INDEX TABLE) are now part
of a data schema such as citydb.

DELETE and ENVELOPE are now generated automatically in order to deal with
schema changes introduced by ADEs. Therefore, the function prefix has been
shortened to del and env_ not hit the character limit under Oracle,

The CITYDB DELETE BY LINEAGE package has been removed. The only
function left is del cityobjects by lineage which is now part of the
DELETE package

Database migration scripts for version 2.1.0 or version 3.3.0 to version 4.0.0

Switching from Ant to Gradle as the new build system for the Importer/Exporter tools
Allow import of CityGML files with flat hierarchies between city objects

Added support for importing gml:MultiGeometry objects containing only polygons
Added support for exporting to gITF v2.0

3DCityDB WFS now supports CORS and provides a KVP over HTTP GET endpoint
for every operation simplifying the integration with GIS and ETL software such as
FME

3D Geodatabase for CityGML 2018 23

1.4 Development history

The development of the 3D City Database was always closely related to the development of
the CityGML standard [Kolbe & Groger 2003]. It was started back in 2003 by Dr. Kolbe and
Prof. Pliimer at the Institute for Cartography and Geoinformation at University of Bonn. In
the period from November 2003 to December 2005 the official virtual 3D city model of
Berlin, commissioned by The Berlin Senate and Berlin Partner GmbH, was developed within
a pilot project funded by the European Union [Pliimer et al. 2005, Berlin 3D]. Since then, the
model has been playing a central role in the three-dimensional spatial data infrastructure of
Berlin and opened up a multitude of applications for the public and private sector alike. As an
example the virtual city model is successfully used for presentation of the business location,
its urban development combined with application related information to politicians, investors,
and the public in order to support civic participation, provide access to decision-making
content, assist in policy-formulation, and control implementation processes [Ddllner et al.
2006]. 3DCityDB was key in demonstrating the real world usage of CityGML to the Open
Geospatial Consortium on the one hand, and the practical usability and versatility of
CityGML to the city of Berlin on the other hand. This first development phase was carried out
by University of Bonn in collaboration with the company /at/lon GmbH. Oracle Spatial was
the only supported SDBMS in that phase and the next (3DCityDB Versions 0.2 up to 1.3).

Within the framework Europdische Fonds fiir regionale Entwicklung (EFRE 1I) the project
Geodatenmanagement in der Berliner Verwaltung — Amtliches 3D-Stadtmodell fiir Berlin
allowed for upgrading the official 3D city model based on the former CityGML specification
draft 0.4.0 in the year 2007. The developments were carried out by the Institute for Geodesy
und Geoinformation Science (IGG) of the Berlin University of Technology (where Kolbe
became full professor for Geoinformation Science in 2006) on behalf of the Berliner
Senatsverwaltung fiir Wirtschaft, Arbeit und Frauen and the Berlin Partner GmbH (former
Wirtschaftsforderung Berlin International). The relational database model (3DCityDB
versions 1.4 up to 1.8) was implemented and evaluated in cooperation with 3DGeo GmbH
(later bought by Autodesk GmbH) in Potsdam. A special database interface for LandXPlorer
was provided by 3DGeo / Autodesk. Later on, a first version of the Java based CityGML
Importer/Exporter was developed [Stadler et al. 2009].

In August 2008, CityGML 1.0.0 became an adopted standard of the Open Geospatial
Consortium (OGC). In the follow-up project Digitaler Gestaltplan Potsdam starting in 2010
the 3DCityDB version 2 was developed which brought support for all CityGML 1.0.0 feature
types. The KML/COLLADA exporter was added as well as a ‘Matching’ plugin. This project
was carried out by /GG of TU Berlin on behalf of and in collaboration with the company
virtualcitySYSTEMS (VCS) in Berlin. In 2012 the developer team at TU Berlin received the
Oracle Spatial Excellence Award for Education and Research from Oracle USA for our work
on 3DCityDB. Also in 2012 3DCityDB was ported to PostgreSQL/PostGIS by Felix Kunde, a
master student from the University of Potsdam, who did his master thesis in collaboration
with /GG [Kunde 2013].

In August 2012, CityGML 2.0.0 became an adopted standard of the Open Geospatial Consor-
tium (OGC). In September 2012, Prof. Kolbe moved from IGG, TU Berlin to the Chair of

24 3D Geodatabase for CityGML 2018

Geoinformatics at Technische Universitit Miinchen (TUM). The companies virtualcity-
SYSTEMS GmbH in Berlin and M.O.S.S. Computer Grafik Systeme GmbH in Taufkirchen
(near Munich) have also been using the 3D City Database in their commercial projects for a
number of years. In this context, the Chair of Geoinformatics at TUM and the companies
virtualcitySYSTEMS and M.O.S.S. signed an official collaboration agreement on the joint
further development of 3DCityDB and its tools. The work on the new major release version
3.0.0 began in 2013 when Dr. Nagel finished his PhD and joined the company VCS. In
Version 3.3.0 the new 3D web client was being added. The webclient was developed by
Zhihang Yao with contributions from Kanishk Chaturvedi and Son Nguyen. In 2015 Zhihang
Yao and Kanishk Chaturvedi were awarded the first price in the 'Best Students Contribution'
of the 'Web3D city modeling competition' under the annual ACM SIGGRAPH Web3D
Conference for the 3DCityDB-Web-Map-Client.

The work on version 4.0.0 — especially the support of CityGML ADEs — began in 2015 in the
course of the PhD work of Zhihang Yao. One part of his PhD thesis is focusing on the model
transformation of CityGML ADEs onto spatial relational databases using pattern matching
and graph transformation rules. Support of CityGML ADEs in the Importer/Exporter required
a substantial rewriting of the citygml4; Java library, the Importer/Exporter and WFS source
code performed by Dr. Nagel starting from 2016. Felix Kunde worked, among others, on
performance improvements and restructuring of the PL/(pg)SQL scripts. Son Nguyen added
support for mobile devices in the 3DCityDB-Web-Map-Client in 2017. Docker support was
added by Bruno Willenborg in 2018. Starting from 2017 all partners worked on updating
diverse functionalities, scripts, documentation, and on testing.

1.5 Acknowledgements

The 3D City Database project team is grateful and appreciative for the financial assistance
and support we received from partners that contributed to the development of version 4.0 and
the work on the ADE support.

Government Technology Agency of Singapore

The Government Technology Agency of Singapore (GovTech Singapore) has been
developing a 3D city standard for Singapore based on CityGML, to establish a common 3D
representation of the city-state. GovTech wanted to extend the representation to include other
city features through the ADE approach, and had worked with virtualcitySYSTEMS GmbH to
start the development of the ADE support on 3DCityDB. The intent is to open source the
3DCityDB ADE support to the international community, so as to encourage wider adoption
and implementation of the CityGML standard and ADE:s.

CADFEM International GmbH

Founded in 1985, CADFEM is one of the pioneers of numerical simulation based on the
Finite Element Method and one of the largest European suppliers of Computer-Aided
Engineering. Through the Leonard Obermeyer Center of the Technical University Munich,
CADFEM supports the research on digital methods for the design, creation and maintenance
of the built environment and the work on the 3D City Database. Bridging the gap between
simulation systems and 3D GIS / BIM is a key requirement for enabling multi-physics Urban

3D Geodatabase for CityGML 2018 25

Simulations and for building Digital Twins of the urban space. The CityGML ADE
mechanism supports this in two ways: 1) city features can be enriched with data that is
relevant for simulations, and 2) simulation results can be brought back into the city model,
turning it into a dynamic knowledge base. CADFEM is supporting the 3D City Database
project to leverage the adoption and usage of CityGML ADEs in the field of Urban
Simulations.

Climate-KIC of the EIT

Climate-KIC is a so-called ‘Knowledge and Innovation Community’ about Climate Change
and Mitigation. It is one of three Knowledge and Innovation Communities (KICs) created in
2010 by the European Institute of Innovation and Technology (EIT). The EIT is an EU body
whose mission is to create sustainable growth. Most 3DCityDB developments at TU Munich
were done in the context of the projects Energy Atlas Berlin, Modeling City Systems (MCS),
Smart Sustainable Districts (SSD), and Smart District Data Infrastructure (SDDI), all
financially supported by Climate-KIC.

26

3D Geodatabase for CityGML 2018

3D Geodatabase for CityGML 2018 27

2 Data Modelling and Database Design

In this section the slightly simplified data model with respect to CityGML is described at the
conceptual level using UML class diagrams. These diagrams form the basis for the
implementation-dependent realization of the model with a relational database system which is
presented in section 2.3. However, UML diagrams may also form the basis for other
implementations e.g. for the definition of an exchange format based on XML or GML. The
UML diagrams of the 3D city model are depicted in section 2.2.

2.1 Simplification compared to CityGML 2.0.0

CityGML is a common information model for 3D wurban objects and provides a
comprehensive and extensible representation of the objects. It is explained in detail in the
CityGML specification [Groger et al. 2008, Groger et al. 2012] and [Kolbe 2009]. An analysis
of the previous versions of the 3D City Database indicated that for the data collected and
processed a less complex schema is sufficient. Using a simplified schema usually allows
improving system performance. Therefore, the first task was related to database design
aspects with respect to adjusting the comprehensive CityGML features. As result a simplified
database schema was generated, allowing an optimized workflow and guaranteeing efficient
processing time. The related UML-diagrams were discussed and coordinated with the project
partners and translated into the relational schema. Based on this work the SQL scripts for
setting up the Oracle and PostgreSQL database schema were generated. Please note, that all
test CityGML datasets (versions 1.0.0 and 2.0.0) from the CityGML homepage (and others)
can be stored and managed without restrictions with this simplified database schema.

2.1.1 Multiplicities, cardinalities and recursions
Simplifications with respect to the CityGML specification were made as follows:

e Multiplicities of attributes
Attributes with a variable amount of occurrences (*) are substituted by a data type
enabling the storage of arbitrary values (e.g. data type String with a predefined
separator) or by an array with a predefined amount of elements representing the
number of objects that participate in the association. This means that object attributes
can be stored in a single column.

e Cardinalities and types of relationships
n:m relations require an additional table in the database. This table consists of the
primary keys of both elements’ tables which form a composite primary key. If the
relation can be restricted to a 1:n or n:1 relationship the additional table can be
avoided. Therefore, all n:m relations in CityGML were checked for a more restrictive
definition. This results in simplified cardinalities and relations.

e Simplified treatment of recursions
Some recursive relations are used in the CityGML data model. Recursive database
queries may cause high cost, especially if the amount of recursive steps is unknown. In
order to guarantee good performance, implementation of recursive associations
receive two additional columns which contain the ID of the parent and of the root

28 3D Geodatabase for CityGML 2018

element. For example, if all building parts related to a specific building are queried,
only those tuples containing the ID of the building as root element have to be selected.
Thus, typical queries concerning object geometry remain high-performance.

2.1.2 Data type adaptation

Data types specified in CityGML were substituted by data types which allow an effective
representation in the database. Strings for example are used to represent code types and
number vectors; GML geometry types were changed to the database geometry data type.
Matrices are stored each one as String data type, with values listed in a row-major sequence
separated by spaces.

2.1.3 Project specific classes and class attributes

The 3D city database may contain some classes for representation of project specific
metadata, version control and attributes for representation of additional project specific
information. Since this information is represented in the CityGML specification differently or
even not at all, appropriate classes and class attributes are added or respectively adopted.

2.1.4 Simplified design of GML geometry classes

Spatial properties of features are represented by objects of GML3’s geometry model based on
the ISO 19107 standard ‘Spatial Schema’ [Herring 2001], representing 3D geometry
according to the well-known Boundary Representation (B-Rep, cf. [Foley et al. 1995]).
Actually only a subset of the GML3 geometry package is used. Moreover, for 2D and 3D
surface-based geometry types a simpler but equally powerful model is used: These geometries
are stored as polygons, which are aggregated to MultiSurfaces, CompositeSurfaces,
TriangulatedSurfaces, Solids, MultiSolids, as well as CompositeSolids.

2.2 UML class diagram

The following pages cite several parts of the CityGML specification [Groger et al., 2012]
which are necessary for a better understanding. Main focus is put on explaining the
customization and the differences to the CityGML standard.

Design decisions in the model are explicitly visualised within the UML diagrams. Following
models are presented in detail:

e Geometric-topological model
e Appearance model
e Thematic Model

o CityGML Core
Building model
Bridge model
City furniture
Digital Terrain Model
Generic objects and attributes
Land use
Transportation objects

0 O O O 0O O O

3D Geodatabase for CityGML 2018 29

o Tunnel model
o Water bodies
o Vegetation objects

For intuitive understanding, classes which will be merged to a single table in the relational
schema, are shown as orange blocks in the UML diagrams. n:m relations, which only can be
represented by additional tables, are represented as green blocks.

2.2.1 Geometric-topological Model

The geometry model of CityGML consists of primitives, which may be combined to form
complexes, composite geometries or aggregates. A zero-dimensional object is modelled as a
Point, a one-dimensional as a Curve. A curve is restricted to be a straight line, thus only the
GML3 class LineString is used.

Combined geometries can be aggregates, complexes or composites of primitives (see
illustration in figure 1). In an Aggregate, the spatial relationship between components is not
restricted. They may be disjoint, overlapping, touching, or disconnected. GML3 provides a
special aggregate for each dimension, a MultiPoint, a MultiCurve, a MultiSurface or a
MultiSolid. In contrast to aggregates, a Complex is topologically structured: its parts must be
disjoint, must not overlap and are allowed to touch, at most, at their boundaries or share parts
of their boundaries. A Composite is a special complex provided by GML3. It can only contain
elements of the same dimension. Its elements must be disjoint as well, but they must be
topologically connected along their boundaries. 4 Composite can be a CompositeSolid, a
CompositeSurface, or CompositeCurve.

MultiSurface GeometricComplex CompositeSurface

Figure 1: Different types of aggregated geometries [Groger et al., 2012]

The modelling of two-dimensional and three-dimensional geometry types is handled in a
simplified way. All surface-based geometries are stored as polygons, which are aggregated to
MultiSurfaces, CompositeSurfaces, TriangulatedSurfaces, Solids, MultiSolids, as well as
CompositeSolids accordingly. This simplification substitutes the more complex representation
used for those GML geometry classes in grey blocks in Figure 2. Mapping the UML diagram
to the relational schema now requires only one table (SURFACE GEOMETRY), which is
explained in chapter 2.3.3.3.

30 3D Geodatabase for CityGML 2018

<<Geometry>>
gmi::_Geometry

<<Geometry>>
gml::_GeometricPrimitive

interior 0"
<<Geometry>> <<Geometry>> <<Geometry>>
gml::_Solid gmi::_Surface . R eomety2s gmi:Point
solidMember exterior 1 = gmi::_Curve +position : gml::DirectPosition [1]
1 surfaceMember 17+ 0.2 baseSurface curveMember
) 0.1 0.1 %
<<Geometry>> <<Geometry=> <<Geometry>> <<Geometry>>
gml::CompositeSolid gml::Solid gml::GompositeGurve gml::LineString
. | ‘ 1 +paosition : gml::DirectPosition [2..%]
<<Geomelry>> <<Geometry>> <<Geometry>> <<Geometry>>
gml::CompositeSurface gml::Surface gml::Polygon gml::OrientableSurface
ﬁ}‘ : +orientation : gml::SignType [0..1]
| 1.7 patchies exterior |
<<Geometry>> <<Geometry>> <<Geometry>>
gml::TriangulatedSurface 1 gml::_SurfacePatch - gml::_Ring
interfior *
trianglePatches
exterior 4
<<Geometry>>
gml:TIN <<Geometry>> <<Geometry>> exterior 7
+stopLines : gml:LineStringSegment [0..7] gml::Triangle gml::Rectangle
+breakLines : gml::LineStringSegment [0..7] <<Geometry>>

+maxLength : gml::LengthType [1] gml::LinearRing

+controlPoint : gml::posList [1]

+position : gml::DirectPosition [4..%]

gml geometry classes containend in the gray box above a simplified to following structure:

<<Geomelry>>
_BRepGeometry
+isXLink : boolean [1]
bRepMember |+sReverse : boolean [1]
-isSolid : boolean [1]
+isComposite : boolean [1]
+isTriangulated : boolean [1]

p

<<Geometry>>
<<Geometry>> Polygon
BRepAggregate +geometry : SDO_GEOMETRY [1]

The whole generalisation relation is realised in the database as one table named SURFACE_GEOMETRY

Figure 2: Geometrical-topographical model.
For simplification the geometry classes in the grey block are substituted by the construct in the orange block

In order to implement topology, CityGML uses the XML concept of XLinks provided by
GML. Each geometry object that should be shared by different geometric aggregates or
different thematic features is assigned a unique identifier, which may be referenced by a GML
geometry property using a href attribute. The XLink topology is simple and flexible and
nearly as powerful as the explicit GML3 topology model. However, a disadvantage of the
XLink topology is that navigation between topologically connected objects can only be
performed in one direction (from an aggregate to its components), not (immediately)
bidirectional, as it is the case for GML’s built-in topology.

2.2.2 Implicit Geometry
The concept of implicit geometries is an enhancement of the GML3 geometry model.

An implicit geometry is a geometric object, where the shape is stored only once as a
prototypical geometry, for example a tree or other vegetation objects, a traffic light or traffic
sign. This prototypic geometry object is re-used or referenced many times, wherever the

3D Geodatabase for CityGML 2018 31

corresponding feature occurs in the 3D city model. Each occurrence is represented by a link to
the prototypic shape geometry (in a local Cartesian coordinate system), by a transformation
matrix that is multiplied with each 3D coordinate of the prototype, and by an anchor point
denoting the base point of the object in the world coordinate reference system. The concept of
implicit geometries is similar to the well-known concept of primitive instancing used for the
representation of scene graphs in the field of computer graphics [Foley et al. 1995].

=<Object=> referencePoint <<Geometry>>
ImplicitGeometry ; gml::Point <<PrimitiveType>>
+mimeType : gml::CodeType TransformationMatrix4x4Type
-l.ransfonnatlohl\.de_l-trlx : TransformationMatrix4x4Type N o +gml::doubleList[16]
+libraryObject : xs::anyURI <<Geometry>>
relativeGMLGeometry gml::_Geometry

Figure 3: Implicit Geometry model

Implicit geometries may be applied to features from different thematic fields in order to
geometrically represent the features within a specific level of detail (LOD). Thus, each
CityGML thematic extension module (like Building, Bridge, and Tunnel etc.) may define
spatial properties providing implicit geometries for its thematic classes.

The shape of an implicit geometry can be represented in an external file with a proprietary
format, e.g. a VRML file, a DXF file, or a 3D Studio MAX file. The reference to the implicit
geometry can be specified by an URI pointing to a local or remote file, or even to an
appropriate web service. Alternatively, a GML3 geometry object can define the shape. This
has the advantage that it can be stored or exchanged inline within the CityGML dataset.
Typically, the shape of the geometry is defined in a local coordinate system where the origin
lies within or near to the object’s extent. If the shape is referenced by an URI, also the MIME
type of the denoted object has to be specified (e.g. “model/vrml” for VRML models or
“model/x3d+xml” for X3D models).

The implicit representation of 3D object geometry has some advantages compared to the
explicit modelling, which represents the objects using absolute world coordinates. It is more
space-efficient, and thus more extensive scenes can be stored or handled by a system. The
visualization is accelerated since 3D graphics hardware supports the scene graph concept.
Furthermore, the usage of different shape versions of objects is facilitated, e.g. different
seasons, since only the library objects have to be exchanged.

2.2.3 Appearance Model

Information about a surface’s appearance, i.e. observable properties of the surface, is
considered an integral part of virtual 3D city models in addition to semantics and geometry.
Appearance relates to any surface-based theme, e.g. infrared radiation or noise pollution, not
just visual properties and can be represented by — among others — textures and georeferenced
textures. Appearances are supported for an arbitrary number of themes per city model. Each
LoD of a feature can have individual appearances. Each city object or city model respectively
may store its own appearance data. Therefore, the base CityGML classes _CityObject and
CityModel contain a relation appearance and appearanceMember respectively.

32

3D Geodatabase for CityGML 2018

<<Fealure>>
gmi.:_Feature

N

<<Feature>>
gmi::_FeatureCollection

1

=<=<Fealure>>
core::CityModel

=<Fealure>>
core::_CityObject

<<Feature>>

appearancelMember

Appearance

+theme : xs::string [0..1]

appearance

<<Feature>>
_SurfaceData

+isFront : xs:boolean [0..1] = true |3

T

surfaceDataMember

<<Feature>>
X3DMaterial

<<Feature>>
_Texture

+ambientintensity : core::doubleBetweenOand1 [0..1]
+diffuseColor : Color [0..1]
+emissiveColor : Color [0..1]

TimageURI cxszanyURI[1]
+mimeType : gml::CodeType [0..1]
+textureType : Texture TypeType [0..1]

BT - Iy A i R A

-~
This part will be stored

in a single table

+specularColor : Coler [0..1] +wrapMode : WrapMoede Type [0..1]
+shininess : core::doubleBetweenOand [0..1) +borderColor : ColorPlusO pacity [0..1]
+transparency : core::doubleBetweenOand1 [0..1]

+isSmooth : xs:boolean [0..1] ‘/%
+target : xs::anyURI[0.Y]

=<Feature>>
GeoreferencedTexture

<<Feature>>
ParameterizedTexture

+preferWerldFile : xs:boolean [0.1] = true
+orientation : core: TransformationMatrix2x2Type [0..1]

<<Object=> +target : xs::anyURI[0.*]
_ _ | TextureA iation
+uri : xs::anyURI [1]
target . referencePoint <<Geomelry>>
ml::Point
<<Object>> 0.1 9
_ TextureParameterization

T
| |

<<Object>> <<Dbject>>
TexCoordGen TexCoordList
+textureCoordinates : gmi::doubleList [1..*]
+ring : xszanydRI [1..%]

+worldTeTexture : core : TransformationMatrix3x4Type (1]

Figure 4: Appearance model

Themes are represented by an identifier only. The appearance of a city model for a given
theme is defined by a set of objects of class Appearance, referencing this theme through the
attribute theme. All appearance objects belonging to the same theme compose a virtual group.
An Appearance object collects surface data relevant for a specific theme through the relation
surfaceDataMember. Surface data is represented by objects of the abstract class
_SurfaceData. Its only attribute is the Boolean flag isFront, which determines the side (front
and back face of the surface) a surface data object applies to.

A constant surface property is modelled as material. A surface property, which depends on the
location within the surface, is modelled as texture. Each surface object can have both a
material and a texture per theme and side. This allows for providing both a constant
approximation and a complex measurement of a surface’s property simultaneously. If a
surface object is to receive multiple textures or materials, each texture or material requires a
separate theme. The mixing of themes or their usage is not explicitly defined but left to the
application.

3D Geodatabase for CityGML 2018 33

Materials define light reflection properties being constant for a whole surface object. The
definition of the class X3DMaterial is adopted from the X3D and COLLADA specification
(cf. X3D, COLLADA specification):

o diffuseColor defines the colour of diffusely reflected light.
o specularColor defines the colour of a directed reflection.
o emissiveColor is the colour of light generated by the surface.

All colours use RGB values with red, green, and blue chanels, each defined as value between
0 and 1. Transparency is stored separately using the transparency element where 0 stands for
fully opaque and 1 for fully transparent. ambientIntensity specifies the minimum percentage
of diffuseColor that is visible regardless of light sources. shininess controls the sharpness of
the specular highlight. 0 produces a soft glow while 1 results in a sharp highlight. isSmooth
gives a hint for normal interpolation. If this Boolean flag is set to true, vertex normals should
be used for shading (Gouraud shading). Otherwise, normals should be constant for a surface
patch (flat shading). Target surfaces are specified using target elements. Each element
contains the URI of one target surface geometry object.

The base class for textures is _AbstractTexture. Here, textures are always raster-based 2D
textures. The raster image is specified by imageURI using a URI and may contain an arbitrary
image data resource, even a preformatted request for a web service. The image data format
can be defined using standard MIME types in the mimeType element. Textures can be
qualified by the attribute textureType, differentiating between textures, which are specific for
a certain object (specific) and prototypic textures being typical for that object surface
(typical). Textures may also be classified as unknown. The specification of texture wrapping
is adopted from the COLLADA standard. Possible values of the attribute wrapMode are none,
wrap, mirror, clamp and border.

_AbstractTexture is further specialised according to the texture parameterisation, i.e. the
mapping function from a location on the surface to a location in the texture image. Texture
parameterisation uses the notion of texture space, where the texture image always occupies of
the region [0,1]* regardless of the actual image size or aspect ratio. The lower left image
corner is located at the origin. To receive textures, the mapping function must be known for
each surface object.

The class GeoreferencedTexture describes a texture that uses a planimetric projection. Such a
texture has a unique mapping function which is usually provided with the image file (e.g.
georeferenced TIFF) or as a separate ESRI world file. The search order for an external
georeference is determined by the Boolean flag preferWorldFile. Alternatively, inline
specification of a georeference similar to a world file is possible. This internal georeference
specification always takes precedence over any external georeference. referencePoint defines
the location of the centre of the upper left image pixel in world space and corresponds to
values 5 and 6 in an ESRI world file. Since GeoreferencedTexture uses a planimetric
projection, referencePoint is two-dimensional and the orientation defines the rotation and
scaling of the image in form of a 2x2 matrix (a list of 4 doubles in row-major order
corresponding to values 1, 3, 2, and 4 in an ESRI world file). The CRS of this transformation
is identical to the referencePoint’s CRS. If neither an internal nor an external georeference is

34 3D Geodatabase for CityGML 2018

given, the GeoreferencedTexture is invalid. Target surfaces are specified using target
elements. Each element contains the URI of one target surface geometry object. All target
surface objects share the mapping function defined by the georeference.

The class ParameterizedTexture describes a texture with a target-dependent mapping
function. Each target surface geometry object is specified as URI in the uri attribute of a
separate target element. The mapping 1is defined by associated classes of
_TextureParameterization:

e TexCoordList for the concept of texture coordinates, defining an explicit mapping of a
surface’s boundary points to points in texture space, and

e TexCoordGen when using a common 3x4 transformation matrix from world space to
texture space, specified by the attribute worldToTexture.

2.2.4 Thematic model

The thematic model consists of the class definitions for the most important types of objects
within virtual 3D city models. Most thematic classes are (transitively) derived from the basic
classes Feature and FeatureCollection, the basic notions defined in ISO 19109 and GML3 for
the representation of features and their aggregations. Features contain spatial as well as non-
spatial attributes, which are mapped to GML3 feature properties with corresponding data
types. Geometric properties are represented as associations to the geometry classes described
in chapter 2.2.1 The thematic model also comprises different types of interrelationships
between Feature classes like aggregations, generalizations, and associations.

The aim of the explicit modelling is to reach a high degree of semantic interoperability
between different applications. By specifying the thematic concepts and their semantics along
with their mapping to UML and GML3, different applications can rely on a well-defined set
of Feature types, attributes, and data types with a standardised meaning or interpretation. In
order to allow also for the exchange of objects and/or attributes that are not explicitly
modelled in CityGML, the concepts of GenericCityObjects and GenericAttributes have been
introduced.

2.2.4.1 Core Model

The base class of all thematic classes within CityGML’s data model is the abstract class
_CityObject. _CityObject provides a creation and a termination date for the management of
histories of features as well as generic attributes and external references to corresponding
objects in other data sets. CityObject is a subclass of the GML class Feature, thus it may
inherit multiple names from Feature, which may be optionally qualified by a codeSpace. This
enables the differentiation between, for example, an official name from a popular name or
names in different languages (c.f. the name property of GML objects, Cox et al., 2004). The
generalisation property generalizesTo of _CityObject may be used to relate features, which
represent the same real-world object in different LoD, i.e. a feature and its generalized
counterpart(s). The direction of this relation is from the feature to the corresponding
generalised feature.

3D Geodatabase for CityGML 2018 35

Features of CityObject and its specialized subclasses may be aggregated to a CityModel,
which is a feature collection with optional metadata. Generally, each feature has the attributes
class, function, and usage, unless it is stated otherwise. The class attribute can occur only
once, while the attributes usage and function can be used multiple times. The class attribute
describes the classification of the objects, e.g. road, track, railway, or square. The attribute
function contains the purpose of the object, like national highway or county road, while the
attribute usage defines whether an object is e.g. navigable or usable for pedestrians. The
attributes class, function and usage are specified as gml:CodeType. The values of these
properties can be enumerated in code lists. Furthermore, for each feature the geographical
extent can be defined using the Envelope element. Minimum and maximum coordinate values
have to be assigned to opposite corners of the feature’s bounding box.

<<Geometry>>
gmi::Evelope

0..1 2 envelope
1

<<Feature>>
gml::_Feature

+name : gml:CodeType [0.."] <<Feature>>
A CityObjectGroup
+class : gml::CodeType [0..1] + geomet <<Geometry>>
J = Hunction : gml::CodeType [0..*] 0.1 gml:: _Geometry
+usage : gml::CodeType [0.."]
<<Feature>>
gmi::_FeatureCollection
[‘l ,,,,,,,, Role
parent :
<<Feature>> e groupMember +role : xs:zstring [1]
CitvMode! 2L
<<Feature>>
: CityObject ‘1 <<DataType>>
+creationDate : xs::date [0..1] extemnalReference ExternalReference

*

+eminationDate : xs:date [..1] +informationSystem : xs::anyURI [0..1]

cityObjectMember | +relativeToTerrain : RelativeToTemainType [0..1]
+relativeToWater : RelativeToWaterType [0..1] generalizesTo 1
[
externalObject 1
I <<Union>>
<<Fealure>> <<Feature>> <<Fealure>> <<Feature>> <<Fealure>> ExternalObjectReference
dem:: ReliefFeature luse::LandUse veg::_VegetationObject fn::CityFurniture wir::_WaterObject +name : xs::string [1]
+uri : xs:anyURI [1]
<<Feature>> <<Feature>> <<Feature>>
gen::GenericCityObject _Site tran::_TransportationObjcet
[[]
<<Feature>> <<Feature>> <<Feature>>
bidg::_AbstractBuilding tun::_AbstractTunnel brdg::_AbstractBridge

Figure 5: Core Model and thematic top level classes

The subclasses of _CityObject comprise the different thematic fields of a city model, in the
following covered by separate thematic models: building model (_A4bstractBuilding), tunnel
model (_AbstractTunnel), bridge model (_AbstractBridge), city furniture model
(CiyFurniture), digital terrain model (ReliefFeature), land use model (LandUse),
transportation model (7ransportationObject), vegetation model (_VegetationObject), water
bodies model (WaterObject) and generic city object model (GenericCityObject). The latter
one allows for the modelling of features, which are not explicitly covered by one of the other
models. The separation into these models strongly correlates with CityGML’s extension
modules, each defining a respective part of a virtual 3D city model.

36 3D Geodatabase for CityGML 2018

3D objects are often derived from or have relations to objects in other databases or data sets.
For example, a 3D building model may have been constructed from a two-dimensional
footprint in a cadastre data set. The reference of a 3D object to its corresponding object in an
external data set is essential, if an update must be propagated or if additional data is required
(like the name and address of a building’s owner in a cadastral information system). In order
to supply such information, each _CityObject may have External References to corresponding
objects in external data sets. Such a reference denotes the external information system and the
unique identifier of the object in this system.

CityObjectGroups aggregate CityObjects and furthermore are defined as special CityObjects.
This implies that a group may become a member of another group realizing a recursive
aggregation schema. Since CityObjectGroup is a feature, it has the optional attributes class,
function and usage. The class attribute allows a group classification with respect to the stated
function and may occur only once. The function attribute is intended to express the main
purpose of a group, possibly to which thematic area it belongs (e.g. site, building,
transportation, architecture, unknown etc.). The attribute usage can be used, if the object’s
usage differs from its function. The attributes class, function and usage are specified as
gml:CodeType. The values of these properties can be enumerated in code lists.

Each member of a group may be qualified by a role name, reflecting the role each CityObject
plays in the context of the group. Furthermore, a CityObjectGroup can optionally be assigned
an arbitrary geometry object. This may be used to represent a generalised geometry generated
from the member’s geometries. The parent association linking a CityObjectGroup to a
CityObject allows for the modelling of generic hierarchical groupings. This concept is used,
for example, to represent storeys in buildings. See Figure 5 for the simplified UML diagram.

2.2.4.2 Building model

Buildings can be represented in five levels of detail (LoDO to LoD4). The building model
allows the representation of simple buildings that consist of only one component, as well as
the representation of complex relations between parts of a building, e.g. a building consisting
of three parts — a main house, a garage and an extension. The parts can again consist of parts
etc. The subclasses Building and BuildingPart of _AbstractBuilding enable these modelling
options.

Building with two WHniwan: 0

building parts
(represented as
one Building

N Building consist-

I :

feature and one e ing of one part

included Build- : (represented as

ingPart feature) one Building
¢ feature)

Figure 6: Example of buildings consisting of one and two building parts [Groger et al., 2008]

3D Geodatabase for CityGML 2018

37

In the case of a simple, one-piece house there is only one Building which inherits all attributes
and relations from _AbstractBuilding (cf.). However, such a Building can also comprise
BuildingParts which likewise inherit all properties from _AbstractBuilding: the building’s
class, function (e.g. residential, public, or industry), usage, year of construction, year of
demolition, roof type, measured height, and the number and individual heights of all its
storeys above and below ground (cf. Figure 7).

0.1
lod3ImplicitRepresentation
IoddlmzlicﬂRczrcScntation

od4imolicitReoresentation 0..1 =

0.1

lod4implicitRepresentation

<<Object=>
core::implicitGeometry

<<F
core::_CityObjfect

0.1
lod2IimplicitRepresentation

lod3ImplicitRepresentation

loddGeometry 0]

lod4ImolicitRecresentation

121 lodzGeometry

<<F
core::_Site

<<Faature=>>

<<Geometry==> Bulldi
lnd4G e, gmiz:_ y lod3Geometry *|+class : gml:CodeType [0..1] a
0.1 lod4Geometry « [#function : gml::CodeType [0..%] <>
+usage : gml:CodeType [0..%]
* /houterBuidinglnstallation
<<Feature>> <>
IntBuildinglnstallation interior llation
+class : gmi:CodeType [0..1] -
= |+function : gmi::CodeType [0..%] <>
: gmi:CodeType [0.*
tusage - om Typa [0.7] <<Feature>>
_AbstractBuilding
roominstallation * +class : gml:CodeType [0..1]
+function : gmi: CodeType [0..7] |
+usage ;| gml:CodeType [0..%]
+yearOfConstruction : xs:.gYear [0.1]
. <<Feature=> +yearOfDemclition : xs::gYear [0..1] ot
= BulldingFurniture +roofType : gmi:CodeType [0..1] <>
. - gmi=CodeType [0.1] +measuredHeight : gml::LengthType [0..1]
+lunction : gml::CodeType [0.] +storeysAboveGround : xs::nonNegativelnteger [0..1]
+usage : g‘n‘l"[‘}‘odcTypc [o. .]' +storeysBelowGround : xs::nonMNegativelnteger [0..1]
) - B +storeyHeights AboveGround : gml: MeasureOrNullListType [0..1] o
« /MnteriorFurniture +storeyHeightsBelowGround : gml:MeasureOmNullListType [0..1] =
0.1
ccFeatura>> <<Feature>> <<Feature>>
Raom Building BuildingPart
+class | gml:CodeType [0..1] S consists OfB uildingPart)
function : gmi:CodeType [0.] interiorRoom
+usage . gml::CodeType [0..%] = = =
lod1Solid lod1MultiSurface lod1 Temrainintersection
0.1 <> e lod2Solid lod2MultiSurface lod2 Temainintersection
lod3Solid lod3MultiSurface | |/@d0FootPrint lod3Temainintersaction
01 log4solia lodaultiSurface lod4Tenainlntersection
lod2MultiCurve
lod4Solid <<Geometry>> <<Geometry>> -
lod3MultiC:
01 gmi::_Solid gml:MultiSurface Wb
- lo c4MuTtiCurve
0 1/|\ 0.1 0.1 Wo.1 0.1
) . lod4MuliSurface DL GRS <<Geometry>>
N <<Featura>> A . oo
o = lod3MultiSurface lod3MultiSurface gml::MultiCurve
lodd4MultiSurface lod4MultiSurface
<<Feature>> <<Feature>> boundedBy . *[*[* * boundedBy
Door Window <<Faature>> - bound edBy
- 0.2
_BoundarySurface *boundedBy
[I I I I I 1
e F ccf = F e F <<Faature>> =< Faature== <cFeature>>
RoofSurface WallSurfacee GroundSurface ClosureSurface CellingSurface InteriorWall Surface FloorSurface
=< Featura>> <<Featura>>
QuterCeilingSurface QuterFloorSurface

Furthermore, Addresses can be assigned to Buildings or BuildingParts.

Figure 7: UML diagram of Building model

In particular,

BuildingParts may again comprise BuildingParts as components, because the composition

38 3D Geodatabase for CityGML 2018

relation is inherited. This way a tree-like hierarchy can be created whose root object is a
Building and whose non-root nodes are BuildingParts. The attribute values are generally filled
in the lower hierarchy level, because basically every part can have its own construction year
and function. However, the function can also be defined in the root of the hierarchy and
therefore span the whole building. The individual BuildingParts within a Building must not
penetrate each other and must form a coherent object.

The geometric representation of an _AbstractBuilding is successively refined from LODO to
LOD4. Therefore, a single building can have multiple spatial representations in different
levels of detail at the same time by Solid, MultiSurface, and/or MultiCurve (cf. Figure 7).

In LoDO, the building can be represented by horizontal, 3-dimentional surfaces describing the
footprint and the roof edge. In LoD1, a building model consists of a geometric representation
of the building volume. Optionally, a MultiCurve representing the TerrainlntersectionCurve
can be specified. This geometric representation is refined in LoD2 by additional MultiSurface
and MultiCurve geometries, used for modelling architectural details like a roof overhang,
columns, or antennas. In LoD2 and higher LoDs the outer facade of a building can also be
differentiated semantically by the classes BoundarySurface and Buildinglnstallation. A
_BoundarySurface is a part of the building’s exterior shell with a special function like wall
(WallSurface), roof (RoofSurface), ground plate (GroundSurface), or closing surface
(ClosureSurface) as shown in Figure 8. Closure surfaces can be used to virtually seal open
buildings as for example hangars, allowing e.g. volume calculation. The Buildinglnstallation
class is used for building elements like balconies, chimneys, dormers, or outer stairs, strongly
affecting the outer appearance of a building. A Buildinglnstallation is used for the
representation of chimneys, stairs, balconies etc. and optionally has the attributes class,
function, and usage.

Roof surface
Exterior Shell
Wall \
surface
Ceiling Wall , ™ InteriorWall
surface Room Surface Surface
/,/
i {
Opening InteriorWall ' [
(Window) Surface i
|
1
4 [
Opening '
Floor surface (Door) ! L Opening
1
Ground surface ' Door

Figure 8: Boundary surfaces

In LoD3, the openings in _BoundarySurface objects (doors and windows) can be represented
as thematic objects. In LoD4, the highest level of resolution, also the interior of a building,
composed of several rooms, is represented in the building model by the class Room. The
aggregation of rooms according to arbitrary, user-defined criteria (e.g. for defining the rooms
corresponding to a certain storey) is achieved by employing the general grouping concept
provided by CityGML. Interior installations of a building, i.e. objects within a building which

3D Geodatabase for CityGML 2018 39

(in contrast to furniture) cannot be moved, are represented by the class
IntBuildinglnstallation. If an installation is attached to a specific room (e.g. radiators or
lamps), they are associated with the Room class, otherwise (e.g. in case of rafters or pipes)
with AbstractBuilding. A Room may have the attributes class, function, and usage referenced
to external code lists. The class attribute allows a classification of rooms with respect to the
stated function, e.g. commercial or private rooms, and occurs only once. The function
attribute is intended to express the main purpose of the room, e.g. living room, kitchen. The
attribute usage can be used if the object’s usage differs from its function. Both attributes can
occur multiple times.

The visible surface of a room is represented geometrically as a Solid or MultiSurface.
Semantically, the surface can be structured into specialised BoundarySurfaces, representing
floor (FloorSurface), ceiling (CeilingSurface), and interior walls (InteriorWallSurface) (cf.
Figure 8). Room furniture, like tables and chairs, can be represented in the CityGML building
model with the class BuildingFurniture. A BuildingFurniture may have the attributes class,
function, and usage.

2.2.4.3 Bridge Model

The bridge model was developed in analogy to the building model (cf. section 2.2.4.2) with
regard to structure and attributes [Groger et al., 2008]. The bridge model allows for the
representation of the thematic, spatial and visual aspects of bridges and bridge parts in four
levels of detail, LOD 1 — 4. A (movable or unmovable) bridge can consist of multiple
BridgeParts. Like Bridge, BridgePart is a subclass of _AbstractBridge and hence, has the
same attributes and relations. The relation consistOfBridgePart represents the aggregation
hierarchy between a Bridge (or a BridgePart) and it’s BridgeParts. By this means, an
aggregation hierarchy of arbitrary depth can be modelled. The semantic attributes of an
_AbstractBridge are class, function, usage and is_movable. The attribute class is used to
classify bridges, e.g. to distinguish different construction types (cf. Figure 9). The attribute
function allows representing the utilization of the bridge independently of the construction.
Possible values may be railway bridge, roadway bridge, pedestrian bridge, aqueduct, etc. The
option to denote a usage which is divergent to one of the primary functions of the bridge
(function) is given by the attribute usage. Each Bridge or BridgePart feature may be assigned
zero or more addresses using the address property.

BridgePart

|

BridgeConstructionElement

BridgePart l‘:’////
\L BridgePart

|

BridgeConstructionElement

Bridge

Figure 9: Example of bridge consisting of bridge parts

40 3D Geodatabase for CityGML 2018

The spatial properties are defined by a solid for each of the four LODs (relations /lod1Solid to
lod4Solid). In analogy to the building model, the semantical as well as the geometrical
richness increases from LODI (blocks model) to LOD3 (architectural model). Interior
structures like rooms are dedicated to LOD4. To cover the case of bridge models where the
topology does not satisty the properties of a solid (essentially water tightness), a multi-surface
representation is allowed (lodIMultiSurface to lod4MultiSurface). The line where the bridge
touches the terrain surface is represented by a terrain intersection curve, which is provided for
each LOD (relations lod1Terrainintersection to lod4Terrainlntersection). In addition to the
solid representation of a bridge, linear characteristics like ropes or antennas can be specified
geometrically by the lod I MultiCurve to lod4MultiCurve relations.

The thematic boundary surfaces of a bridge are defined in analogy to the building module.
_BoundarySurface is the abstract base class for several thematic classes, structuring the
exterior shell of a bridge as well as the visible surfaces of rooms, bridge construction elements
and both outer and interior bridge installations. From _BoundarySurface, the thematic classes
RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, QOuterFloorSurface,
ClosureSurface, FloorSurface, InteriorWallSurface, and CeilingSurface are derived.

RoofSurface

Window

WallSurface

OuterFloorSurface

OuterCeilingSurface

Figure 10: Different BoundarySurfaces of a bridge

Bridge elements which do not have the size, significance or meaning of a BridgePart can be
modelled either as BridgeConstructionElement or as Bridgelnstallation. Elements which are
essential from a structural point of view are modelled as BridgeConstructionElement, for
example structural elements like pylons, anchorages etc. (cf. Figure 9, Figure 11). A general
classification as well as the intended and actual function of the construction element are
represented by the attributes class, function, and usage. The visible surfaces of a bridge
construction element can be semantically classified using the concept of boundary surfaces
representing floor (FloorSurface), ceiling (CeilingSurface), and interior walls
(InteriorWallSurface) (cf. Figure 10). Whereas a BridgeConstructionElement has structural
relevance, a Bridgelnstallation represents an element of the bridge which can be eliminated
without collapsing of the bridge (e.g. stairway, antenna, and railing) (cf. Figure 11).
Bridgelnstallations occur in LOD 2 to 4. The class Bridgelnstallation contains the semantic

3D Geodatabase for CityGML 2018 4]

attributes class, function and usage. The attribute class gives a classification of installations of
a bridge. With the attributes function and usage, nominal and real functions of the bridge
installation can be described.

BridgeConstructionElement

/

Bridgelnstallation

’

ry

BridgePart

T
Bridge

Figure 11: Example of bridge consisting of BridgeConstructionElement and Bridgelnstallation

In LOD3 and LOD4, a BoundarySurface may contain _Openings like doors and windows.
The classes BridgeRoom, IntBridgelnstallation and BridgeFurniture allow for the
representation of the bridge interior. They are designed in analogy to the classes Room,
IntBuildinglnstallation and BuildingFurniture of the building module and share the same
meaning. The bridge interior can only be modelled in LOD4.

42 3D Geodatabase for CityGML 2018

core::_CltyObject
———————
<<Feature>>
T e Bridgelnstallation
o e TRenresAmATn ! : gml:CodeType [0..1] *
Ind3mnlicitRenresantation * |+unction : gmi::CodeType [0..] >
lod3implicitRepresentation 0! <<Objact> 01| jogaimplicitRepreseniaion - [*usage : gml:CodeType [0.7] *outerBri
lod4ImplicitReprese ntation core::ImplicitGeomeatry
o1 lod1 ImplicitRepresantation
loddimplicitRepresentation - lod2implicitRepresentation
inddimnlicitRanresantation?-! lod3implicitRepresentation
lod4implicitReprese ntation
[
lod2Geometry
0.1 C
lncdGen rrk\?l"\}1 << Geometry=> il
gmi_Geometry lod4Geometry o o] of +
lod4Geometry lod1Geometry - =<Feature=>
01 0.1 |lod2Geometry . BridgeConstructionE lemant _ i i
 |+class : gmi:CodeType [0..1] lod1 Temrainintersection
lod3Geometry " . .
function : gmi::CodeType [0.."] H lod2 Temrainintersection
lod4Geomet - ' s .
a = A HETERE] - lod3Temrainintersection
<<Feature>> - O - lod4Temrainintersection
IntBridgel llation outerBridgeConstruction Q
— lass | gml:CodeType [0..1] '<>
+function : gmi::CodeType [0..7]
+usage : gml:CodeType [0.."] address <<Feature>> address
T "’ core::Address | T+
-~ interiorBridgelnstallation é o
bridge Roominstallation - hl <>' :
=<Feature>>
hd <<Featura>> _AbstractBridge
BridgeF urniture +class : gml:CodeType [0..1]
*|+class gml:CodeType [0..1] +function : gml::CodeType [0..]
+function : gml::CodeType [0.."] +usage : gml:CodeType [0.°]
+usage : gml::CodeType [0.."] +yearOfConstruction : xs:.gYear [0..1] .
+yearOfDemolition : xs::gYear [0..1] <>
- interficrFurniture +isMovable : xs:boolean [0..1]
0.1
<<Feature=> <<Featura>> <<Featura>>
BridgeRoom Bridge BridgePart
 e—
+class : gml:CodeType [0..1] =— — consistsOfBridgePart
+function : gml::CodeType [0..7] PED ST
+usage | gml::CodeT, 0..*
A0 vpa -] 1S lodTMuliSuriace lodTemainintersecton loa2MultiCurve
0.1 <> =" lod2Solid lod2MultiSurface lod2Temainintersection lod3MultiCurve
lod3Solid lod3MultiSurface lod3TemainIntersection lodd4MultiCurve
0.1 lod4Solid lod4MultiSurface . 4 lod4Temainintersection .
N 0.1 0.1
lod4Solid <<Geometry>> <<Geometry>> <<Geometry>>
= gmi:_Solid gmlzMultiSurface gmlz:MultiCurve
0. 0.4 0.1
o <<Feature>> RS lod2MultiSurface
—____Opening lod3MultiSurface lod3MultiSurface
L — |
- lod4MultiSurface loddMultiSurface
e < openina —‘
. “I°° - boundedB
<<Feature>> <<Feature>> bound edBy <<Feature>> . .
Door <> _BoundarySurface --boundedBy
+ 0.2 * boundedBy
boundedBv
[[I I | I 1
<<F <<F <<F c<F <<F << <<Feature=>
RoofSurface WallSurfacee face [+ face C: face Inte riorWall Surface FloorSurface
<<Feature>> <<Feature>>
QuterCellingSurface QuterFloorSurface

Figure 12: UML diagram of bridge model

2.2.4.4 CityFurniture Model

City furniture objects are immovable objects like lanterns, traffic lights, traffic signs, flower
buckets, advertising columns, benches, delimitation stakes, or bus stops. The class
CityFurniture may have the attributes class, function and usage (ct. UML-diagram, Figure
13). Their possible values are explained in detail in the CityGML specification. The class
attribute allows an object classification like traffic light, traffic sign, delimitation stake, or
garbage can, and can occur only once. The function attribute describes, to which thematic area

3D Geodatabase for CityGML 2018 43

the city furniture object belongs to (e.g. transportation, traffic regulation, architecture etc.),
and can occur multiple times. The attribute usage denotes the real purpose of the city object,
and can occur multiple times as well.

<<Feature>>
core::_CityObject

lod1Geometry & * lod1Terrainintersection
<<Feature>>
lod2Geometry * CityFurniture * lod2Terrainintersection
Geometry>>
<<Geometry>> +class : gml::CodeType [0..1] . q = -
gml::_Geometry (0.1 EGEGe +function : gml::CodeType [0..4 lod3Terrainintersection 0.4 9mi:MultiCurve
lod4Geometry «|*usage : gml::CodeType [0.."] + lod4Terrainintersection

lod1implicitRepresentation

lod2implicitRepresentation

<<Object>>
core::mplicitGeometry

lod3ImplicitRepresentation

lod4implicitRepresentation

Figure 13: City furniture model

Since CityFurniture is a subclass of CityObject and hence is a feature, it inherits the attribute
gml:name. As with any CityObject, CityFurniture objects may be assigned
ExternalReferences and GenericAttributes. For ExternalReferences city furniture objects can
have links to external thematic databases. Thereby, semantical information of the objects,
which cannot be modelled in CityGML, can be transmitted and used in the 3D city model for
further processing, for example information from systems of power lines or pipelines, traffic
sign cadastre, or water resources for disaster management.

City furniture objects can be represented in city models with their specific geometry, but in
most cases the same kind of object has an identical geometry. The geometry of CityFurniture
objects in LoD 1-4 may be represented by an explicit geometry (lodXGeometry where X is
between 1 and 4) or an ImplicitGeometry object (lodXImplicitRepresentation with X between
1 and 4). In the concept of ImplicitGeometry the geometry of a prototype city furniture object
is stored only once in a local coordinate system and referenced by a number of features.
Spatial information of city furniture objects can be taken from city maps or from public and
private external information systems. In order to specify the exact intersection of the DTM
with the 3D geometry of a city furniture object, the latter can have a TerrainintersectionCurve
(TIC) for each LoD. This allows for ensuring a smooth transition between the DTM and the
city furniture object.

2.2.4.5 Digital Terrain Model

CityGML includes a very adaptable digital terrain model (DTM) which permits the
combination of heterogeneous DTM types (grid, TIN, break lines, mass points) available in
different levels of detail.

44 3D Geodatabase for CityGML 2018

A DTM fitting to a certain city model is represented by the class ReliefFeature. This is a
CityObject having the LoD step that fits the DTM as attribute. A relief consists of several
ReliefComponents. Each of these components that are likewise CityObjects also comprises a
LoD step. Individual geometrical types of the components are defined by the four subclasses
of ReliefComponent: breaklines, triangular networks (TINs), mass points, and grids (raster).
Geometrically, the corresponding ISO 19107 or GML classes define these types: breaklines
by a single MultiCurve, TINs by TriangulatedSurfaces, mass points by MultiPoint, and raster
by RectifiedGridCoverage.

<<Feature>>
core::_CityObject

T

<<Feature>>
ReliefFeature

1.~

<<Feature>>
_ReliefComponent

0.1

<>

+lod : core:integerBetweenOand4 [1]

reliefComponent

+lod : core::integerBetweenOand4 [1]

extent

<<Geometry>>
gml::Polygon

z}

l

l

l

<<Feature>>

<<Feature>>

<<Feature>>

<<Feature>>

TINRelief MassPointRelief BreaklineRelief RasterRelief
tin reliefPoints ridgeOrVallelyLines | breaklines 1| grid
1 1 0..1 0.1
<<Geometry=> <<Geometry>> <<Geometry>> <<Feature>>

gml::TriangulatedSurface

gml::MultiPoint

gml::MultiCurve

gml::RectifiedGridCoverage

T

<<Geometry>>
gml::Tin

+stopLines : gml:LineStringSegment [0..*]
+breakLines : gml::LineStringSegment [0..*]
+maxLength : gml::LengthType [1]
+controlPoint : gml::posList [1]

Figure 14: UML diagram representing the digital terrain model

A relief can contain ReliefComponents of heterogeneous type and different LoDs. A relief in
LoD2, for example, can contain some LoD3-TIN-ReliefComponents beside a LoDZ2-Raster-
ReliefComponent. In some cases even a LoD1 grid may exist in some regions of the relief.

In order to geometrically separate the individual components of a grid, which can exist in
different LoD, the validity polygon of a component (extent) is used. This polygon defines the
scope in which the component is valid. A grid with three components is shown in Figure 15.
It depicts a coarse raster containing two high-resolution TINs (TIN 1 and 2). The validity
polygon of the raster is represented by the blue line, while the validity polygons of the TINs
are bordered in green and red. In this case, the validity polygon of the raster (grid) has two
holes where the raster (grid) is not valid, although it does exist. Instead, the high-resolution
TINs are used for the representation of the terrain in these regions. That means the validity
polygons of the TINs exactly fit the two holes in the validity polygon of the raster (grid).

3D Geodatabase for CityGML 2018 45

Figure 15: A relief, consisting of three components and its validity polygons
(from: [Pliimer et al., 2005])

In the simplest and most frequent case, the validity polygon of a grid corresponds exactly with
its Bounding box, i.e. the spatial extent of the grid.

2.2.4.6 Generic Objects and Attributes

The concept of generic objects and attributes has been introduced to facilitate the storage and
exchange of 3D objects, which are not covered by explicitly modelled classes within
CityGML or which requires additional attributes. These generic extensions are realised by the
class GenericCityObject and the data type genericAttribute (cf. Figure 16).

A GenericCityObject may have the attributes class, function, and usage are specified as
gml:CodeType. The class attribute allows an object classification within the thematic area
such as bridge, tunnel, pipe, power line, dam, or unknown. The function attribute describes to
which thematic area the GenericCityObject belongs (e.g. site, transportation, architecture,
energy supply, water supply, unknown etc.). The attribute usage can be used, if the object's
usage differs from its function. Each CityObject and all thematic subclasses can have an
arbitrary number of genericAttributes. Data types may be String, Integer, Double (floating
point number), URI (Unified Resource Identifier), Date, and gml:MeasureType. The attribute
type is defined by the selection of the particular subclass of _genericAttribute (stringAttribute,
intAttribute etc.). In addition, generic attributes can be grouped using the genericAttributeSet
class which is derived from _genericAttribute and thus is also realized as generic attribute. Its
value is the set of contained generic attributes.

46 3D Geodatabase for CityGML 2018

<<Geometry>> SARENTED _genericAttribute <<Dat.aTypE:\>>
gml::MultiCurve core::_CityObject . 1 . ffenarfcAttributs
+name : xs:string [1]
0.1 A
: : 1.*

_genericAttribute <<DataType>>
lodOTerrainlntersection * — stringAttribute
lod 1 Temrainlntersection n Ge:;l:;a:t;m;;ec‘ 0.1 +value : xs:string [1]

yOh) <<DataType>>
lod2Terrainintersection 3| rolass - gmi::CodeType [0.1] genericAttributeSet] <<DataType>>
*function : gml::CodeType [0."] +codeSpace : xs::anyURI [0..1] | intAttribute
lod3Terrainintersection +|+usage : gml::CodeType [0..%] +value : xszinteger [1]
lod4Terrainlntersection * <<DataType=>
b B R R b b R — doubleAttribute
lodOImplicitRepresentation lod0Geometry +value : xs::double [1]
lod 1lmplicitRepresentation lod1Geometry <<DataType>>
lod2ImplicitRepresentation lod2Geometry dateAttribute
+value : xs::date [1]
lod3ImplicitRepresentation lod3Geometry
lod4ImplicitRepresentation lod4Geometry <:Eiit:;:;ﬁ:>
0.1 0.1 +value : xs:anyURI [1]
<<Object>> <<Geometry>> <<DataType>>
core::ImplicitGeometry gml::_Geometry [measureAttribute
+value : gml::MeasureType [1]

Figure 16: GenericCityObject model

The geometry of a GenericCityObject can either be an explicit GML3 geometry or an
ImplicitGeometry. In the case of an explicit geometry, the object can have only one geometry
for each LoD, which may be an arbitrary 3D GML geometry object (class _Geometry, which
is the base class of all GML geometries, lodXGeometry, X in 0...4). Absolute coordinates
according to the reference system of the city model must be given for the explicit geometry.
In the case of an ImplicitGeometry, a reference point (anchor point) of the object and
optionally a transformation matrix must be given. In order to compute the actual location of
the object, the transformation of the local coordinates into the reference system of the city
model must be processed and the anchor point coordinates must be added. The shape of an
ImplicitGeometry can be given as an external resource with a proprietary format, e.g. a
VRML or DXF file from a local file system or an external web service. Alternatively, the
shape can be specified as a 3D GML3 geometry with local Cartesian coordinates using the
property relativeGeometry.

In order to specify the exact intersection of the DTM with the 3D geometry of a
GenericCityObject, the latter can have TerrainlntersectionCurves for every LoD. This is
important for 3D visualization but also for certain applications like driving simulators. For
example, if a city wall (e.g., the Great Wall of China) should be represented as a
GenericCityObject, a smooth transition between the DTM and the road on the city wall would
have to be ensured (in order to avoid unrealistic bumps).

3D Geodatabase for CityGML 2018 47

2.2.4.7 LandUse Model

LandUse objects describe areas of the earth’s surface dedicated to a specific land use. They
can be employed to represent parcels in 3D. Figure 17 shows the UML diagram of land use
objects.

Every LandUse object may have the attributes class (e.g. settlement area, industrial area,
farmland etc.), function (purpose, e.g. cornfield), and usage which can be used, if the way the
object is actually used differs from the function. Since the attributes usage and function may
be used multiple times, storing them in only one string requires a single white space as unique
separatorRelational database schema.

<<Feature>>
core::_CityObject

lod0MultiSurface

<<Feature>>
LandUse - lod 1MultiSurface

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..%]
+usage : gml:CodeType [0..7] - lod3MultiSurface

lod2MultiSurface P--1 <<Geometry>>
gml::MultiSurface

lod4MultiSurface

Figure 17: LandUse model

The LandUse object is defined for all LoD 0-4 and may have different geometries for each
LoD. The surface geometry of a LandUse object is required to have 3D coordinate values. It
must be a GML3 MultiSurface, which might be assigned appearance properties like material
(X3DMaterial) and texture (_AbstractTexture and its subclasses).

2.2.4.8 Transportation Model

The transportation model of CityGML is a multi-functional, multi-scale model focusing on
thematic and functional as well as geometrical/topological aspects. Transportation features are
represented as a linear network in LoDO0. Starting from LoD1, all transportation features are
geometrically described by 3D surfaces.

The main class is TransportationComplex (cf. Figure 19) which represents, for example, a
road, a track, a railway, or a square. It is composed of the parts TrafficArea and
AuxiliaryTrafficArea. Figure 18 depicts an example for a LoD2 TransportationComplex
configuration within a virtual 3D city model. The Road consists of several TrafficAreas for
the sidewalks, road lanes, parking lots, and of AuxiliaryTrafficAreas below the raised flower
beds.

48 3D Geodatabase for CityGML 2018

Auxiliary
traffic
areas

Figure 18: LoD2 representation of a transportation complex
(from: [Groger et al., 2008])

The road itself is represented as a TransportationComplex, which is further subdivided into
TrafficAreas and AuxiliaryTrafficAreas. The TrafficAreas are those elements, which are
important in terms of traffic usage, like car driving lanes, pedestrian zones and cycle lanes.

The AuxiliaryTrafficAreas are describing further elements of the road, like kerbstones, middle
lanes, and green areas.

<<Feature>>
core::_CityObject

1

<<Feature>>

_TransportationObject
<<Feature>> <<Feature>> - . <<Feature>>
TrafficArea trafficArea Transp omplex auxiliaryTrafficArea AuxiliaryTrafficArea
+class : gml::CodeType [0..1] M +class : gml::CodeType [0..1] O. ? +class : gml::CodeType [0..1]
+function : gml::CodeType [0.."] > * | +function : gml:CodeType [0.."] +function : gml::CodeType [0..]
+usage : gml::CodeType [0..*] +usage : gml::CodeType [0..*] +usage : gml:CodeType [0.."]
+ ial : G + ial : A
surfaceMaterial : gml::CodeType [0..1] Tl " l lodONetwork surfaceMaterial : gml::CodeType [0..1]
[1 ’
lod 1MultiSurface <<Feature>> <<Feature>> <<Geomelry>>
lod2MultiSurface Track Railway gml::GeometricComplex
lod3MultiSurface <<Feature>> <<Feature>>
lod2MultiSurface lod4MultiSurface Road Square
q 0.1
lod3MultiSurface lod2MultiSurface
0.1 Ll
lod4MultiSurface <<Geometry>> lod3MultiSurface
gml::MultiSurface lod4MultiSurface

Figure 19: UML model for transportation complex

TransportationComplex objects can be thematically differentiated using the subclasses Track,
Road, Railway, and Square. Every TransportationComplex has the attributes class, function
and wusage, referencing to the external code lists. The attribute class describes the
classification of the object. The attribute function describes the purpose of the object like, for

example national motorway, country road, or airport, while the attribute usage can be used, if
the actual usage differs from the function.

3D Geodatabase for CityGML 2018 49

In addition, both TrafficArea and AuxiliaryTrafficArea may have the attributes class, function,
usage, and surfaceMaterial. The attribute class describe the classification of the object. For
TrafficArea, the attribute function describes whether the object is a car driving lane, a
pedestrian zone, or a cycle lane, while the usage attribute indicates which modes of
transportation can use it (e.g. pedestrian, car, tram, roller skates). The attribute
surfaceMaterial specifies the type of pavement and may also be wused for
AuxiliaryTrafficAreas (e.g. asphalt, concrete, gravel, soil, rail, grass etc.). The function
attribute of the AuxiliaryTrafficArea defines, among others, kerbstones, middle lanes, or green
areas. The possible values are specified in external code lists.

TransportationComplex is a subclass of _TransportationObject and of the root class
_CityObject. The geometrical representation of the TransportationComplex varies through the
different levels of detail. In the coarsest LoDO, the transportation complexes are modelled by
line objects establishing a linear network. Starting from LoD1, a TransportationComplex
provides an explicit surface geometry, reflecting the actual shape of the object, not just its
centreline. In LoD2 to LoD4, it is further subdivided thematically into TrafficAreas, which are
used by transportation, such as cars, trains, public transport, airplanes, bicycles, or pedestrians
and in AuxiliaryTrafficAreas, which are of minor importance for transportation purposes, for
example road markings, green spaces or flower tubs.

2.2.4.9 Tunnel Model

The tunnel model is closely related to the building model. It supports the representation of
thematic and spatial aspects of tunnels and tunnel parts in four levels of detail, LODI1 to
LODA4. The UML diagram of the tunnel model is shown in Figure 21. The pivotal class of the
model is _AbstractTunnel, which is a subclass of the thematic class _Site (and transitively of
the root class _CityObject). AbstractTunnel is specialized either to a Tunnel or to a
TunnelPart. Since an AbstractTunnel consists of TunnelParts, which again are
_AbstractTunnels, an aggregation hierarchy of arbitrary depth may be realized. Both classes
Tunnel and TunnelPart inherit the attributes of _AbstractTunnel: the class of the tunnel, the
function, the usage, the year of construction and the year of demolition. In contrast to
_AbstractBuilding, Address features cannot be assigned to _AbstractTunnel.

Figure 20: Example of a tunnel modelled with two tunnel parts

50 3D Geodatabase for CityGML 2018

The geometric representation and semantic structure of an _AbstractTunnel is shown in
Figure 21. The model is successively refined from LOD1 to LOD4. Therefore, not all
components of a tunnel model are represented equally in each LOD and not all aggregation
levels are allowed in each LOD. An object can be represented simultaneously in different
LODs by providing distinct geometries for the corresponding LODs.

<<Feature>> <1 —| <<Featura>> 1
core::_CityObject core::_Site
e ————————— —————
lod3ImplicitRepresentation w1 <<Object>>
loddimpliciiRepresentation | Sore: mpEC tCeometry
0.1
Indd-lmphc\lRepresemalian"“ lnd 2ImnlicitRe nresentation
I A mpnlicitRe nresantation
lod4implicitRe prese ntation
= £ 0.1 InddimnlicitRe nresentation
lod4Geometry 0.1 0.1
=) <<Geomelry>> | lod2Geometry <<Feature>>
lod4Geometry gmi::_Geometry ‘ lod 3Geometry Tunnelinstallation
S
0.1 lod4Geometry « [+class : gmi:CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml:CodeType [0..]
<<Feature>>
Int T tallation outerTunnellnstallation
* | +class : gmi:CodeType [0.1]
+function : gml::CodeType [0..*]
+usage : gmi:CodeType [0..*]
.~ InterierTunnelinstallation
hollowSpacelnstalation
<<Feature>>
_Abstract Tunnel
<<Feature>>
—] TunnelFurnlture +class : gmizCodeType [0..1]
+function : gml::CodeType [0..*]
+dass : gml:CodeType [0..1] +usage : gmlzCodeType [0..*]
VAR 8 (LSOl SR | D +yearOfConstruction : xs::gYear [0..1] .
jasansRomt ocelynel DR +yearOfDemolition : xs:gYear [0..1] %
G gimeriorFumiture
0.1 0.1
<<Feature== o <<Feature>> <<Feature>>
HollowSpace . Tunnel | | TunnelPart
+class : gmlzCodeType [0..1] consistsOfTunnelPart
+function : gml::CodeType [0..*] interiorHollowSpace
+usage : gml:CodeType [0..*
98:9 ype [0-7] T8 lod TMultiSurface lod 1Termainintersection ledZMultiCurve
0.1 lod? Solid lod2MultiSurface lod2Terrainintersection lod 3MultiCurve
Ind3Snlid lod3MultiSurface lod3Terrainintersection lod4MultiCurve
0.1 IndaSnlid loddaMultiSurface [0-1 [lod4Terrainintersection
0.1 0.1
<<Geometry>> <<Geometry=> <<Geometry=>
L e it gml:;_Solid gml:: MultiSurface gml::MultiCurve
0.1
D..'\/P 0.1 0.1
<<Fealure>> lodaMultiSurface lod2MultiSurface
_Opening lod3MUltiSurface lod 3MultiSurface
lod4MultiSurface
D loddMultiSurface
<<Feature>> <<Feature>> .
Window Door boundedBy [<<Fealura>> boundedBy
_Bo ySurface > boundedB
0.2 * -boundedBy
[I I I 1 I 1
<<Feature>> <<Feature>> <<Feature>> =<<Feature>> <=<Feature>> <<Fealure>> <<Feature>>
RoofSurface WallSurfacee GroundSurface c rface CeilingSurface InteriorWallSurface FloorSurface
<<Feature>> <<Feature>>

OuterCeilingSurface

OuterFloorSurface

Figure 21: UML diagram of tunnel model

Similar to the building and bridge models (cf. chapters 2.2.4.2 and 2.2.4.3), only the outer
shell of a tunnel is represented in LODI1 — 3, which is composed of the tunnel’s boundary
surfaces to the surrounding earth, water, or outdoor air. The interior of a tunnel may only be

modelled in LOD4.

3D Geodatabase for CityGML 2018 51

In LODI, a tunnel model consists of a geometric representation of the tunnel volume.
Optionally, a MultiCurve representing the TerrainlntersectionCurve can be specified. The
geometric representation is refined in LOD2 by additional MultiSurface and MultiCurve
geometries. In LOD2 and higher LODs the outer structure of a tunnel can also be
differentiated semantically by the classes BoundarySurface and Tunnellnstallation. A
boundary surface is a part of the tunnel’s exterior shell with a special function like wall
(WallSurface), roof (RoofSurface), ground plate (GroundSurface), outer floor
(OuterFloorSurface), outer ceiling (OuterCeilingSurface) or ClosureSurface (see Figure 22).
The Tunnellnstallation class is used for tunnel elements like outer stairs, strongly affecting
the outer appearance of a tunnel. A Tunnellnstallation may have the attributes class, function

and usage.

RoofSurface / OuterCeilingSurface

il @ rface rface
o CeilingSurface s S;. & ‘6\\5\! gc? & @\Su
8 T ~ &] d.
@ 5 T §] £ &/ &
5 @ & - Y 5 2
2 2 T 3
¥ s s =z
= 8 E FloorSurface
= FloorSurface —
GroundSurface
Rectangular Cross Section Circular Cross Section Circular Cross Section
ace / Oy,
Sy,
Q-/_/' s "x,‘?‘p@
& é\\suriace > Gé\\-‘“g Urfag, \‘_\ %, &
.f ot‘\ / \B :,g CeilingSurface
] [3 N, £ |2 2
S e @ =4 =
g é é 3 = 3
T s s 5 = =
@ z zZ @ E E
FloorSurface = £ FloorSurface = i FloorSurface
S = =
A GroundSurface
Circular Cross Section Arbitrary Cross Section Arbitrary Cross Section

Figure 22: Different BoundarySurfaces of a tunnel

In LOD3, the openings in _BoundarySurface objects (doors and windows) can be represented
as thematic objects. In LOD4, the highest level of resolution, also the interior of a tunnel,
composed of several hollow spaces, is represented in the tunnel model by the class
HollowSpace. This enlargement allows a virtual accessibility of tunnels, e.g. for driving
through a tunnel, for simulating disaster management or for presenting the light illumination
within a tunnel. The aggregation of hollow spaces according to arbitrary, user defined criteria
(e.g. for defining the hollow spaces corresponding to horizontal or vertical sections) is
achieved by employing the general grouping concept provided by CityGML (cf. chapter
2.2.4.1). Interior installations of a tunnel, i.e. objects within a tunnel which (in contrast to
furniture) cannot be moved, are represented by the class IntTunnellnstallation. If an
installation is attached to a specific hollow space (e.g. lamps, ventilator), they are associated
with the HollowSpace class, otherwise (e.g. pipes) with _AbstractTunnel. A HollowSpace
may have the attributes class, function and usage whose possible values can be enumerated in

52 3D Geodatabase for CityGML 2018

code lists. The class attribute allows a general classification of hollow spaces, e.g. commercial
or private rooms, and occurs only once. The function attribute is intended to express the main
purpose of the hollow space, e.g. control area, installation space, and storage space. The
attribute usage can be used if the way the object is actually used differs from the function.
Both attributes can occur multiple times. The visible surface of a hollow space is represented
geometrically as a Solid or MultiSurface. Semantically, the surface can be structured into
specialized BoundarySurfaces, representing floor (FloorSurface), ceiling (CeilingSurface),
and interior walls (InteriorWallSurface). Hollow space furniture, like movable equipment in
control areas, can be represented in the CityGML tunnel model with the class
TunnelFurniture. A TunnelFurniture may have the attributes class, function and usage.

22410 Vegetation Model

The vegetation model of CityGML distinguishes between solitary vegetation objects like trees
and vegetation areas, which represent biotopes like forests or other plant communities. Single
vegetation objects are modelled by the class SolitaryVegetationObject, while for areas filled
with specific vegetation the class PlantCover is used.

SolitaryVegetationObje

PlantCover
(MultiSolid)

Figure 23: Image illustrates objects of the vegetation model
(from: [Groger et al., 2008])

The geometry representation of a PlantCover feature may be a MultiSurface or a MultiSolid,
depending on the vertical extent of the vegetation. For example, regarding forests, a
MultiSolid representation might be more appropriate (cf. Figure 23).

The UML diagram of the vegetation model is depicted in Figure 24. A SolitaryVegetation-
Object may have the attributes class (e.g. tree, bush, grass), species (species’ name, e.g. Abies
alba), wusage, and function (e.g. botanical monument), height, trunkDiameter and
crownDiameter. A PlantCover feature may have the attributes class (plant community),
usage, function (e.g. national forest) and averageHeight. Since both SolitaryVegetationObject
and PlantCover are CityObjects, they inherit all attributes of a city object, in particular its
name (gml:name) and an ExternalReference to a corresponding object in an external
information system, which may contain botanical information from public environmental
agencies.

3D Geodatabase for CityGML 2018 53

<<Feature>>

core::_CityObject

1

<<Feature>>

VegetationObject

lod1Geometry [1 * lod1
<<Feature>> <<Feature>>
<<Geometry>> 0..1 | lod2Geometry +| SolitaryVegetationObject PlantCover + _lod2MultiSurface |0..1 <<Geometry>>
- lass : gml::CodeType [0..1] +class : gml::CodeType [0..1] " > I::MultiSurf:
gml::_Geometry J*c g yp! . gml::MultiSurface
fodaGeomely +function : gmi::CodeType [0.] +function : gmi::CodeType [0.] oMU Suriace)
lod4Geometry «|+usage : gml::CodeType [0..] +usage : gml:CodeType [0..%] + lod4MultiSurface
+species : gml::CodeType [0..1] +averageHeight : gml::LengthType [0..1]
lod 1mplicitRepresentation _+ *height : gmi::LengthType [0..1] *___lod1MultiSolid
+trunkDiameter : gml::LengthType [0..1] 0.1 =G e
<<Object>> 0..1| lod2ImplicitRepresentation _#| +crownDiameter : gml::LengthType [0..1] « lod2MultiSolid S N en:”l‘i;yl‘d
. gmi::NultiSolu
core::ImplicitGeomet lod3ImplicitRepresentation 4 »__ lod3MultiSolid
lod4ImplicitRepresentation | * lod4MultiSolid

Figure 24: Vegetation Model

The geometry of a SolitaryVegetationObject may be defined in LoD 1-4 by absolute
coordinates, or prototypically by an ImplicitGeometry. Season dependent appearances may be
mapped using ImplicitGeometries. For visualisation purposes, only the content of the library
object defining the object’s shape and appearance has to be swapped.

A SolitaryVegetationObject or a PlantCover may have a different geometry in each LoD.
Whereas a SolitaryVegetationObject is associated with the _Geometry class representing an
arbitrary GML geometry (by the relation /lodXGeometry), a PlantCover is restricted to be
either a MultiSolid or a MultiSurface.

2.2.4.11 WaterBodies Model

The water bodies model represents the thematic aspects and 3D geometry of rivers, canals,
lakes, and basins. In LoD 2-4 water bodies are bounded by distinct thematic surfaces. These
surfaces are the obligatory WaterSurface, defined as the boundary between water and air, the
optional WaterGroundSurface, defined as the boundary between water and underground (e.g.
DTM or floor of a 3D basin object), and zero or more WaterClosureSurfaces, defined as
virtual boundaries between different water bodies or between water and the end of a modelled
region (cf. Figure 25). A dynamic element may be the WaterSurface to represent temporarily
changing situations of tidal flats.

WaterSurface

—<> WaterBody

WaterClosure
Surface

—

WaterGroundSurface

Figure 25: Definition of waterbody attributes (from: [Groger et al., 2012])

54 3D Geodatabase for CityGML 2018

Each WaterBody object may have the attributes class (e.g. lake, river, or fountain), function
(e.g. national waterway or public swimming) and usage (e.g. navigable) referencing to
external code lists. Since the attributes usage and function may be used multiple times, storing
them in only one string requires a unique delimiter.

WaterBody is a subclass of the root class CityObject. The geometrical representation of the
WaterBody varies for different levels of detail. The WaterBody can be differentiated
semantically by the class WaterBoundarySurface. A _WaterBoundarySurface is a part of the
water body’s exterior shell with a special function like WaterSurface, Water GroundSurface or
WaterClosureSurface. As with any _CityObject, WaterBody objects as well as WaterSurface,
WaterGroundSurface, and WaterClosureSurface objects may be assigned ExternalReferences
and GenericAttributes.

Both LoDO0 and LoD1 represent a low level of illustration and high grade of generalisation.
Here the rivers are modelled as MultiCurve geometry and brooks are omitted. Seas, oceans,
and lakes with significant extent are represented as MultiSurfaces. (cf. Figure 26)

<<Feature>>
core::_CityObject

[
0-1 jocoMultisurface <;Ffa‘;m.> > .
<<Geometry>>) _WaterObjec:
gml::MultiSurface lodTMultiSurface
<<Feature>> b X « lod2Surface
lod1Solid . WaterBo <
I heTroaa CodeType;)yﬂ boundedBy| <<Feature>> + lod3Surface i <<Geometry>>
i G ’ ’ WaterBoundarySurf: [o:
e ——— 0.1/ lod2Solid +function : gml::CodeType [0.] _WaterBoundarySurface I gml::_Surface
gmi::_Solid lod3Solid + |+usage : gml:CodeType [0.."]
lod4Solid
lodOMultiCi <<Feature>>
Of ultiCurve * -
WaterSurface
<<Genma?try>> . . <<Feature>> <<Feature>> o i ; T i
GBI MRS lcdIMULTEING WaterClosureSurface | | WaterGroundsurface | | "@ertevel -gml:CodeType 0..1]

Figure 26: Waterbody model

Starting from LoD1, water bodies may also be modelled as volumes filled with water,
represented by Solids. If a water body is represented by a Solid in LoD2 or higher, the surface
geometries of the corresponding thematic WaterClosureSurface, WaterGroundSurface, and
WaterSurface objects must coincide with the exterior shell of the Solid. This can be ensured,
if for one LoD X the respective lodXSurface elements (where X is between 2 and 4) of
WaterClosureSurface, WaterGroundSurface, and WaterSurface reference the corresponding
polygons (using XLink) within the CompositeSurface that defines the exterior shell of the
Solid. Furthermore, every WaterBoundarySurface must have at least one associated surface
geometry attached.

The water body model implicitly includes the concept of TerrainintersectionCurves (TIC),
e.g. to specify the exact intersection of the DTM with the 3D geometry of a WaterBody or to
adjust a WaterBody or WaterSurface to the surrounding DTM. The rings defining the
WaterSurface polygons implicitly delineate the intersection of the water body with the terrain
or basin.

3D Geodatabase for CityGML 2018 55

2.3 Relational database schema

2.3.1 Mapping rules, schema conventions

2.3.1.1 Mapping of classes onto tables

Generally, one or more classes of the UML diagram are mapped onto one table; the name of
the table is identical to the class name (a leading underscore indicating an abstract class is left
out). Classes are combined into a single table according to the class relations as shown in the
UML diagrams by using orange coloured boxes. The scalar attributes of the classes become
columns of the corresponding table with identical name.

The types of the attributes are customized to corresponding database (Oracle/PostgreSQL)
data types (see Table 1). Some attributes of the data type date were mapped to TIMESTAMP
WITH TIME ZONE to allow a more accurate storage of time values.

Data type mapping (excerpt)

UML Oracle PostgreSQL / PostGIS
String, anyURI VARCHAR2, CLOB VARCHAR, TEXT
Integer NUMBER NUMERIC
Double, gml:LengthType BINARY_DOUBLE DOUBLE PRECISION
Boolean NUMBER(1,0) NUMERIC
Date DATE, DATE,
TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE
Primitive Type (Color,
TransformationMatrix, VARCHAR?2 VARCHAR
CodeType etc.)
Enumeration VARCHAR2 VARCHAR
AL (CmmEiTy, SDO_GEOMETRY GEOMETRY

textureCoordinates

GML RectifiedGridCoverage | SDO_GEORASTER & SDO_RASTER RASTER

Texture (only reference of
type anyURI in CityGML) BLOB BYTEA

Table 1: Data type mapping

2.3.1.2 Explicit declaration of class affiliation

In the (meta) table OBJECTCLASS, all class names (attribute CLASSNAME) of the schema
are managed. The relation of the subclass to its parent class is represented via the attribute
SUPERCLASS_ID in the subclass as a foreign key to the ID of the parent class (see).

The table OBJECTCLASS 1is used to efficiently determine the affiliation to a class in the
superclass tables. In addition, the table CITYOBJECT contains the attribute

OBJECTCLASS ID which refers to the respective table OBJECTCLASS. This way, while
looking at a tuple in CITYOBJECT, the subclass and — if needed — the name of the class can
be determined directly. This mechanism has also been adopted in other tables that are used to
store different CityGML features, e.g. THEMATIC SURFACE (for all different
BoundarySurfaces of a Building feature) or BUILDING INSTALLATION (outer or interior)
etc. Please consider that using CityGML ADEs could lead to additional OBJECTCLASS 1Ds
in this table (please also refer to 2.3.3.1 Metadata Model).

56

3D Geodatabase for CityGML 2018

OBJECTCLASS
ID CLASSNAME SUPERCLASS_ID
0 Undefined
1 _GML
2 _Feature 1
3 _CityObject 2
4 LandUse 3
5 GenericCityObject 3
6 _VegetationObject 3
7 SolitaryVegetationObject 6
8 PlantCover 6
9 WaterBody 105
10 _WaterBoundarySurface 3
11 WaterSurface 10
12 WaterGroundSurface 10
13 WaterClosureSurface 10
14 ReliefFeature 3
15 _ReliefComponent 3
16 TINRelief 15
17 MassPointRelief 15
18 BreaklineRelief 15
19 RasterRelief 15
20 _Site 3
21 CityFurniture 3
22 _TransportationObject 3
23 CityObjectGroup 3
24 _AbstractBuilding 20
25 BuildingPart 24
26 Building 24
27 Buildinglnstallation 3
28 IntBuildingInstallation 3
29 _BuildingBoundarySurface 3
30 BuildingCeilingSurface 29
31 InteriorBuildingWallSurface 29
32 BuildingFloorSurface 29
33 BuildingRoofSurface 29
34 BuildingWallSurface 29
35 BuildingGroundSurface 29
36 BuildingClosureSurface 29
37 _BuildingOpening 3
38 BuildingWindow 37
39 BuildingDoor 37
40 BuildingFurniture 3
41 BuildingRoom 3
42 TransportationComplex 22
43 Track 42
44 Railway 42
45 Road 42
46 Square 42
47 TrafficArea 22
48 AuxiliaryTrafficArea 22
49 FeatureCollection 2
50 Appearance 2
51 _SurfaceData 2
52 _Texture 51
53 X3DMaterial 51
54 ParameterizedTexture 52
55 GeoreferencedTexture 52

3D Geodatabase for CityGML 2018

57

56 _TextureParametrization 1
57 CityModel 49
58 Address 2
59 ImplicitGeometry 1
60 OuterBuildingCeilingSurface 29
61 OuterBuildingFloorSurface 29
62 _AbstractBridge 20
63 BridgePart 62
64 Bridge 62
65 Bridgelnstallation 3
66 IntBridgelnstallation 3
67 _BridgeBoundarySurface 3
68 BridgeCeilingSurface 67
69 InteriorBridgeWallSurface 67
70 BridgeFloorSurface 67
71 BridgeRoofSurface 67
72 BridgeWallSurface 67
73 BridgeGroundSurface 67
74 BridgeClosureSurface 67
75 OuterBridgeCeilingSurface 67
76 OuterBridgeFloorSurface 67
77 _BridgeOpening 3
78 BridgeWindow 77
79 BridgeDoor 77
80 BridgeFurniture 3
81 BridgeRoom 3
82 BridgeConstructionElement 3
83 _AbstractTunnel 20
84 TunnelPart 83
85 Tunnel 83
86 Tunnellnstallation 3
87 IntTunnellnstallation 3
88 _TunnelBoundarySurface 3
89 TunnelCeilingSurface 88
90 InteriorTunnelWallSurface 88
91 TunnelFloorSurface 88
92 TunnelRoofSurface 88
93 TunnelWallSurface 88
94 TunnelGroundSurface 88
95 TunnelClosureSurface 88
96 OuterTunnelCeilingSurface 88
97 OuterTunnelFloorSurface 88
98 _TunnelOpening 3
99 TunnelWindow 98
100 TunnelDoor 98
101 TunnelFurniture 3
102 HollowSpace 3
103 TexCoordList 56
104 TexCoordGen 56
105 _WaterObject 3
106 _BrepGeometry 0
107 Polygon 106
108 BrepAggregate 106
109 Texlmage 0
110 ExternalReference 0
111 GridCoverage 0
112 _genericAttribute 0
113 genericAttributeSet 112

58 3D Geodatabase for CityGML 2018

2.3.2 Conceptual database structure

Starting from version 4.0.0, the 3DCityDB database schema has been slightly modified to
support the handling of CityGML ADEs (Application Domain Extensions). With this
enhancement, user-defined database schemas can be dynamically created and attached to a
3DCityDB instance for storing ADE data contents. In addition, every existing CityGML class
table is now equipped with an OBJECTCLASS ID column which allows to distinguisch the
stored data contents of different CityGML and ADE classses having inheritance relationships.
Moreover, a set of new metadata tables are introduced in addition to the existing
OBJECTCLASS table, for holding the relevant meta-information of the registered CityGML
ADEs. In general, all 3DCityDB tables now logically belong to one of the three modules
Metadata Module, Core Data Module, and Dynamic Data Module, whose relations are shown
in the following figure.

=
S~dl -7
e ——————————— R_______‘___x.< __________ i \~\:<”l ___________________ s ;_7 __________ _/:_ ___________ i

\\ ~o PR S~o 7’ 1
S~ -7 S~ e 1

_____________________________ A_______________\'_:__:7‘_______________‘i________7£_______________"_______________|
- ’V\ ‘\\ ’ 1
Dynamic Data Module Lem T TN Rt :
/’ i \\\~ 1
CityGML ADE 1 CityGML ADE 2

Modules = = =

| Many More ADEs |

Figure 27: New conceptual 3DCityDB database structure for handling CityGML ADEs

The green tables enclosed in the Core Data Module represent those database tables that are
responsible for storing the standard CityGML models such as Building, Transportation,
Tunnel, CityFurniture, CityObjectGroup, Generic, Appearance etc. This module comprises
basically the tables of the database schema of previous versions of the 3DCityDB (cf. the next
section for more details). For a given CityGML ADE, an additional group of database tables
forming a separate module belonging to the Dynamic Data Module (pink tables in the figure)
can be created and attached to the 3DCityDB database schema. In addition, the relationships
(e.g. generalization/specialization and associations) among the model classes of CityGML and
CityGML ADEs are adequately reflected using database foreign key constraints which allow
to ensure the data integrity and consistency within the database system. The Metadata Module
associated with the Dynamic Data Module is utilized for storing the relevant meta-
information (e.g. the XML namespaces, schema files, and class affiliations etc.) about ADEs
as well as the referencing relations among the ADE and CityGML application schemas. This

3D Geodatabase for CityGML 2018 59

way, the dependencies between the registered ADE application schemas can be directly read
from the 3DCityDB database schema to facilitate the database administration process, i.e. the
registration and deregistration of multiple CityGML ADEs within a 3DCityDB instance.

2.3.3 Database schema

In the following paragraph, the tables of the relational schema are displayed graphically and
described in detail. The description is based on the remarks on UML charts in chapter 2.2.
Focus is put on situations where the conversion into tables leads to changes in the model.

The figures are taken from Oracle JDeveloper, which allows to design different diagrams and
reuse already defined tables. JDeveloper (v12.2.1) was used to design the database schema
and extract SQL DDL scripts automatically for Oracle databases. It is a freeware IDE by
Oracle and can be downloaded at: http://www.oracle.com/technetwork/developer-tools/jdev.

For PostgreSQL databases the Open Source tool pgModeler (v0.8.2) has been used to
maintain the schema. Packed installers can be purchased at http://pgmodeler.com.br/ or the
user compiles the software from the source code available at GitHub
(https://github.com/pgmodeler/pgmodeler).

Starting from version 3.0.0 of the 3DCityDB the corresponding schema modelling projects
are shipped with the release and can be edited by the user to create customized SQL scripts.
However, the 3DCityDB Import/Export tool only supports the default schema, unless it is not
reprogrammed against the user’s new database schema.

2.3.3.1 Metadata Model

An overview of the relational structure of the Metadata Module is shown in Figure 28. The
table ADE serves as a central registry for all the registered CityGML ADEs each of which
corresponds to a table row and the relevant ADE metadata attributes are mapped onto the
respective columns. For example, each registered ADE shall own a globally unique ID value
for identification purpose. This ID value could be a UUID (Universally Unique Identifier)
which can be automatically generated and stored in the column ADEID while registering the
ADE. The columns NAME and DESCRIPTION are mainly used for storing the basic
description information of each ADE. The column VERSTION denotes the version number of
an ADE and allows to distinguish different release versions. In the 3DCityDB database
schema, the database objects like tables, indexes, foreign key constrains, and sequences of a
certain ADE shall be named by starting with a unique prefix. This allows applications to
rapidly fetch out the database schema of a certain ADE using a wildcard filter. In this way, it
is possible to automatically perform some kinds of statistics on the ADE data contents stored
in the individual tables. In addition, the column XML SCHEMAMAPPING FILE is used to
store the XML-formatted schema mapping information of each ADE and is henced defined
with the CLOB data type. Another CLOB-typed column is DROP DB SCRIPT where the
SQL statements for dropping the individual ADE database schema is saved and can be easily
retrieved and carried out at the database side. Moreover, the CREATION DATE and
CREATION PERSON are two application-specific attribute columns for providing the
information about who and when have operated the ADE registration process. This meta-

60

3D Geodatabase for CityGML 2018

information is typically helpful for 3DCityDB users to accomplish the administration work
e.g. searching and cleaning up those ADEs that are outdated or registered by certain database

users.

5] SCHEMA_REFERENCING
REFERENCING _ID : NUMBER
REFERENCED_ID : NUMBER

«PK=SCHEMA_REFEREMCING _PK: REFERENCING _ID, REFERENCED_ID
«FK=SCHEMA_REFEREMCING _FK1: REFERENCING _ID
«FH>SCHEMA_REFEREMNCING _FK2: REFERENCED_ID

REFERENCED_D | , 1| REFERENCING_ID
4 $
= SCHEMA

D : NUMBER

1S_ADE_ROOT : NUMBER(1, 0)
CITYGML_VERSION : VARCHAR2(0)
¥ML_NAMESPACE_URI | VARCHAR2(4000)
¥ML_NAMESPACE_PREFIX : VARCHAR2(50)
¥ML_SCHEMA_LOCATION : Y ARCHAR2(4000)
¥ML_SCHEMAFILE : BLOB
¥ML_SCHEMAFILE_T'YPE : VARCHAR2(256) .
ADE_ID : NUMBER

=PKSCHEMA_PK: ID
«FKSCHEMA_ADE_FK: ADE_D

0 ¥

SCHEMA_ID

* o]

= SCHEMA_TO_OBJECTCLASS
SCHEMA_ID : NUMBER
OBJECTCLASS_ID : NUMBER

«PK=SCHEMA_TO_OBJECTCLASS _PK: SCHEMA_ID, OBJECTCLASS_ID
«FK=SCHEMA_TO_OBJECTCLASS_FK1: SCHEMA_ID
«FK=SCHEMA_TO_CBJECTCLASS _FKZ: OBJECTCLASS_ID

] DATABASE_SRS
SRID : NUMBER(38, 0)
GML_SRS_NAME : VARCHAR2(1000)
UNVERSIONED TABLE

«PK=DATABASE_SRS_PK: SRID

= ADE

D : NUMBER

ADEID : VARCHAR2(256)

NAME : VARCHAR2(1000)
ADE o |PESCRIPTION : VARCHAR2(4000)

— | VERSION : VARCHAR2(50)

DB_PREFIY : VARCHAR2(10)
¥ML_SCHEMAMAPPING _FILE : CLOB
DROP_DB_SCRIPT : CLOB
CREATION_DATE : TIMESTAMP WITH TIME ZONE
CREATION_PERSON : VARCHAR2(256)

0.1

«PK=ADE_PK: ID

ADE_ID § 0.1

“|p ‘lop *|D
] OBJECTCLASS
1D - MUMBER
|5_ADE_CLASS : NUMBER(1, 0)
|S_TOPLEVEL : NUMBER(1, 0 0
CLASSMAME : VARCHARZ(256) |7y —
TABLEMAME : WV ARCHARZ{30) SUPERCLASS_D

SUPERCLASS _ID : NUMBER

BASECLASS_ID : NUMBER

ADE_ID : NUMBER 0.1

<PK>0BJECTCLASS_PK: ID

——*# :FK>0BJECTCLASS_ADE_FK: ADE_D

1 |«FKsOBJECTCLASS_BASECLASS_FK: BASECLASS_ID
<FK30BJECTCLASS _SUPERCLASS_FK: SUPERCLASS D

OBJECTCLASS_ID
BASECLASS_ID

CHILD_ID$ 1 PARENT_ID 1

.

D +| ID

AGGREGATION_INFO
CHILD_ID : NUMBER

PARENT_ID : NUMBER

JOIN_TABLE_OR_COLUMN_MANE : 'ARCHAR2(30)

MIN_OCCURS : NUMBER

MAX_OCCURS : NUMBER

15 COMPOSITE : NUMBER{1, 0)
<PK3AGGREGATION_NFO_PK: CHILD_ID, PARENT_ID, JOIN_TABLE_OR_COI
<FK3AGGREGATION_INFO_FK1: CHILD_ID

<FK3AGGREGATION_INFO_FK2: PARENT_ID

Figure 28: Technical implementation of the 3DCityDB Metadata Module in a relational diagram

A CityGML ADE may consist of multiple application schemas one of which should be the
root schema referencing the others. Such dependency information along with the meta-

information of the individual schema are stored in two tables, namely SCHEMA and
SCHEMA REFERENCING. The SCHEMA REFERENCING table is an associative table which

3D Geodatabase for CityGML 2018 61

contains two foreign key columns REFERENCED ID and REFERENCING ID to link the
respective referencing and referenced schemas. In the table SCHEMA, the flag attribute
IS ADE ROOT is used for denoting the root schema that directly or indirectly references all
the other ADE schemas of an ADE. In this way, the dependency hierarchy of the ADE
schemas can be fully represented in a relational model to facilitate the reconstruction of the
original schema relations through user applications. For each schema, its meta-information
such as the schema location, namespace, namespace prefix, source XML schema definition
file, as well as the file type (e.g. plain XML text or archived) of the schema can also be stored
in the further columns of the SCHEMA table. The column CITYGML VERSION refers to the
consideration that an ADE schema may have two different versions, because they can be
defined based on both CityGML version 1.0.0 and 2.0.0 at the same time.

The table OBJECTCLASS is a central registry for enumerating not only the standard
CityGML classes but also the classes of the registered ADEs. Each class is assigned with a
globally unique numeric ID for querying and accessing the class-related information. As
explained in the section 2.3.1.2, the ID values ranging from O to 113 have already been
reserved for the standard CityGML classes. Thus, the ID values of the registered ADE classes
must be larger than 113. Concerning the situation that more additional feature classes might
be introduced into the future versions of the CityGML standard, a certain range of integer
values must be preserved and shall not be used for ADEs. Therefore, for each ADE, it is
recommended to assign its classes with a set of relatively large integer values which can be
incrementally sequenced with an initial value of 10000. In order to avoid the class ID conflict,
each ADE shall own a certain large value range which can be centrally maintained and
organized by an official community like the 3DCityDB group. The OBJECTCLASS table also
contains a few additional columns like the IS ADE CLASS which is a flag attribute to
denote which classes are belonging to ADEs. Another column named TABLENAME refers to
the table name of a CityGML or ADE class and provides the basic information about model
mapping. The last two columns SUPERCLASS ID and BASECLASS ID are two foreign
key columns of the ID column for representing the inheritance hierarchy of all the CityGML
and ADE classes in a relational structure.

In addition to the inheritance relationship, the aggregation relationship between CityGML and
ADE classes can also be represented within a 3DCityDB instance by means of the table
AGGREGATION INFO. Its first two columns CHILD ID and PARENT ID are two foreign
key columns which point to the primary key column of the table OBJECTCLASS to reflect
the two related classes. The aggregation or composition relationship between each pair of
classes can be distinguished by using the flag attribute IS COMPOSITE whose value can
either be 0 (aggregation) or 1 (composition). In 3DCityDB, each aggregation/composition is
logically mapped onto a foreign key column or an associative table for joining the two
respective class tables. This meta-information can also be stored in the table
AGGREGATION INFO using its column JOIN TABLE OR COLUMN NAME. In addition,
the multiplicity of the individual aggregation/composition are stored in the two numeric
columns MIN OCCURS and MAX OCCURS. In case of a 0..* relationship where the value of
the multiplicity end is unbounded, the value in the column MAX OCCURS shall be set NULL.

62 3D Geodatabase for CityGML 2018

2.3.3.2 Core Model
CITYOBJECT, CITYOBJECT_SEQ

All CityObjects (and instances of the subclasses like Buildings etc.) are represented by tuples
in the table CITYOBJECT. The fields are identical to the attributes of the corresponding
UML class, plus additional columns for metadata like LAST MODIFICATION DATE,
UPDATING PERSON, REASON FOR UPDATE and LINEAGE.

The bounding box (gml:Envelope) is stored as rectangular geometry using five points, that
join the minimum and maximum x, y and z coordinates of the bounding box and define it
completely. For backwards compatibility reasons (to Oracle 10g), the envelope cannot be
stored as a volume.

Figure 29: The CityObject’s envelope specified by two points with minimum and maximum coordinate values

(left: black points) is stored as a 3D rectangle (right: black polygon using five points)
In order to identify each object, a unique identifier is essential. Therefore, the column GMLID
stores the gml:id value of every city object. But since gml:ids cannot be guaranteed to be
unique over different CityGML files, the column GMLID CODESPACE is provided in
addition. It may contain, for instance, the full path to the imported CityGML file containing
the object. The combination of GMLID and GMLID CODESPACE should be ensured to be
unique for each CityObject.

The attributes NAME or NAME CODESPACE can contain more than one gml:name property.
In this case they have to be separated by the string '-=-/\-- ' (more details on the following
page). The CityGML exporter will then create multiple occurrences of <gml:name>
elements.

The attribute OBJECTCLASS ID provides information on the class affiliation of the
CityObject. This helps to identify the proper subclass tables.

The next free ID value for the table CITYOBJECT is provided by the database sequence
CITYOBJECT SEQ. This ID is also reused in the separate tables for the different thematic
features.

3D Geodatabase for CityGML 2018 63

CITYMODEL, CITYMODEL_SEQ

CityObject features may be aggregated to a single CityModel. A CityModel serves as root
element of a CityGML feature collection. In order to provide a unique identifier in table
CITYMODEL, the next available ID value is provided by the sequence CITYMODEL SEQ.

EXTERNAL_REFERENCE, EXTERNAL_REF_SEQ

The table EXTERNAL REFERENCE is used to store external references; the foreign key
CITYOBJECT ID refers to the associated CityObject. The sequence EXTERNAL REF SEQ
provides the next available ID value for EXTERNAL REFERENCE.

CITYOBJECTGROUP, GROUP_TO_CITYOBJECT

The aggregation concept described in paragraph 2.1.1 is realized by two tables. The n:m
relationship between an object group (table CITYOBJECTGROUP) consisting of city objects
contained in CITYOBJECT is realized by the table GROUP TO CITYOBJECT, which
associates the IDs of both tables. Table 2 shows an example, in which two buildings are
grouped to a hotel complex.

CITYOBJECTGROUP (excerpt)
CLASS_ FUNCTION_ USAGE_
B ks CODESPACE FENEIDOh] CODESPACE Linie CODESPACE
1 NULL NULL Building group NULL Hotel NULL
GROUP_TO_CITYOBJECT
CITYOBJECT_ID CITYOBJECTGROUP_ID ROLE
2 1 Main building
4 1 Annex
CITYOBJECT (excerpt)
ID | OBJECTCLASS ID| GML ID | ENVELOPE CREATION_DATE TERM&':’;E'ON—
2 26 Build1632 GEOMETRY 2015-02-02 09:26:07.441+01 NULL
4 26 Build1633 GEOMETRY 2015-02-02 09:26:07.441+01 | NULL
1 23 Group1700 NULL 2015-02-02 09:26:07.441+01 NULL

Table 2: Cityobjectgroup tables

For attributes CLASS, FUNCTION and USAGE there is an additional CODESPACE column
in order to specify the source of code lists used for values (e.g. by a globally unique URL). As
a CityGML feature like CityObjectGroup can have multiple instances of attributes class,
function and usage but only one target column exist in the table, values are separated by the
string sequence '--/\-- '. The CityGML exporter will then create multiple occurrences of
corresponding elements. Normalization rules were not applied in this case in order to avoid
many joins when querying all information of building objects. Array types weren’t used either
as their implementation varies between different database systems.

This concept applies to all CityGML features and can therefore be found in every object table
(except for boundary surfaces of buildings, bridges and tunnels). They do not appear once in

64

3D Geodatabase for CityGML 2018

the CITYOBJECT table, because they are belonging to the namespace of a certain thematic
module and should be stored along with other attributes of that feature.

=] stables
CITYOBJECTGROUP.
ID : NUMBER

(OBUECTCLASS 1D : NUMBER

(CLASS : VARCHAR2(256)
(CLASS_CODESPACE : VARCHAR2(4000)
FUNCTION : VARCHAR2(1000)
FUNCTION_CGDESPACE : VARGHAR2(4000)
USAGE : VARCHAR2(1000)
USAGE_CODESPAGE : VARCHAR2(4000)
[BREP_D : NUMBER

(OTHER_GEOM : DSS.500_GEGMETRY
PARENT_CITYOBJECT_ID: NUMBER

|<PIG>CITVOB.ECTGROUP_PIC: D

\<FIt> GROUP_BREP_Fit: BREP_D

\<FIt> GROUP_CITYOBJECT_FI: D

\cFIt> GROUP_OBWJECTCLASS_FH: OBJECTOLASS D

\<FIt> GROUP_PARENT_CITYOBJ_FK: PARENT_CITYOBJECT_ID

=] atables

CITYWODEL

D NUMBER

GULID : VARCHAR2(256)

(GULID_CODESPACE : VARCHAR2(1000)

NAME : VARCHAR2(1000)

NAME_CODESPACE : VARCHAR2(4000)

DESCRIPTION: VARCHAR2{4000)

ENVELOPE : MDSYS.SDO_GEOMETRY

CREATION_DATE : TIMESTAMP WITH TIME ZONE 1
TERMINATION_DATE : TIMESTANMP VWITH TIME ZONE
LAST_MODIFICATION_DATE : TIMESTAMP WITH TINE ZONE
UPDATING_PERSCN : VARCHAR2(256)
REASON_FOR_UPDATE : VARCHAR2(4000)

LINEAGE : VARCHAR2(258)

<PIGCITYMODEL_PK: D

[z 3pctyDB
GROUP_TO_CITYOBJECT
(CITYOBUECT_ID : NUMBER

(CITYOBIECTGROUP D : NUVBER

ROLE : VARCHAR2(256)

|<PI> GROUP_TO_CITYOBJECT PIG: CITYOBJECT_ID, CITYOBJECTGROUP_D
\<FI> GROUP_TO_CITYOBJECT_FI&; CITYOBJECT_D
\<FIt> GROUP_TO_CITYOBJECT_FIK1: CITYOBJECTGROUP_D

m atables
CITYOBUECT_MEVBER
CITYMODEL D : NUMBER
CITYOBJECT_ID: NUMBER

* eI CITYOBJECT_MEMBER _PI: CITYMODEL D, CITYOBUJECT_ID
‘<FK>CITYOBJECT_MEMBER FIG: CITYOBJECT_ID
\<FIECITYOBJECT_MEMBER_FIc1: CITYMODEL_ID

1

(]

ID: NUMBER
OBJECTCLASS_D : NUMBER

dables
CITYOBJECT

GILID : VARCHAR2(256)
GIILID_CODESPACE : VARCHAR2(1000)
NAE : ¥ ARCHAR2(1000) 01
NAVE_CODESPACE : VARCHAR2(4000)
DESCRIPTION : VARCHAR2(4000)
ENVELOPE: MDSYS.SD0_GEOMETRY

. 4 |CREATION_DATE : TWESTAMP WITH TIVE ZONE

@ TERMINATION_DATE: TIMESTAMP 'AITH TIME ZONE
RELATIVE_TO_TERRAIN : \VARCHAR2(256)
RELATIVE_TO_WATER : VARCHAR2(255)
LAST_MODIFICATION_DATE : TMESTAMP WITH TIME ZONE
UPDATING_PERSON : VARCHAR2(256)
REASON_FOR_UPDATE : VARCHARZ(4000)

1

LINEAGE : VARCHAR2(256)
XML_SOURCE : CLOB

<PKaCIT YOBJECT_Pk: D
<FHCIT YOBJECT_OBJECTCLASS_Fit. OBJECTCLASS_D

Im o o

0.1

= stables
SURFACE_GEOMETRY
D : NUMBER

GHILID : Y ARCHAR2(256)

(GMLID_CODESPACE : VARCHARZ(1000)

PARENT_ID : NUMBER

ROOT_ID: NUMBER

1S_SOLID : NUMBER(1, 0)

IS_COMPOSITE : NUMBER(1, 0)

IS_TRIANGULATED : NUMBER(1, 0)

15 _XLINK : NUMBER(1, 0)

1S _REVERSE: NUMBER(1,0)

GEOMETRY : MDSYS.SDO_GEOMETRY
SOLID_GEOMETRY : MDSYS SDO_GEOMETRY
IMPLICIT_GEOMETRY : MDSY'S SDO_GEONETRY
CITYOBJECT_D: NUVBER

\<P(>SURF ACE_GEOMETRY_PK: ID

\<FI=SURF ACE_GEOM_CITYOB._FK: CITYOBJECT_D
\<FIK>SURF ACE_GEOM_PARENT_FI<: PARENT_ID
<FIsSURFACE_GEOM_ROOT_FK: ROGT_D

o

=]

ID: NUMBER
INFOSYS: VARCHAR2(4000)
INAME : VARCHAR2(4000)
URI: VARCHAR2(4000)
(CITYOBJECT_ID': NUMBER

stables
EXTERNAL_REFERENCE

\<PICs EXTERNAL_REFERENCE_PK: D
\<FK2EXT_REF_CITYOBJECT_FIK; CITYOBJECT_ID

(=] sables
GENERALIZATION
CITYOBIECT D : NUMBER
‘GENERALIZES_TO_ID NUMBER

<PHAGENERALIZATION_PK: CITYOBUECT_ID, GENERALIZES _TO_ID
<FKAGENERAL_CITYOBJECT_FK; CITYOBJECT_D
<FKaGENERAL_GENERALIZES_TO_FK: GENERALIZES_TO_ID

Figure 30: Database schema of the CityGML core elements

2.3.3.3 Tables for geometry representation

The representation of the geometry stored in table SURFACE GEOMETRY differs
substantially from the UML chart explained in the CityGML specification; nevertheless, it
offers about the same functionality.

SURFACE_GEOMETRY, SURFACE_GEOMETRY_SEQ

In the database schema the geometry consists of planar surfaces which correspond each to one
entry in the table SURFACE GEOMETRY. The surface-based geometry is stored as attribute
GEOMETRY (in each case exactly one planar polygon, possibly including holes). The implicit
geometry is stored as attribute IMPLICIT GEOMETRY. The volumetric geometry is stored
as attribute SOLID GEOMETRY and its boundary surfaces (outer shell) will be stored as
attribute GEOMETRY as well. Any surface may have textures or a colour on both sides.
Textures are stored within the tables which implement the appearance model (cf. chapter

2.2.3).

3D Geodatabase for CityGML 2018 65

The geometry information in the fields GEOMETRY and IMPLICIT GEOMETRY of the table
SURFACE GEOMETRY is limited as follows:

Geometry storage in Surface Geometry - polygonal geometry

Oracle PostGlIS

e SDO GTYPE must have the type e« Only POLYGON 7 is allowed, i.e. a
Polygon, i.e. a polygon with 3D polygon with 3D coordinates
coordinates (SDO GTYPE = 3003), « Polygons might have holes

e SDO ETYPE must be 1003/2003 e The IMPLICIT GEOMETRY column
with SDO INTERPRETATION = 1 has no SRID defined. Thus, entries
(i.e. polygon with 3D coordinates in in that column will have the SRID 0
the boundary, bounded just by line automatically

segments, possibly including holes)

e In addition Oracle allows the
representation of a rectangle by
two corner points
(SDO ETYPE=1003/2003, with
SDO_INTERPRETATION = 3)

e SDO_SRID of implicit geometries
can be any SRID Oracle supports. No
spatial index is defined on the
column by default.

Table 3: Storage of polygonal geometry

A solid is the basis for 3-dimensional geometry. The extent of a solid is defined by the
boundary surfaces (outer shell). A shell is represented by a composite surface, where every
shell is used to represent a single connected component of the boundary of a solid. It consists
of a composite surface (a list of OrientableSurfaces) connected in a topological cycle. Unlike
a ring, a shell's elements have no natural sort order. Like rings, shells are simple. The
geometry in the field SOLID GEOMETRY of the table SURFACE GEOMETRY is limited as
follows:

66

3D Geodatabase for CityGML 2018

Geometry storage in Surface Geometry - 3D geometry

Oracle

PostGIS

SDO GTYPE must have the type
Solid, i.e. a solid with 3D
coordinates (SDO_GTYPE = 3008)
SDO ETYPE must be 1007 (simple
solid) or 1008 (composite solid).

A simple solid can be represented

Only POLYHEDRALSURFACE is
allowed, i.e. the outer shell of a
solid with 3D coordinates

A simple polyhedral surface can be
represented by using several
polygons as its boundary

by using several polygons as its
boundary (SDO ETYPE=1007, with
SDO_INTERPRETATION = 1).

e The composite solid can be
constructed with a number of
simple solids, e.g. a composite
solid with 4 simple solids
(SDO ETYPE=1008, with
SDO INTERPRETATION = 4)

Table 4: Storage of 3D geometry

Surfaces can be aggregated to form a complex of surfaces or the boundary of a volumetric
object. The aggregation of multiple surfaces, e.g. Fito Fy, (IDs 6 to 10 in Figure 31 / Figure
32) is realized the way that the newly created surface tuple Fn+1 (ID 2) is not assigned a geo-
metry (cf. Table 5). Instead, the PARENT ID of the surfaces Fi to F refer to the ID of Fa+1.

Geometry Root
ID=1
ROOT_ID=1
IS_SOLID=1
IS_COMPOSITE=0

LoD1 Surface :
ID=2 -
PARENT_ID=1 I
ROOT_ID = 1 I
IS_SOLID=0 I
IS_COMPOSITE=1 :

Surface 3 Surface 4 Surface 5 Surface 6 Surface 7
ID=6 ID=7 ID=8 ID=8 ID=10
PARENT_ID=2 PARENT_ID=2 PARENT_ID=2 PARENT_ID=2 PARENT_ID=2
ROOT_ID =1 ROOT_ID =1 ROOT_ID =1 ROOT_ID =1 ROOT_ID =1
IS_SOLID=0 IS_SOLID=0 IS_SOLID=0 IS_SOLID=0 IS_SOLID=0
IS_COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0

Figure 31: Geometry hierarchy for the solid geometry shown in Figure 32

In addition, a further tuple (ID 1) is introduced, which represent the solid and defines the root
element of the whole aggregation structure. Each surface references to its root, using the
ROOT ID attribute. This information has big influence on the system performance, as it
allows to avoid recursive queries. If e.g. the retrieval of all surface elements forming a
specific building is of importance, simply those tuples have to be selected which contain the

3D Geodatabase for CityGML 2018 67

related ROOT ID. On the downside there also follows the limitation that each tuple in
SURFACE GEOMETRY can only belong to one aggregate.

Various flags characterise the type of aggregation: IS TRIANGULATED denotes a
TriangulatedSurface, IS SOLID distinguishes between surface (0) and solid (1), and
IS COMPOSITE defines whether this is an aggregate (e.g. MultiSolid, MultiSurface) or a
composite (e.g., CompositeSolid, CompositeSurface).

Based on these flags the geometry types listed in 5 can be distinguished. To distinguish a
MultiSolid from a MultiSurface its child elements have to be analysed: In case the child is a
Solid, the geometry can be identified as MultiSolid.

P . I SOLID_

isSolid | isComposite | isTriangulated | Geometry GEOMETRY
';Zlcyti?g’lg”a”gle’ 0 0 O GEOMETRY NS
MultiSurface]] O NULL NULL
CompositeSurface O M O NULL NULL
TriangulatedSurface O O | NULL NULL
Solid | O O NULL GEOMETRY
MultiSolid O O O NULL NULL
CompositeSolid | | O NULL GEOMETRY

Table 5: Attributes determining aggregation types

Aggregated surfaces can be grouped again with other (compound) surfaces, by generating a
common parent. This way, arbitrary aggregations of Surfaces, CompositeSurfaces, Solids,
CompositeSolids can be formed. Since all tuples in an aggregated geometry refer to the same
ROOT 1ID all tuples can be retrieved efficiently from the table by selecting those tuples with
the same ROOT ID.

The aggregation schema allows for the definition of nested aggregations (hierarchy of
components). For example, a building geometry (CompositeSolid) can be composed of the
house geometry (CompositeSolid) and the garage geometry (Solid), while the house’s
geometry is further decomposed into the roof geometry (Solid) and the geometry of the house
body (Solid).

In addition, the foreign key CITYOBJECT ID refers directly to the CityGML features to
which the geometry belongs. In order to select all geometries forming the city object one only
has to select those with the same CITYOBJECT ID.

In order to provide a unique identifier in table SURFACE GEOMETRY, the next available ID
value is provided by the sequence SURFACE GEOMETRY SEQ.

68 3D Geodatabase for CityGML 2018

Example: The geometry shown in the figure below consists of seven surfaces which form a
volumetric object. In the table it is represented by the following rows:

Surface Number @

Figure 32: LoD 1 building - closed volume bounded by a CompositeSurface which consists of single polygons

SURFACE_GEOMETRY

PARENT_ | ROOT_ IS_ IS_ SOLID_
D\ GMLID ID ID | SOLID | COMPOSITE GEOMETRY GEOMETRY
1 | UUID_lod1 NULL 1 1 0 NULL GEOMETRY

for Solid

2 | lod1Surface 1 1 0 1 NULL NULL
3 Left1 2 1 0 0 GEOMETRY for surface 3 NULL
4 Front1 2 1 0 0 GEOMETRY for surface 4 NULL
5 Right1 2 1 0 0 GEOMETRY for surface 5 NULL
6 Back1 2 1 0 0 GEOMETRY for surface 6 NULL
7 Roof1 2 1 0 0 GEOMETRY for surface 7 NULL

Table 6: Excerpt of table SURFACE GEOMETRY representing the example given in Figure 32

In addition, two further attributes are included in SURFACE GEOMETRY: IS XLINK and
IS REVERSE.

IS_XLINK

CityGML allows for sharing of geometry objects between different geometries or different
thematic features using the XLink concept of GML3. For this purpose, the geometry object to
be shared is assigned an unique gml:id which may be referenced by a GML geometry
property element through its x/ink:href attribute. This concept allows for avoiding data
redundancy. Furthermore, CityGML does not employ the built-in topology package of GML3
but rather uses the XLink concept for the explicit modelling of topology (see [Groger et al.
2008], p. 25).

Although an XLink can be seen as a pointer to an existing geometry object the
SURFACE GEOMETRY table does not offer a foreign key attribute which could be used to
refer to another tuple within this table. The main reason for this is that the referenced tuple
typically belongs to a different geometry aggregate, e.g. a different gm/:Solid object, and thus
contains different values for its ROOT ID and PARENT ID attributes. Therefore, foreign
keys would violate the aggregation mechanism of the SURFACE GEOMETRY table.

The recommended way of resolving of XLink references to geometry objects requires two
steps: First, the referenced tuple of the SURFACE GEOMETRY table has to be identified by

3D Geodatabase for CityGML 2018 69

searching the GMLID column for the referenced gml:id value. Second, all attribute values of
the identified tuple have to be copied to a new tuple. However, the ROOT ID and
PARENT ID of this new tuple have to be set according to the context of the referencing
geometry property element.

Please note:

1. If the referenced tuple is the top of an aggregation (sub)hierarchy within the
SURFACE GEOMETRY table, then also all nested tuples have to be recursively
copied and their ROOT ID and PARENT ID have to be adapted.

2. Copying existing entries of the SURFACE GEOMETRY table results in tuples sharing
the same GMLID. Thus, these values cannot be used as a primary key.

When it comes to exporting data to a CityGML instance document, XLink references can be
rebuilt by keeping track of the GMLID values of exported geometry tuples. Generally, for
each and every tuple to be exported it has to be checked whether a geometry object with the
same GMLID value has already been processed. If so, the export routine should make use of
an XLink reference.

However, checking the GMLID of each and every tuple may dramatically slow down the
export process. For this reason, the IS XLINK flag of the SURFACE GEOMETRY has been
introduced. It may be used to explicitly mark just those tuples for which a corresponding
check has to be performed. The IS XLINK flag should be used in the following manner. The
Importer/Exporter provides a corresponding reference implementation.

1. During import

a. By default, the IS XLINK flagis set to “0”.

b. If existing tuples have to be copied due to an XLink reference, IS XLINK has to
be set to “1” for each and every copy. Please note, that this rule comprises all
copies of nested tuples.

c. Furthermore, IS XLINK has to be set to “1” on the original tuple addressed by
the XLink reference. If this tuple is the top of an aggregation (sub)hierarchy,
IS XLINK remains “0” for all nested tuples.

2. During export

a. The export process just has to keep track of the GMLID values of those geometry
tuples where IS XLINK is set to “1”.

b. When it comes to exporting a tuple with IS XLINK set to “1”, the export process
has to check whether it already came across the same GMLID and, thus, can make
use of an XLink reference in the instance document.

c. For each tuple with IS XLINK=0 no further action has to be taken.

Especially due to (2¢), the IS XLINK attribute helps to significantly speed up the export
process when rebuilding XLink references. Please note, that this is the only intended purpose
of the IS XLINK flag.

70 3D Geodatabase for CityGML 2018

IS_REVERSE

The IS REVERSE flag is used in the context of gml:OrientableSurface geometry objects.
Generally, an OrientableSurface instance cannot be represented within the
SURFACE GEOMETRY table since it cannot be encoded using the flags IS SOLID,
IS COMPOSITE, and IS TRIANGULATED (cf. Table 5). However, the IS REVERSE flag
is used to encode the information provided by an OrientableSurface and to rebuild
OrientableSurfaces during data export.

According to GML3, an OrientableSurface consists of a base surface and an orientation. If the
orientation is “+”, then the OrientableSurface is identical to the base surface. If the orientation
is “-*, then the OrientableSurface is a reference to a surface with an up-normal that reverses
the direction for this OrientableSurface.

During import, only the base surfaces are written to the SURFACE GEOMETRY table. The
following rules have to be obeyed in the context of OrientableSurface:

1. If the orientation of the OrientableSurface is “-*, then

a. The direction of the base surface has to be reversed prior to importing it (generally,
this means reversing the order of coordinate tuples).

b. The IS REVERSE flag has to be set to “1” for the corresponding entry in the
SURFACE GEOMETRY table.

c. If the base surface is an aggregate, then steps (a) and (b) have to be recursively
applied for all of its surface members.

2. If the OrientableSurface is identical to its base surface (i.e., if its orientation is “+”),
then the base surface can be written to the SURFACE GEOMETRY table without
taking any further action. The IS REVERSE flag has to be set to “0” (which is also
the default value).

3. Please note, that it is not sufficient to just rely on the gml:orientation attribute of an
OrientableSurface in order to determine its orientation since OrientableSurfaces may
be arbitrarily nested.

Flipping the direction of the base surface in step (1a) is essential in order to guarantee that the
objects stored within the GEOMETRY column are always correctly oriented. This enables
applications to just access the GEOMETRY column without having to interpret further
attributes of the SURFACE GEOMETRY table. For example, in the case of a viewer
application this allows for a fast rendering of a virtual 3d city scene.

When exporting CityGML instance documents, the IS REVERSE flag can be used to rebuild
OrientableSurface in the following way:

1. If the IS REVERSE flag is set to “1” for a table entry, the exporter routine has to
reverse the direction of the corresponding surface object prior to exporting it (again,
this means reversing the order of coordinate tuples).

2. The surface object has to be wrapped by a gml:OrientableSurface object with
gml:orientation="-"".

3D Geodatabase for CityGML 2018 71

3. If the surface object is an aggregate, its surface members having the same value for
the IS REVERSE flag may not be embraced by another OrientableSurface. However,
if the IS REVERSE value changes, e.g., from “1” for the aggregate to “0” for the
surface member, also the surface member has to be embraced by a
gml:OrientableSurface according to (2). Since there might be nested structures of
arbitrary depth this third rule has to be applied recursively.

Like with the IS XLINK flag, the Importer/Exporter tool provides a reference
implementation of the IS REVERSE flag.

2.3.3.4 Appearance Model
APPEARANCE, APPEARANCE_SEQ

The table APPEARANCE contains information about the surface data of objects (attribute
DESCRIPTION), its category is stored in attribute THEME. Since each city model or city
object may store its own appearance data, the table APPEARANCE is related to the tables for
the base classes CityObject and CityModel by two foreign keys which may be used
alternatively. The classes Appearance and SurfaceData represent features, which can be
referenced by GML identifiers. For this reason, the attributes GMLID and
GMLID CODESPACE were added to the corresponding tables.

72 3D Geodatabase for CityGML 2018

(]

ables
arvoBJECT
=] dables ID': NUMBER
CITYHMODEL (=] aables OBJECTCLASS D NUMBER
D: NUMEER JEINERERITHENREY GHLID : VARCHAR2(256)
SHLID : VARCHAR2(256) CITYMODEL D : NUMEER GILID_CODESPACE - VARCHAR2(1000)
SMLID_CODESPACE: VARCHARZ(1000) CITYOBJECT_D : NUMBER MAME - VARCHAR2(1000)
NAME : VARCHAR2(1000) 1 , NAME_CODESPACE : V/ARCHAR2(4000)
AME_CODESPACE : /ARCHAR2(4000) | S| 1_|DESCRPTION : VARCHAR2{4000)
JESCRIPTION : VARCHAR2(4000) #/envELOPE MDSYS SDO_GEOHETRY
ENVELOPE: MDSYS.SDO_GEOMETRY «PKsCITYOBJECT_MEMBER_PK: CITYMODEL D, CIT YOBJECT _ID. CREATION_DATE : TIMESTAMP VMITH TIME ZONE
CREATION_DATE : TMESTANP WITH TIME ZONE «FKsCITYOBJECT_MEMBER_FIC CITYOBJECT_ID TERMINATION_DATE : TMEST AMR WITH TIME ZONE
(ERMEA IR A TSy M AT, T M7 GHE <FI62CITYOBJECT_MEMBER_FK1: CITYMODEL D RELATIVE_TO_TERRAIN : VARCHAR2(258)
_AST_MODIFICATION_DATE : TIMESTAMP WITH THE ZONE RELATIVE_TO_WATER : VARCHAR2(256) o
UPDATING_PERSON: VARCHAR2(256) LAST_MODIFICATION_DATE : TIVESTAP WITH THE ZONE
REASON_FOR_UPDATE : VARCHAR2(4000) UPDATING_PERSON : VARCHAR2(256)
_INEAGE : VARCHAR2(258) REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)
XINL_SOURCE : CLOB
0.1
LEoSENLRREL S B <PICITYOBJECT_PK: ID
FItCITYOBJECT_OBJECTCLASS_FIi: OBJECTCLASS 1D
0.1
= <tablen
APPEAR_TO_SURFACE_DATA
SURFACE_DATA _ID : NUMBER
=] <ablex APPEARANCE ID : NUMBER =] stablex
SURFACE_DATA APPEARANCE
D NUMBER 1D NUMBER
SHLID: VARCHAR2(255) * |GULID : VARCHAR2(255)
SHLID_CODESPACE: VARCHARZ(1000) 4 (GWLID_CODESPACE : VARCHAR2(1000)
MAME : VARCHAR2(1000) MANE - VARCHAR2(1000)
NAME_CCODESPACE : VARCHAR2(4000) . [ePKsAPPEAR TO_SURFACE DATA_PK: SURFACE DATA _ID, APPEARANCE ID NAME_CODESPACE : VARCHAR2(4000)
JESCRIPTION : VARCHAR2(4000) FI>APPEAR_TO_SURFACE_DATA_FK: SURFACE_DATA_ID DESCRPTION : VARCHAR2(4000)
S_FRONT : NUMBER(1, 0) <FIGsAPPEAR_TO_SURFACE_DATA FI1: APPEARANCE D THEME : VVARCHAR2(256)
OBUECTCLASS 1D : NUMBER . CITYMODEL D : NUMBER
X3D_SHININESS : BNARY_DOUBLE | |CITYOBIECT_D : NUMBER
¥3D_TRANSPARENCY : BNARY_DOUBLE d
¥3D_AMBEENT_INTENSITY : BINARY _DOUBLE
3D_SPECULAR_COLOR : VARCHAR2(256)
¥3D_DIFFUSE_COLOR : VARCHAR2(256) PI=APPEARANCE _PIC D
3D_EMSSIVE_COLOR - VARCHAR2(256) FIts APPEARANCE_CITYMODEL _FI%: CITYWCDEL 1D
X3D_IS_SMOOTH : NUVBER(1, 0) FIs APPEARANCE_CITYOBLECT_FK: CITYOBJECT_D
TEX_MAGE_D : NUMBER
TEX_TEXTURE TYPE : VARCHAR2(256)
TEX_WRAP_WODE : VARCHAR2(256)
TEX_BORDER_COLOR : VARCHAR2(256)
GT_PREFER_WORLDFILE : NUMBER(1, 0)
5T_ORENTATIGN : VARCHAR2(256)
N \] «tables =] atables
GT_REFERENCE_POINT : MDSYS.5DO_GEOMETRY o - TR SRE
SURFACE_GEOMETRY_ID : NUMBER D NUMBER
1 + |1S_TEXTURE_PARAMETRIZATION : NUWIBER(1,0) GILID : VARCHAR2(256)
<PIGSSURFACE_DATA_PIC I @ WORLD TO_TEXTLRE: VARCHAR2(1000) (GIMLID_CODESPACE : VARCHAR2(1000)
<FISSURFACE_DATA_OBJCLASS_FIt: OBJECTELASS_ID TEXTURE_COORDINATES : MDSYS.5D0_GEOMETRY PARENT_ID: NUVBER
<FKsSURFACE_DATA_TEX_MAGE_FK: TEX_MAGE_ID A CER D MU EEIIPERLEED
. I5_SOLID : NUMBER(!, D)
IS_COMPOSITE : NUMBER(1,0)
¥ 5 TRIANGULATED - NUMEER(1,0)
IS_XLINK: NUVEER(1, 0) .
I5_REVERSE : NUMBER(1,0) E—

‘<PKTEXTUREPARAM_PK: SURFACE_GEOMETRY_ID, SURFACE_DATA_ID ISEOMETRY MBSYS S50, CEGHETRY
<FITEXPARAM_GEOM_FK: SURFACE_GEOMETRY_ID

SOLID_GEOMETRY : MDSYS.SD0_GEOMETRY
. <FITEXPARAM_SURFACE_DATA_FH: SURFACE_DATA_ID [WRLICIT_GEOWETRY : MDSYS D0 GEOMETRY

CITYOBJECT_ID : NUMBER

m

D : NUMBER
TEX_MAGE_URI: VARCHAR2(4000)

€FISURFACE_GECH_CITYOBU_FI%. CITYOBJECT_ID
(EXIMAGE DATAL B70B €FISURFACE_GECH_PARENT_FK: PARENT_D
TEX_MIME_TYPE : VARCHAR2(26) «FIKSURF ACE_GEOH_ROOT_FI: ROOT_D
TEX_MIME_TYPE_CODESPACE : VARCHAR2(4000)
01 [0
<PKCSTEX_IMAGE _PIc: ID

<tables
TEX_MAGE

«PHSURFACE_GEOMETRY_PK: ID

Figure 33: Appearance database schema

SURFACE_DATA, TEX_IMAGE, APPEAR_TO SURFACE_DATA

An appearance is composed of data for each surface geometry object. Information on the data
types and its appearance are stored in table SURFACE DATA.

IS FRONT determines the side a surface data object applies to (IS FRONT=I: front face
IS _FRONT=0: back face of a surface data object). The OBJECTCLASS ID column denotes
if materials or textures are used for the specific object (values: X3DMaterial, Texture or
GeoreferencedTexture). Materials are specified by the attributes X3D xxx which define its
graphic representation. Details on using georeferenced textures, such as orientation and
reference point, are contained in attributes GT xxx. See chapter 2.2.3 for more information
on SURFACE DATA attributes or the CityGML specification [Groger et al. 2012, p. 33-45]
which explains the texture mapping process in detail.

Raster-based 2D textures are stored in table TEX IMAGE. The name of the corresponding
images for example is specified by the attribute TEX IMAGE URI. The texture image can be
stored within this table in the attribute TEX IMAGE DATA using the BLOB data type under
Oracle and the BYTEA data type under PostgreSQL.

3D Geodatabase for CityGML 2018 73

Table APPEAR TO_SURFACE DATA represents the interrelationship between appearances
and surfaces for different themes.

TEXTUREPARAM

Attributes for mapping textures to objects (point list or transformation matrix) which are
defined by the CityGML classes _TextureParameterization, TexCoordList, and TexCoordGen
are stored in the table TEXTUREPARAM.

0,0 roof.png 1,0

Figure 34: Simple example explaining texture mapping using texture coordinates

TEXTUREPARAM
éggf/ﬁ& IS‘II/EQ(Z;/J\E © | worwp_To TEXTURE_ SURFACE
D TRIZATION | —TEXTURE COORDINATES _DATA_ID
7 1 NULL GEOMETRY 20

Table 7: Example for table TEXTUREPARAM

Texture coordinates are applicable to polygonal surfaces, whose boundaries are described by a
closed linear ring (last coordinate is equal to first). Coordinates are stored with a geometry
data type. The WORLD TO TEXTURE attribute defines a transformation matrix from a
location in world space to texture space. For more details see the CityGML Implementation
Specification [Groger et al. 2012].

Figure 35: Visualisation of a simple building in LoD1 and LoD2 using the appearance model. Two themes are
defined for the building and the surrounding terrain: (a) building in summertime and (b) building in wintertime

74 3D Geodatabase for CityGML 2018

Six surface representations are listed in table SURFACE DATA (cf. Table 10). First of all, a
homogeneous material is defined (ID=1), represented by a 3-component (RGB) colour value
which will be used for both appearances (summer and winter). This also applies to a general
side facade texture (ID=3, Figure 36 right) which is repeated (wrapped) to fill the entire
surface. For each of the front side, the back side and the ground two images are available:
parameterized ones for the sides (Figure 36 left and middle) and georeferenced ones for the
ground and the roof surfaces (Figure 38). The information of textures is stored in a separate
table TEX IMAGE. The coordinates for mapping the textures to the object are stored in table
TEXTUREPARAM. For the general side texture (SURFACE DATA ID=3) five coordinate
pairs are needed to define a closed ring (here: rectangle). Table SURFACE GEOMETRY
contains the information of all geometry parts that form the building and its appropriate 3D
coordinates (cf. tables on the next page).

See the following page for an example of the storage of appearances in the city database.
Figure 36 and Figure 38 show the images used for texturing a building in LoD2. In LoDI, a
material definition is used to define the wall colors of the building.

Table 8 to Table 11 show a combination of tables representing the building’s textures. There
are different images available for summer and winter resulting in two themes: Summer and
Winter. The tuples within the tables are color-coded according to their relation to the
respective theme:

e Green: only summer related data
e Light-grey: only winter related data
e Orange: both summer and winter related data

Figure 37 shows the LoD2 representation of summer appearances (theme Summer).

3D Geodatabase for CityGML 2016 75

APPEARANCE APPEAR_TO_SURFACE_DATA
ID |GMLID| THEME CITYMODEL_ID CITYOBJECT_ID APPEARANCE ID |SURFACE DATA ID| COMMENTS
LoD1S
LoD1 W
2 | App2 |Winter 1000 LoD2 ground/roof S
LoD2 facade S

LoD2 front/back S
LoD2 ground/roof
w

LoD2 facade W
LoD2 front/back W

Table 8: Excerpt of table APEARANCE
The relation to the building feature is given by the foreign key CITYOBJECT ID

Table 9: APPEAR_TO_SURFACE table
front_back front_back facade.png
summer.png winter.png summer & winter

SURFACE_DATA_ID = 4 SURFACE_DATA_ID = 6 SURFACE_DATA_ID =3

Figure 37: Surface geometries for the building in LoD2 (the IDs for LoD1 are

Figure 36: Images for parameterized textures

SURFACE_DATA

the same as in Figure 31)

ID | IS_FRONT OBJECTCLASS_ID X3D_DIFFUSE_COLOR | TEX_IMAGE_ID

TEX_WRAP_MODE

GT_ORIENTATION

GT_REFERENCE_POINT

TEX_IMAGE

Table 10: Excerpt of table SURFACE _DATA and table TEX IMAGE

TEXTUREPARAM
SURFACE_ IS TEXTURE_ WORLD_TO_ SURFACE_
GEOMETRY_ID PARA-METRIZATION TEXTURE TEXTURE_COORDINATES DATA_ID

COMMENTS

LoD 2 ground S
LoD 2 roof left S
LoD 2 roof right S
LoD 2 front S

LoD 2 back S

LoD 2 facade left S/W

LoD 2 facade right S/W

LoD2 ground W

LoD 2 roof left W

LoD 2 roof right W

LoD 2 front W

Table 11: Table TEXTUREPARAM

30 0 NULL NULL 5
16 0 NULL NULL 5
17 0 NULL NULL 5
13 1 NULL GEOMETRY 6
15 1 NULL GEOMETRY 6

LoD 2 back W
LoD1 walls S/W
LoD1 roof S/W

TEX_IMAGE_DATA TEX_IMAGE_URI

Ground _
winter.png

SURFACE_DATA _ID =5

Ground
summer.png

SURFACE_DATA _ID =8

Figure 38: Images for georeferenced textures (The
image round_winter.png is assigned to the terrain and
the roof surfaces of the building both in LoD1 and
LoD2 within the winter theme (a),
ground_summer.png within the summer theme (b))

3D Geodatabase for CityGML 2016

76

2.3.3.5 Building Model

atles
cITYoBIECT

R2(256)
(GILID_CODESPACE : VARGHAR2(1000)
NANE - VARCHAR2(1000)
NANE_CODESPACE : ARCHAR2(4000)
DESCRIPTION : V ARCHAR2(4000)

5
El
8
8
2
8
7

(256)
LAST_MODIFICATION_DATE : THESTANP WITH TIE ZONE
AT pERsON

1

LLFOR_UPDATE : VARCHARZ(4000)
UNEAGE 'VARCHAR2(256)
XML_SOURCE: CLOB
(=] dables 1
BULDING. FLRNTURE
0 R
OBUECTCLASS 1D NUMBER 0.1
(CLASS: VARCHAR2(256) <PIGCITYOBIECT_PK: D
(CLASS CODESPACE : VARCHARZ(4000) [lKsCITYOBIECT OBUECTCLASS FK: OBJECTCLASS D
& = FUNCTION : VARCHAR100 = ey
s 21 e FUNCTION_CODESPACE VARCHAR2(4000) b
\D NUMEER = USAGE : \VARCHAR2(1000) R2(256)
TYPE : VARCHARZ256) oo B a0 = = ID_CODESPACE | VARCHAR2(1000)
nsrsnmcs 10 LERARY: VARCHARI D) 1 1 TO.¢ 0)
[LODA_BREP_ID : NUMBEF BULDING_D: NUMBER VARCHARZ(
YO LOD4_OTHER_GEOM MDS(S SDO_GEOMETRY - 2=
PPN s S o e ADDRESS 1D NUMBER)
RELATIVE_LOTHER_GEOH: MDS'Y5.5D0_GEOMETRY LoD MPLOT R PONT: OSYS SO0 GEOHETRY CODE : VARCHAR2(256)
0.1 + |LOD4_IMPLICIT_TRANSFORMATION : VARCHAR2(1000) (
0.1 <PI> ADDRESS_TO_BULDING_PK: BULDING_D, ADDRESS_D GO VARG
ooRE- ULDING_F. ADDRESSID MULTLPOINT HDSYS SDO_GEONETR Y
«FK=ADDRESS_TO_BUILDING_FK1: BULDING_ID XAL_SOURCE : CLOB
<PIGINPLICIT_GEOHETRY Pk D
<FIGINPLICIT_GEOM_BREP_Fi: RELATIVE_BREP_ID
<PIGADDRESS PIc D
<PIGBLLDING_ FURNITURE Pi: D
<FIBLDG. FLRN_CITYOBJECT_Fi I
‘<FIt>BLDG_FURN L ODABRES I . o1
. FKABLDG_FURN_LODAIVPL_FI: LODS IMPLIIT_REP_D
01 Joa [oa <FIOBLDG FLRN_OBJCLASS ik OBJECTCLASS_D.
" | <FKsBLDG_FURN_ROOM_FK: ROOM_D
0.1 1
=] tables
BULDING.
. . 01 D NMBER
1 OBUECTCLASS 1D NUBER
= ctables BUILDING_PARENT D : NUMBER
BULDRIG ISTALLATION, [BUILDING_ROOT_ID : NUMBER
D : NUMBER (CLASS : VARCHAR2(256)
OBUECTCLASS D: NUMBER cuss copEPACE VARCHARa D)
CLASS: VARCHAR2(256) FUNCTION : VARCHAR 2(1000)
(CLASS CODESPACE : VARCHARZ(4000) FLNCTION_CODESPACE : VARCHAR2(4000)
o FLNCTION : ARCHAR2(1000) USAGE: VARCHA
& = FUICTN CODESPACE: UaRCHATa 1000 |LSAGE. CODESPACE: VARCHAR2(4000)
Room AGE: VARCHARX(1 0 YEAR_OF CONSTRUCTION: DA
T ;if;iec%mi?;;MRCHARM““’ YEAR_OF DENOLITON: DATE
oBJEcrcLAss D : NUMBER e ROOF_TYPE : VARCHAR2(2:
e Pt ROON_D : Nt - TYPE_CODE VARCHAR2(4000)
01 [hee o LOD2 BREP_ID: NUMBER VEASURED_MEGHT BINARY_DOUBLE
e e tons |00s.rep - nuwsen WEASURED_HEIGHT_UNIT: VARCHAR2(4000)
Cohar vanimay e LOD2_OTHER_GEOH: HDS'YS.SD0_GEOMETRY S oREve, AN SROUND NV
e contsuce o) LOD3_OTHER_GEOI : DSYS SD0_GEOMETRY STOREY_HEIGHTS _ABOVE_GROUND : VARCHAR2(4000)
s e LOD4 _OTHER_GEOH: HDS'YS.SD0_GEOMETRY e (OHTS_AG.UIIT - ARCHARS(4000,
LoD MULT. SNRFACE I NUVBER o1 * LOD2 WPLICIT_REP 1D : NUVEEF 'STOREY _HEIGHTS_BELOW_GROUND : VARCHAR2(4000)
o b e S |LOD3WPLICIT_REP_D:NUMBER 'STOREY_HEIGHTS_BG:_UNIT : VARCHAR2
- - LODUMPUCWJEPJD NUMEER LOD1_TERRAIN_INTERSECTION : MDSYS.SDO_GEOMETRY
S5 SDO_GEOMETRY LOD2_TERRAIN_INTERSECTION : MDSYS SDO_GEOMETRY
LON ‘MPUCW REF PO\NY MDS’S SDO_GEOMETRY LOD3_TERRAIN_INTERSECTION : MDSYS SDO_GEOMETRY
LOD4_IMPLICIT_REF_POINT : MDS'Y'S.SDO_GEONETRY . 0.1 |LOD4_TERRAIN_INTERSECTION : MDSYS SDO_GEOMETRY
o] D2_IMPLICIT_T OD2_MULTI_CURVE : MDSYS.SDO_GEOMETRY
5 LOD3 IPLICIT_TRANSFORMATION : VARCHAR(1000) |LOD3_MULTI_GURVE : HDSYS.S00_GEOMETRY
o1 041 | 0.4 o1 e b L B LOD4 INPLICIT_TRANSFORMATION : VARCHAR2(1000) T ol N
e PLICIT T LODA _MULTI_CLRVE : HDS'YS.SD0_GEOMETRY
<FK>ROOM_LOD4MSRF_FK: LOD4_MULTI_SURFACE_ID |LODO_FOOTPRINT_ID : NUMBER
& N (<FsROOM_LOD4SOLID_FK: LOD4_SOLD. LODO_ROOFPRNT_ID : NUMBER
T . o T oo o s e
(GHLD - VARCHAR2256) N o LODS WAL SUFFACE D NEER
(GHLD_CODESPACE VARCHARZ(1000) 4 NUMBER
PARENT_D : NUVMBER oot oo ua
ROOT D NUNBER LOD2_SOLD_ID: NUMBER
|S_SOLD NUMBER(1, - . [PRBLONG NETALATON D |LObS.50LID_D NUMEER
IS_COMPOSITE : NUMBER(1,0) G_INST_BULDING_Fi: BULDING 1D LOD4_SOLIB_ID : NUMBER
1S_TRIANGULATED : NUMBER(, 0) (Rl N (mawe szr _CITYOBJECT FK: D R
S XLINK: NOWBER(1, 0) <FIABLDG INST_LOD2BREP_FIt LOD2_BREP_D
| REVERSE | NMBERLY, 01 . FKoBLDGINST_LOD2WPL FK: LOD2_IPLICT_REP_ID
(GEOMETRY : MDSYS.SD0_GEOMETRY FIGBLDG_INST_LODSBRER_FI: LODI_BREP_D
SOLID_GEOMETRY : MDSYS SDO_GEOMETRY F1oBLDG INST LODSPL . LODS NPLET.
IMPLICIT_GEOMETRY : MDSYS SDO_GEOMETRY \<F K»BLDG_INST_LODABREP_FK: L
(CITYOBECT D NUMBER e e ey A
{FHOBLDC INST OBECTCLASS ¥ ORECTELASS
B \<FK3BLDG_INST_ROOM_FK: ROOM. (<PKBULDING_PK: D
FIGBULDING_CITYOBJECT_FIc D
TToDULONG LODOFODTFENT LoD FODTFINT.D
<FIGBULDING.LODOR 0D0_ROOFPRINT_ID
e A St
o1 01 . |sFK2BULDING_LODISOLID_Fit: LOD1_SOLD 1D
o1 I HSULONG LoD 7 Loba W1 SvAc o
DING_LOD2SOLID_Fi: LOD2_SOLID,
«PK>SURFACE_GEOMETRY_PK: ID 0.1 - DING_LOD3MSRF_FK: LOD3_MULTI SURFACE =D
«FI>SURFACE_GEOM_CITYOBJ_FK: CITYOBJECT_ID LEl - LOD3SOLID_Fk: LOD3_SOLID.
«FK>SURFACE_GEOM_PARENT_FK: PARENT_ID 0.1 FK)EU\LD\NG LODoMSRF *_FK: LOD4_MULTI SURFACE =D
" <FK>SURFACE_GEOM_ROOT_FK: ROOT_ID 0.1 *_|«FIK>BULDING_LOD4SOLID_FK: LOD4_SOLID_ID
N 0.1 | (FKABULDING_OBJECTCLASS_FIk: OBIECTCLASS.ID .
01 + FKABULDING_PARENT_Fi: BLILDING_PARENT I
0.1 - <FIGBULDING _ROOT_Fi: BULDING_ROOT_D .
0.1 .
0.1 LX) 01 [gy 01 |01 [0
= dabies =] aabies
OPENING THEMATIC_SURFACE
D NUMEER o tsen
OBJECTCLASS D - NUVBER ASS_D: NUMBER
/ADDRESS D NUMBER . auwwo D e
LOD3_HULT|_SURFACE 1D NUMBER I
LODA MULTI_SURFACE D NUMBER & T T
L ML 57 e R LoDz ML SURFACE_D: Neer
LOD4 WPLICT_REP_I <TO_THEm D3_MLLT SURFACE_ID NUMEER
LOD:UMPUCW,REF,PO\NT MDS(S SDO_GEOMETRY (OPENING.D : NUMBER LLOD4_MULTI_SURFACE_ID : NUMBER
LOD4_IMPLICIT_REF_POINT : MDSYS.SD0_GEQMETRY [HEMATIC_SURFACEID : NUMBER
LOD3_WPLICI_TRANSFORMATION: VARCHAR2(1000) 4 . s
LoD4 pLIT_ P00
+ | {PKAOPENING_TO_THEN_SURFACE_PK: OPENING_D, THEMATIC_SURFACE D
<FIKAOPEN_TO_THEM_SURFACE_FIC OPENING_ID
<FIK»OPEN_TO_THEN_SURFACE_FI1: THEMATIC_SURFACE_ID
<PIGTHENATIC_SLRFACE.PK: D
<FIG THEN_SURFACE _BLDG_INST_Fik: BULDING_INSTALLATION 1D
«FKs>THEM_SURFACE_BUILDING_FK: BUILDING_ID 0.1
<PIGOPENING_PI: D Fi THEN_SURFACE CITYOBIECT_FK. D
|FHeCPENIG ADORESS i 00RESS. <FI THEN_SURFACE LOD2WSRF _FIK: LOD2_ MULT| SURFACE D
«FK0PENING_CIT'YOBJECT_F} " <FK»>THEM_SURFACE_LOD3MSRF_FK: LOD3_MULTI_SURFACE_ID

FHoPENG LODINPL 7 | LOD3 _IMPLICIT_REP_ID
3_MULT|_SURFACE_ID
amopmwe;oowwfw Lons _MPLICIT_REP_ID
‘P12 OPENING_LODAMSRF _FIS; LOD4_MULTI_SURFACE_D
\<FK>OPENING_OBUECTCLASS_FK: OBJECTCLASS_ID

S S e oA W e
\<FKo THEM_SURFACE_OBJCLASS_FK: OBJECTCLASS D
(mwm,sukmcsjoomﬂ RoON_D

Figure 39: Building database schema

3D Geodatabase for CityGML 2018 77

BUILDING

The building model, described in paragraph 2.2.4.2 at the conceptual level, is realised by the
tables shown in Figure 39. The three CityGML classes AbstractBuilding, Building and
BuildingPart are merged into the single table BUTLDING. They can be distinguished on
behalf of the OBJECTCLASS ID. The subclass relationship with CITYOBJECT arises from
using identical IDs, i.e. for each tuple in BUILDING there must exist a tuple within
CITYOBJECT with the same ID.

The component hierarchy within a building is realized by the foreign key
BUILDING PARENT ID which refers to the superordinate building (aggregate) and
contains NULL, if such does not exist. This way, a tree-like structure arises also for building
aggregates. BUILDING PARENT ID points at the predecessor in the tree. The foreign key
BUILDING ROOT ID refers directly to the top level (root) of a building tree. In order to
select all parts forming a building one only has to select those with the same
BUILDING ROOT ID (cf. Table 12).

BUILDING
D BUILDING_ | BUILDING_ LODO_FOOT | LODO_ROOF | LOD1_MULTI_ LOD4_
PARENT_ID ROOT_ID """ | PRINT_ID PRINT_ID SURFACE_ID | **" | SOLID_ID

1 NULL 1 10 NULL NULL NULL
2 1 1 NULL NULL 20 NULL

3 1 1 NULL NULL 30 NULL

4 2 1 NULL NULL NULL 400

5 2 1 NULL NULL NULL 500

6 3 1 NULL NULL NULL 600

7 3 1 NULL NULL NULL 700

Table 12: Tree-like structure for recursive decomposition of buildings

The meaning and the name of most fields are identical to those of the attributes in the UML
diagram (cf. Figure 7). Like for CityObjectGroups there are additional CODESPACE
columns for the attributes class, function and usage. A CODESPACE column is also added
for the roofType attribute as it is specified as gm/:CodeType in CityGML. For every attribute
including measure information like measuredHeight or storeyHeightsAboveGround etc. an
additional UNIT column is provided to specify the unit of measurement.

Geometry is represented by several foreign keys LODO FOOTPRINT ID,
LODO ROOFPRINT ID, LODx MULTI SURFACE ID (1<x<4), and LODx SOLID ID
(I < x < 4) which refer to entries in the SURFACE GEOMETRY table and represent each
LoD’s surface geometry.

Optionally the geometry of the terrain intersection curve is stored in the attribute
LODx TERRAIN INTERSECTION (I < x < 4) using database geometry type (see Table
13). Additional line-typed building elements such as antennas are optionally modelled by the
attribute LODx MULTI CURVE (1 <x <4, using the same database geometry like for terrain
intersection curves).

78 3D Geodatabase for CityGML 2018

Geometry storage in Building table - Intersection curves

Oracle PostGlIS
e SDO GTYPE must have the type | e Only MULTILINESTRING Z is
MultiCurve / MultiLine, i.e. a allowed, i.e. a composite
composite geometry of different geometry of different line string
line string segments with 3D segments with 3D coordinates
coordinates (SDO_GTYPE = 3006) e The geometry type MULTICURVE is
e SDO ETYPE must be 1 (straight not used as CityGML does not allow
line segments) as curved geometry with arcs
geometries are not allowed in
CityGML and
SDO INTERPRETATION must be 2

Table 13: Storage of composite line string geometry

THEMATIC_SURFACE

The table THEMATIC SURFACE represents thematic boundary features. CityGML class
_BoundarySurface has a number of concrete subclasses representing different types of
surfaces. One possibility would be to represent each of these classes by its own table. Here,
we choose the approach to create one table representing all those classes. No own tables for
the subclasses of BoundarySurface were created in the relational schema; instead, the type of
the boundary surface is given by the foreign key OBJECTCLASS ID in the table
THEMATIC SURFACE. Allowed integer values:

e 30 (CeilingSurface)

e 31 (InteriorWallSurface)
e 32 (FloorSurface)

e 33 (RoofSurface)

o 34 (WallSurface)

e 35 (GroundSurface)

e 36 (ClosureSurface)

e 60 (OuterCeilingSurface)
e 61 (OuterFloorSurface)

If a CityGML ADE is used that extends any of the classes named above, further values for
OBJECTCLASS ID may be added by the ADE manager. Their concrete numbers depend on
the ADE registration (cf. section 6.3.3.1).

The aggregation relation between buildings and the corresponding boundary surfaces results
from the foreign key BUILDING ID of the table THEMATIC SURFACE which refers to the
ID of the respective building. The same applies to references between surfaces of building
installations (BUILDING INSTALLATION ID) and rooms (ROOM ID). Thematic surfaces
and the corresponding parent feature should share their geometry: the geometry should be
defined only once and be used conjointly as XLinks. The SURFACE GEOMETRY, which for
example geometrically defines a roof, should at the same time be a part of the volume
geometry of the parent feature the roof belongs to.

3D Geodatabase for CityGML 2018 79

Example:

In Figure 40, a building geometry is shown consisting of several surface geometries enclosing
the outer building shell. Please note that the left wall (ID 5) is composed of two polygons
(IDs 11 and 12) and that the roof is split into a left and a right part (IDs 20 and 21) each of
which again consists of two polygons, the roof surface and an overhanging part. In the
SURFACE GEOMETRY table (cf. Table 14), the attribute IS COMPOSITE is set to 1 for the
tuples with IDs 5, 20 and 21 characterising them as composite surfaces. The surface geo-
metries are semantically classified as roof, wall or ground surface by adding an entry into the
THEMATIC SURFACE table and linking this entry with the corresponding geometry tuple in
SURFACE GEOMETRY. In Table 15, an excerpt of the THEMATIC SURFACE table is
depicted. The tuple with ID 70 represents a RoofSurface by setting the OBJECTCLASS ID
attribute to the value 33. For its geometry, the tuple references ID 21 in the
SURFACE GEOMETRY table via the LOD2 MULTI SURFACE ID attribute (cf. Table 15).

Figure 40: LoD2 building with roof overhangs, highlighted in red

SURFACE_GEOMETRY (excerpt)

PARENT_ | ROOT IS IS IS
ID | GMLID ID ID | SOLID | COMPOSITE | XLINK |CEOMETRY
3 |UUID_LoD2 NULL 3 0 0 0 NULL
5 | Left_Wall 3 3 0 1 0 NULL
11 | Left_Wall_1 5 3 0 0 0 Geometry comp (5-1) surface 11
12 | Left_Wall_2 5 3 0 0 0 Geometry comp (5-2) surface 12
13 | Front 3 3 0 0 0 Geometry surface 13
14 | Right_Wall 3 3 0 0 0 Geometry surface 14
15 | Back 3 3 0 0 0 Geometry surface 15
16 | Roof_part_1 21 3 0 0 1 Geometry surface 16
17 |Roof_part_2 20 3 0 0 1 Geometry surface 17
18 | Overhang_1 21 3 0 0 0 Geometry of overhang 18
19 | Overhang_2 20 3 0 0 0 Geometry of overhang 19
20 | Roof_right 3 3 0 1 0 NULL
21 |Roof_left 3 3 0 1 0 NULL
30 | UUID_Solid NULL 30 1 0 0 NULL
31 UUID_CS 30 30 0 1 0 NULL
32 | Roof_part_1 31 30 0 0 1 Geometry surface 16
33 | Roof_part_2 31 30 0 0 1 Geometry surface 17

Table 14: Excerpt of table SURFACE _GEOMETRY. Geometry objects are stored as database geometry datatype

80 3D Geodatabase for CityGML 2018

THEMATIC_SURFACE (excerpt)

ID OBJECTCLASS_ID | BUILDING_ID ROOM_ID LOD2_MULTI_SURFACE_ID

70 |......... 33 1 NULL 217

Table 15: Excerpt of table THEMATIC SURFACE

In addition to thematic boundary surfaces, assume that we also want to represent the building
volume as separate solid geometry that is stored with the building itself. For this purpose,
another tuple with ID 30 is added to the SURFACE GEOMETRY table whose IS SOLID
attribute is set to 1. This tuple is referenced from BUILDING using the LOD2 SOLID ID
attribute (cf. Table 16).

According to the CityGML specification, the surface geometries forming the solid geometry
shall reference the geometries of the thematic boundary surfaces using GML’s XLink
mechanism. Therefore, the referenced geometries have to be copied and inserted as new
tuples into SURFACE GEOMETRY. Moreover, the IS XLINK flag has to be set to 1 for the
referenced geometries and their copies (see chapter 2.3.3.3 for details). In Table 15, this is
illustrated for the geometries with ID 32 and 33, which are copies of the tuples with ID 16
and 17 respectively. Note, that the overhanging roof parts (IDs 18 and 19) are not referenced
by the solid geometry, because they are dangling surfaces and not part of the volume.

BUILDING (excerpt)

ID BUILDING_ROOT_ID | ... LOD1_SOLID_ID LOD2_SOLID_ID

1| coooo000e 1 Jecooooce NULL 30

Table 16: Excerpt of table BUILDING

BUILDING_INSTALLATION

The UML classes Buildinglnstallation and IntBuildinglnstallation are realized by the single
table BUILDING INSTALLATION. Internal and external objects are distinguished by the
attribute OBEJCTCLASS ID (external 27, internal 28). The relation to the corresponding
parent feature arises from the foreign key BUILDING ID or ROOM ID, whereas the surface
based geometry in LoD 2 to 4 is given via the foreign keys LODx BREP ID (2 <x <4)
referring to the table SURFACE GEOMETRY.

Additional point- or line-typed building installation elements such as antennas can be
modelled by the attribute LODx OTHER GEOM (2 < x < 4) using the database geometry type
(any GTYPE, ETYPE etc. in Oracle and GEOMETRY Z in PostGIS). Since CityGML 2.0.0
building installations can also be represented by using prototypes which are stored as library
objects implicitly. The information needed for mapping prototype objects to buildings
consists of a base point geometry (LODx IMPLICIT REF POINT (2 <x <4)), a transfor-
mation matrix (LODx IMPLICIT TRANSFORMATION (2 < x < 4)), which is stored as a
string, and a foreign key reference to the IMPLICIT GEOMETRY table
(LODx IMPLICIT REP ID (2 < x < 4)) where a reference to an explicit surface based
geometry in LoD 2 to 4 is saved.

3D Geodatabase for CityGML 2018 81

OPENING

Openings (CityGML class Opening) are represented by the table OPENING and are only
allowed in LoD3 and 4. No individual tables are created for the subclasses. Instead, the
differentiation is achieved by the foreign key OBJECTCLASS ID which refers to the
attribute ID of the (meta) table OBJECTCLASS. Valid integer values are 39 (Door) and 38
(Window). If a CityGML ADE is used that extends any of the two classes Door or Window,
further values for OBOECTCLASS ID may be added by the ADE manager. Their concrete
numbers depend on the ADE registration (cf. section 6.3.3.1).

Table OPENING TO THEM SURFACE associates an opening ID in table OPENING with a
thematic surface ID in table THEMATIC SURFACE representing the m:n relation between
both tables. An address can be assigned to a door (table OPENING) by the foreign key
ADDRESS ID in the table OPENING. Furthermore, addresses may be assigned to buildings
(see table ADDRESS for detailed information).

Like with building installations openings can be modelled via implicit geometry since
CityGML 2.0.0. Thus, the OPENING table does contain the columns
LODx IMPLICIT REP ID, LODx IMPLICIT REF POINT and LODx IMPLICIT -
TRANSFORMATION, too.

ROOM

Room objects are allowed in LoD4 only. Therefore, the only keys
LOD4 MULTI SURFACE ID and LOD4 SOLID ID are referring to the table
SURFACE GEOMETRY. Additionally, the foreign keys to tables BUILDING and
CITYOBJECT are necessary to map the relationship to these tables.

BUILDING_FURNITURE

As rooms may be equipped with furniture (chairs, wardrobes, etc.), a foreign key referencing
to ROOM_ID is mandatory. The geometry of furniture objects can be described explicitly
using the attribute L.OD4 OTHER GEOM representing the point- or line-typed entities or
using the foreign key LOD4 BREP ID referring to the table SURFACE GEOMETRY.
Alternatively, the geometry of furniture objects may be represented by using prototypes
(ImplicitGeometry) which are stored as library objects. Again, the information needed for
mapping prototype objects to rooms consists of a base point, a transformation matrix and a
reference to the IMPLICIT GEOMETRY table.

ADDRESS, ADDRESS_TO_BUILDING, and ADDRESS_SEQ

Addresses are realized by the table ADDRESS. The m:n relation with buildings arises from the
table ADRESS TO BUILDING which associates a building ID and an address ID. An
address can also be assigned to a door (table OPENING) by the foreign key ADDRESS ID in
the table OPENING. The same applies to addresses of bridges (incl. a table
ADRESS TO BRIDGE) and bridge openings.

The next available ID for the table ADDRESS is provided by the sequence ADDRESS SEQ.

3D Geodatabase for CityGML 2018

82

2.3.3.6 Bridge Model

(=] dables
BRIDGE FLRITLRE

D NuBER.

[cBemess B s

LODE_SREP 1D MUvBEF
o R — 0.1
Lot e fe b uaen

LoD4 _wpLICITREF 0_cEoi
LoD NPT TRANEFORMATN: VARCHAREII00

[

doties
cvoBECT

0 NuBER.
OBIECTCLASS 1D NUIBER

NvBER
wa VARCHAR2(25%)
cootsPACE: VARGIARI 000

@ e omocs TR B R P e R0 ¥
INPLICIT_GEOMETRY .m.emnos FE L CITYOBECT it D ESCRRTION : VARCHAR2(4000)
O (FKABRIDGE FURN_LODABREP_FI: LODA_BREP_ID LOPE VDS /S.S00_GEOVETRY
e — e TR Lo 7 Loos KT 5.0 LoATe hesTane e
REFERENCE. TO_LERARY ; VARCHARZ(4000) <FKABRIDGE_FURN_OBJCLASS,FK: OBJECTCLASS D TERNINATION_DATE ; TNESTAN WITH TWE ZONE
e gy o (e R e
. T oA DATE ST i e orE
PO e — oot person VarcoeacEs
RSO o RO, ARCARE)
. S necraroen
| R o Sounce ocs
o
.
oy e o —
o
= dables
| B0t Roou PRACTYOBUECT P D
D: NUMBER «FK»CITYOBJECT_OBJECTCLASS_FK: OBJECTCLASS 1D
<PHIPLICIT_GEOVETRY_PK: ffg“x:s Dwa:MBER
(<FHaMPLICIT_GEOM_BREP_Fit: RELATIVE_BREP_D
peyaisi— .
FUNCTION : VARCHAR2(1000) o ' i '
o e —
e —
e Taaen
'
. 01 Jos 0 .
oy
T r swoce o anien
(<FKBRIDGE_ROOM_BRIDGE_Fi: BRDGE_ID /ADDRESS_D : NUMBER
e Roow CTYGRRCT D :
om0 pocH SODMSTY. P 1004 AT SFACE D
oo Foau LoowSoLo P Look 5000
P FoO S LASE T RRCTELASS D o
o s 1o s 8 0 K0S
eooress 1o Erpos T oore
PADORESE 1o e) SHOGE B
(=] dables
snoce ci o
o enen
CakcTciacs o wieen o
Aot
v i— 1T o
- P v .
(=] ctables .
funco sooerics v oce famon
o unen
e o
. BROGELD. =] OBJECYCLASSJD NUMBER
Lo o oroveTmy ranas
oo AR AR MTERSECTN, 1525 3000 s eece v ,
oo TERRAR MTESECTON VoS 15550 GEVETRY 1
LOD4. rEmAlumfﬁsﬁc 0N : MDSYS SDO_GEOMETRY [FUNCTION.CODESPACE : VARCHAR2(4000) (=] ables
[< aroarae o e
oot oreo. e \usAce_coeseace varcarzom) o e
oo arEo I eaeen 1 Gakercas o teen
. oo oot oo - ebce PARBIT . e
LOD1_OTHER_GEOH: HDSYS SDO_GEOHETRY 2IREEIE o - ROOT_D: NUNEER
- 1DSYS SO o g CLASS | VARCHAR2(256)
oo oven_GEcM DY 500 cEOUETRY , Conss covesoace ARCHAREKK0)
T oo iooY= 00 ceoeTRY oo oreen_geow: psrs oo, seouerey RN ARG
oo v 70 e T GE0. 015500 GEOETRY e —
o o o Lo w0 M Loptome_ceou s 00 St o
o LOD3_WPLICIT_REP_ID : NUVBER L0DS_ WPLICIT REP_1D- NMEER USAGE_CODESPACE : VARCHAR2(4000)
@ s + Lova_WPUCIT FEP_D: e [LooabeLT_R b: MAGER VEAR_0F CONSTRLCTION: DATE
snract SEouere NPLGT. e PONT o 500 cEotETRY L S Year o s oAE
T Lo0 M 5 PoT 103Y= 200 ceoETRY e e 5 SRR MAEER.0
e 100U PONT 105Y5 0. orETRY e e ot L —
oML cunmAcE vARcmmmn) LLOD4_MPLICIT_REF_PONT : MDSYS SDO_GEOMETRY LOD2_MPLICIT_TRANSFORMATION - VARCHAR2(1000) LOD2_TERRAN_INTERSECTION ; MDSYS SDO_GEONETRY
L S o, oy e
a0 iom) L0 TRAORIATON. Archan 000 103 TERALITERSECTNOSYS 0. CONETRY
CH .o o Lo T Ao VAROHAR 0 004 LT TRANSFORUATION: VARCHATA 00 LSO IR 10513500 CeoeTAY
ST Loor MR TRASFCRIATION VARCHARA100D) . 51 oo AL Ve ey oo e
e haneon o AR mosveo. ceoeTRY
ISXLING: NUVBER(1, 0) 01 . e T_SURFACE_D: 5!
R e Lo A D unen
o e i “«PK>BRIDGE_CONSTR_ELEMENT_PI: D LOD3_MULT_SURFACE_D: NUVBER
SOLD. GEDMETR MDSYS SDO_GEOMETRY 04 | FKsBRIDGE_CONSTR_ B'mDGE FHK: BRIDGE_D. |LOD4_MULTI_SURFACE_D : NUMBER
EOMETRY : MDSYS SDO_GEONETRY FKsBRIDGE_CONSTR_CITYOBJ_FI: D «PK2BRIDGE_NSTALLATION_ LOD1_SOLID_D : NUK
C‘WOBJECUD NUMBER <FKABRIDGE_CONSTR_ LDMEREP Fi: LOD1_BREP_ ‘<FKaBRIDGE_NST_BRD_ROOM_FK: BRIDGE_ROOM_ID LOD2_SOLID_D:: NUMBER
«FK>BRDGE_CONSTR_LOD1IMPL_FK: LOD1. wucw I_REP_D i 0D3_SOLD. D : NUNE
e Coem o o e Loor S0 0 hneen
ot D0E COISTRLo0zNPL GLoDE BALCT.fer_D FKABRIDGE_NST_LODZB
emmooe coem oo oo e oamooE NET 00ER P 1003 WU 5E.
oo D e FKABRIDGE_NST_LODIBREP_F: LOD3_BREP D
o o e o ot e e e i
(FKSBRIDGE_CONSTR_LODANPL_FI LOD4_WPLICT_REP_ID GE_INST_LOD4BREP_FI: LODI_
oo CT DS LASE e GBS oamo0E NET 0D LoO8 WL
PoENOE T OBIASS P CRECTELASS B
o o :
Smpoe-cmosir o
o e o Lot s
e - oooe Lovisous i Lov 0.5
«FHaSURFACE_GEOM_ mlvOBJ_FK cwrvoa:cv o [N A “—SURFACUD
. masuneace oecu Fare . o 0.1 amocE L0030 e L0040
o A oM 0T T ROT D o AT, SURFACE 1
) 5 " oemooe Lcon A Serace
0.1 *_ «FK2BRIDGE_LOD4SOLID_FK: LOD4_SOLD_ID.
0.1 <FKaBRIDGE_OBJECTCLASS_Fi: OBJECTCLASS D
o emooe poor i smoGe Roor
a :
0.4 L 01 |04 [04101 0.1
o o1 Jor
(=] ctables
it

D NuvBER.
cacrosss e
/ADORESS 1D NUVBEF
oo a1 S.nrace_p:NunoeR
oL AT Surrace D: e
LOD3_WPLICI_REP_D: NLAEER

wPLIT
LOD3 WPLICIT_REF_PONT MDSYS SDO_GEOMETRY
04 WELICITREF_PONT HDS'
LOD3_WPLICIT_TRANSFORMATION : VARCHAR2(1000)
LODA _WPLICIT_TRANSFORMATION - VARCHAR2(1000)

PIGERDGE_OPENNG_PK: D

_OPEN_ADDRESS_F ADDRESS_D
FIGBRIDGE_OPEN_CITYOBIECT.

FIOBFIDGE_OPEN_LODAIPL_Fc LODA_IWPLICT_FEP I
(e e A
FIGBRDGE_OPEN_OBJCLASS i OBJECTCLAS

= dables
BRDGE_THENATE_SURFACE

=
OBECTCLASS - NUtBER
BRDGE D

BRIDGE_OPENIG_D NIV
008 AT SLRTAGED AR

aaties
BRIDGE_OPEN_TO_THEM_SRF

. OPEN_10_THEM _SRF_PK: BRIDGE_OPENING
<FIGERD_OPEN_TO_THEN_SFF_FIC BRIDGE_OFENING._D.

¢FIGBRD_OPEN_T0_THEN_SRF_FI1: BRDGE_THEMATIC_SURFACE 1D

: RoO_D - HvBER
BRIDGE_NSTALLATION I : NIBER
BRIDGE_CONSTR_ELEVENT D NVBER.
LOD2_HULTI_SURFACE 1D MM
LoD, WLLT_SURFACE D NOUBER
LOD4 WLLTISURFACE_ID: NOWER

VS IMGER: VARCHARZ256)
256)

I NDSYS.5D0_GEONETRY
XAL_SOURCE : CLOB

PIOADDRESS I D

daties
ADDRESS

D, BRDGE_THEMATIC_SLRFACE D

. THENATIC_SURFACE_PiC I
oD S 50 CONST . BDE coNSTR ASUENTD
N AN
(HGBRD_THEM_SRF_BRD_ROOM_F: BRIDGE.
F_BRIDGE . BRIDGE_ID
<PrBRo_THEM S 0B P 0
FHGBRD_THEN_SRF_LODMSRF_FK: LOD2_ULTI_SURFACE 1D
TSR LOOMSRE 1000 MATLSIRFACE D
LOD_MULTLSLRFACED.
BT S bRsoLASE e CBEETCLASS.D

Figure 41: Bridge database schema

3D Geodatabase for CityGML 2018 83

The bridge model, described in paragraph 2.2.4.3 at the conceptual level, is realised by the
tables shown in Figure 41. The relational schema is identical to the building schema for the
most parts except for the naming. Please, refer to the explanation of the building schema on
the previous pages for a complete understanding. The main differences to the building schema
are the following:

Bridges cannot be modelled in LoD 0. Therefore, no corresponding columns appear in
the BRIDGE table.
CityGML features belonging to bridges, such as boundary surfaces, installations,
openings, rooms and furniture, are mapped to separate specific tables and are not
stored in already existent ones (e.g. THEMATIC SURFACE, OPENING, ROOM). Thus,
values in OBJECTCLASS ID columns are different as well. The reason for this is to
provide a schema that is as close to the UML model as possible. There are slight
differences between the building and the bridge model that would lead to ambiguous
references e.g. a boundary surface of the building namespace cannot reference to a
bridge construction element.
OBJECTCLASS ID oftable BRIDGE THEMATIC SURFACE allows the values:
68 (BridgeCeilingSurface),
69 (InteriorBridgeWallSurface)
70 (BridgeFloorSurface),
71 (BridgeRoofSurface),
72 (BridgeWallSurface),
73 (BridgeGroundSurface),
74 (BridgeClosureSurface),
75 (OuterBridgeCeilingSurface),

o 76 (OuterBridgeFloorSurface).
If a CityGML ADE is used that extends any of the classes named above, further values
for OBJECTCLASS ID may be added by the ADE manager. Their concrete numbers
depend on the ADE registration (cf. section 6.3.3.1).
In the BRIDGE INSTALLATION table external bridge installations can be identified
by the OBEJCTCLASS ID 65 and internal ones by 66.
The CityGML class BridgeConstructionElement 1is represented by the table
BRIDGE CONSTR ELEMENT. Its schema is analogue to the
BRIDGE INSTALLATION table for the most parts. The relation to the corresponding
bridge results from the foreign key BRIDGE ID. Explicit and implicit geometry or a
decomposition through boundary surfaces is possible. Additionally, terrain
intersections curves of construction elements can also be stored.
The OBJECTCLASS ID column in table BRIDGE OPENING can be of integer value
79 (BridgeDoor) or 78 (BridgeWindow). They are associated to entries in the table
BRIDGE THEMATIC SURFACE via the BRI DGE OPEN TO THEM SRF link
table. If a CityGML ADE is used that extends any of the two classes BridgeDoor or
BridgeWindow, further values for OBJECTCLASS ID may be added by the ADE
manager. Their concrete numbers depend on the ADE registration (cf. section 6.3.3.1).
Like openings of building, bridge openings can have addresses assigned to it.

O O 0O 0O O O O O

84

3D Geodatabase for CityGML 2018

2.3.3.7 CityFurniture Model

The CityGML feature class CityFurniture and its attributes specified in the UML (cf. Figure
13) diagram are directly mapped the CITY FURNITURE table and its corresponding

columns.

= dables
CITY_FURNITURE

D : NUMBER

OBJECTCLASS_D : NUMBER

CLASS : VARCHAR2(256)

CLASS_CODESPACE : VARCHAR2(4000)

FUNCTION : VARCHARZ(1000)

FUNCTION_CODESPACE : VARCHAR2(4000)

USAGE : VARCHAR2(1000)

USAGE_CODESPACE : VARCHAR2(4000)
LOD'_TERRAIN_NTERSECTICN : MDS'YS.SDO_GECMETRY
LOD2_TERRAIN_NTERSECTION : MDS'YS.SD0_GECMETRY
LOD3_TERRAIN INTERSECTION : MDS'YS.SD0_GECMETRY
LOD4_TERRAIN_INTERSECTION : MDSY'S SDO_GECMETRY
LODT_BREP D : NUMBER

LOD2_BREP_D : NUMBER

LOD3 BREP_ID : NUMBER

LOD4_BREP_ID : NUMBER

LOD'1_GTHER_GEON : MDS'¥S SDO_GEOMETRYY
LOD2_OTHER_GEOM : MDS'YS SDO_GEOMETR'Y
LOD3_OTHER GEOM : MDSYS SDO_GEOMETRY
LOD4_OTHER_GEOM : MDSYS SDO_GEOMETRY

LOD' _IMPLICIT_REP D : NUMBER

LOD2_MPLICIT_REP_D : NUMBER

LOD3 IMPLICIT_REP_ID : NUMBER

LOD4_IMPLICIT_REP_ID : NUMBER

LODT _IMPLICIT_REF_POINT : MDSYS.5D0_GECMETRY
LOD2_IMPLICIT_REF_POINT : MDS'YS.5D0_GECMETRY
LOD3 IMPLICIT REF_POINT : MDS'YS.5D0_GEOMETRY
LOD4_IMPLICIT_REF_POINT : MDSYS SDO_GECOMETRY
LODT _IMPLICIT_TRANSFORMATION : VARCHARZ(1000)
LOD2_IMPLICIT_TRANSFORMATION : ARCHAR2(1000)
LOD3 IMPLICIT_TRANSFORMATION : VARCHAR2(1000)
LOD4_IMPLICIT_TRANSFORMATION : VARCHAR2(1000)

<PKsCITY_FURNITURE_PK: ID
FIG=CITY_FURN_CITYOBJ_FK: ID
<FRaCITY_FURN_LOD1EREF_FK: LOD1_BREF_D
<FKsCITY_FURN_LOD1IMPL_FK: LOD1_IMPLICIT_REP_ID
<FKsCITY_FURN_LOD2BREP_FK: LODZ_BREP_ID
«FK=CITY_FURN_LOD2IMPL_FI: LODZ_IMPLICIT_REP_D
<FKaCITY_FURN_LOD3EREF_FK: LOD3_BREF_D
<FKsCITY_FURN_LOD3IMPL_FK: LOD3_IMPLICIT_REP_ID
<FKsCITY_FURN_LOD4BREP_FK: LOD4_BREP_ID
«FK=CITY_FURN_LOD4IMPL_FI: LOD4_IMPLICIT_REP_D
«FH=CITY_FURN_OBJCLASS_FK: OBJECTCLASS_ID

0.1 0.1 0.1
«tables
IMPLICIT_GEOMETR™Y
1D - NUMBER

MIME_TYPE : VARCHAR2(256)
REFERENCE_TO_LIERARY : VARCHAR2(4000)
LIBRARY_OBJECT : BLOB

RELATIVE_BREP_ID : NUMBER
RELATIVE_OTHER_GEOM : MDSY'S SDO_GEOMETRY

«PKIMPLICIT_GEOMETRY _PH: ID
«FK=IMPLICIT_GECM_BREP_FK: RELATIVE_BREP_ID

= ddables
CITYOBIECT

D : NUMBER

OBJECTCLASS D : NUMBER

GMLID : VARCHAR2(256]

GMLID_CODESPACE : VARCHAR2(1000)

NAME : VARCHAR2({1000)

NAME_CODESPACE | ARCHAR2(4000)

DESCRIPTION : /ARCHAR2(4000]

ENVELOPE : MDSYS . SDO_GECOMETRY

CREATION_DATE : TMESTAMP WITH TIME ZONE
TERMINATION_DATE : TMESTAMP WITH TIVE ZONE
RELATIVE_TO_TERRAIN : VARCHAR2(258)
RELATIVE_TO_WATER : VARCHAR2(256)

L AST_MODIFICATION_DATE : TMESTAMP VTH TIME ZONE
UPDATING_PERSON : VARCHARZ2{258)
REASON_FOR_UPDATE : ARCHAR2(4000)

LINEAGE : VARCHAR2(256)

¥WL_SOURCE : CLOB

«PH=CITYOBJECT_PK: ID
«FK=CITYOBJECT_OBJECTCLASS_FK: OBJECTCLASS D

0.1 0.1 01 0.1 .

= dables

SURFACE_GEOMETRY

D : NUMBER
GIILID : VARCHAR2(256)

GILID_CODESPACE : VVARCHARZ2(1000)
PARENT_ID : NUMBER

ROOT_ID : NUMBER

1S_SOLID : NUMBER(1, 0)

IS_COMPOSITE : NUMBER(1, 0)
IS_TRIANGULATED : NUMBER(1, 0)

1S_XLINK : NUMBER(1, 0)

1S_REVERSE : NUMBER(1, 0)

GEOMETRY : MDSY'S SDO_GEOMETRY
SOLID_GEOMETRY : MDSY'S.SDO_GEOMETRY
IMPLICIT_GEOMETRY : MDSYS SDO_GEOMETRY
CITYOBJECT 1D : NUMBER

«PK»SURFACE_GECMETRY_PK: ID
«FK>SURFACE_GEOM_CITYOBJ_FK: CITYOBJECT_D
<FK>SURFACE_GEOM_PARENT_Fi: PARENT_ID
«FK»SURFACE_GEOM_ROOT_FK: ROOT_ID .

Figure 42: CityFurniture database schema

The geometry of city furniture objects is represented either as a surface-based geometry object
(LODx_BREP ID, where 1 <x < 4) related to table SURFACE GEOMETRY, as a point- or
line-typed object (LODx OTHER GEOM, where 1 < x < 4) or as implicit geometry
LODx IMPLICIT REP ID,
LODx IMPLICIT TRANSFORMATION with 1 < x < 4). Optionally terrain intersection

curves can be stored for city furniture objects.

LODx IMPLICIT REF POINT,

3D Geodatabase for CityGML 2018 85

2.3.3.8 Digital Terrain Model

A tuple in the table RELIEF FEATURE represents a complex relief object, which consists of
different relief components. It has an attribute LOD that describes the affiliation of the relief
object to a certain level of detail (LoD) of the city model. The individual components of a
complex relief object are stored in the tables BREAKLINE RELIEF, TIN RELIEF,

MASSPOINT RELIEF and RASTER RELIEF. Every relief component has an attribute LOD
that describes the affiliation to a certain level of detail (resolution, accuracy). However,
individual components of a complex relief object may belong to different LoD and may be
heterogeneous, i.e. a mixture of TINs, grids and mass points. Optionally, the geometrical
separation between the individual relief components of a complex relief object can be realized
via polygons (attribute EXTENT), which specify the validity area of the relief component.
Every relief component has an attribute NAME that is used for naming of the component. The
relief as well as every relief component are derived from CITYOBJECT and receive the same
ID as the CityObject. Table RELIEF FEAT TO REL COMP represents the interrelationship
between relief features and relief components.

s
cTvosEeT

VERSIONED TABLE

UNVERSIONED TABLE

]

0 NUnBER.
5.0

AGE_RDT

DSV SD0_GEOVETRY.

Figure 43: Digital Terrain Model database schema

A raster relief is the only feature in CityGML that can be described by a grid coverage.
Corresponding database types are SDO _GEORASTER in Oracle Spatial 11g or higher (not
available in Oracle Locator) and RASTER in PostGIS 2.0 or higher. In Oracle for each table

86 3D Geodatabase for CityGML 2018

that stores SDO_ GEORASTER an additional table of type SDO_RASTER is mandatory (raster
data table = RDT). It stores the metadata of the SDOGEORASTER.

In case of that a grid representation is introduced to other features in CityGML in the future,
numerous RDT tables would be created when storing grids along with the thematic tables.
Thus, a central table called GRID COVERAGE is used to register all grid data and to prevent
numerous additional tables in the 3DCityDB schema. This concept is analogue to the storage
of surface-based geometry whereas SURFACE GEOMETRY is the central table.

Since Oracle Spatial 11g the SDO__GEORASTER type supports Oracle Workspace Manager.
Therefore, the table GRD COVERAGE RDT can be versioned for history management.
However, Oracle Spatial doesn’t allow user to version-enable the tables, where GeoRaster
objects are stored. Hence, the table GRID COVERAGE cannot be versioned using the Oracle
Workspace Manager.

Geometry attributes for different relief components are limited to these value domains:

BREAKLINE_RELIEF

° BREAK_LINESandRIDGE_OR_VALLEY_LINES
o Oracle: MultiLine (GTYPE 3006)
o PostGIS: MultiLineString Z

TIN_RELIEF

° STOP_LINESandBREAK_LINES
o Oracle: MultiLine (GTYPE 3006)
o PostGIS: MultiLineString Z
e RELIEF POINTS
o Oracle: MultiPoint (GTYPE 3001 or 3005)
o PostGIS: MultiPoint Z
e TIN
o TIN triangles could be stored as triangulated surfaces in table
SURFACE GEOMETRY

MASSPOINT_RELIEF

e RELIEF POINTS
o Oracle: MultiPoint (GTYPE 3001 or 3005)
o PostGIS: MultiPoint Z

RELIEF_COMPONENT

e EXTENT (defines the validity extents of each relief component)
o Oracle: Polygon (GTYPE 3003, ETYPE 1003, SDO INTERPRETATION I
or 3 (optimized rectangle))
o PostGIS: Polygon Z

3D Geodatabase for CityGML 2018

87

2.3.3.9 Generic Objects and Attributes

3D city models will most likely contain attributes, which are not explicitly modelled in
CityGML. Moreover, there may be 3D objects that are not covered by the thematic classes of
CityGML. Generic objects and attributes help to support the storage of such data.

GENERIC_CITYOBJECT

For generic objects the full variety of different geometrical representations known from other
tables is offered. Explicit (LODx BREP_ ID, LODx OTHER GEOM) and implicit geometry
LODx_IMPLICIT REF POINT,
LODx IMPLICIT TRANS-FORMATION) as well as terrain intersection
(LODx TERRAIN TNTERSECTTION) (all with 0 <x <4).

(LODx_IMPLICIT REP_1ID,

=] tables
GENERIC_CITYOBJECT
D NUMBER

OBUECTCLASS_ID : NUMBER

CLASS : VARCHARZ(256;

CLASS_CODESPACE : VARCHAR2(4000)

FUNCTION_CODESPACE : VARCHAR2(4000)

2(1000)
USAGE_CODESPACE : VVARCHAR2(4000)
LODO_TERRAIN_INTERSECTION : MDS'S.SDO_GEOMETRY
LOD1_TERRAIN_INTERSECTION : NMDSS.5DO_GEOMETRY
LOD2_TERRAIN_INTERSECTION : NMDS''S SDO_GEOMETRY
LOD3_TERRAIN_INTERSECTION : NDSYS SDO_GEOMETRY
LOD4_TERRAIN_INTERSECTION : MDSYS.SDO_GEOMETRY
UMBER

LOD4_BREP_ID : NUMBER

LODO_OTHER _GEOM : MDSYS.SDO_GEOMETRY.
LOD1_OTHER_GEOM : MDSYS.SDO_GEOMETRY.
LOD2_OTHER_GEQM : MDS'S.SDO_GEOMETRY
LOD3_OTHER_GEON : MDS YS.S0_GEOMETRY
LOD4_OTHER_GEON : MDSY'S.SD0_GEOMETRY
LODO_INPLICIT_REP_ID : NUVBER

LODO_IMPLICIT_REF _POINT : MDSY'S SDO_GEOMETRY
LOD1_IMPLICIT_REF _POINT : MDSY'S SDO_GEOMETRY
LOD2_IMPLICIT_REF _POINT : MDSYS SDO_GEOMETRY
LOD3_IPLICIT_REF _POINT : MDS S SDO_GEOMETRY
LOD4_PLICIT_REF POINT : MDSYS.S00_GEOHETRY
LODO_IMPLICIT_TRANSFORMATION : VARCHAR2(1000)
LOD1_INPLICIT_TRANSFORMATION : VARCHAR2(1000)
LOD2_IPLICIT_TRANSFORMATION: VARCHAR2(1000)
LOD3_PLICIT_TRANSFORMATION | VARCHARZ(1000)
LOD4_IPLICIT_TRANSF ORMATION : VARCHAR2(1000)

PI{>GENERIC_CIT Y OBJECT_PI: ID
<Fi>GEN_OBJECT_CIT YOBJECT_FK: ID
Fi>GEN_OBJECT_LODOBREP_FH: LODO_BREP_D
FI<>GEN_OBJECT_LODOIMPL_FK: LODO_IMPLICIT_REP_ID

0.1 01 0 0.1

atables
IMPLICIT_GEOMETRY

D NUMBER

MIVE_TYPE : VARCHAR2(256)

REFERENCE_TO_LIBRARY : VARCHAR2(4000)

LIBRARY_OBJECT : BLOB

RELATIVE_BREP_ID : NUMBER

RELATIVE_OTHER_GEON : MDSYS SDO_GEOMETRY

PIaIMPLICIT_GEOWETRY_PK: D
FIaIMPLICIT_GEOW_BREP_FIs: RELATIVE_BREP_ID

[=] tables
ciTvoB.ECT
b NUMBER

OBUECTCLASS ID: NUMBER

GHLD: VARCHAR2(256)

(GILID_CODESPACE : VARCHAR2(1000)

NAVE | VARCHAR2(1000)

NAME_CODESPACE: VARCHAR2(4000)
DESCRIPTION : VARCHAR2(4000)

ENVELOPE : MDSYS.SDO_GEOMETRY

CREATION DATE : TESTAMP WITH TIIE ZONE
TERMNATION_DATE : TMESTAMP WITH TIVE ZONE
RELATIVE_TO_TERRAIN : VARCHAR2(256)
RELATIVE_TO_WATER | VARCHAR2(256) 21

)
REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)
XML_SOURCE : CLOB

<PI=CITYOBJECT_PHK;: D
«FICITYOBJECT_OBJECTCLASS_FIt: OBJECTCLASS_ID

[ez]

D: NUMBER

atables
CITYOBJECT_GENERICATTRIE

PARENT_CENATTRIB_ID : NUMBER
ROCT_GENATTRIE_ID : NUMBER
ATTRNANE : VARCHAR2(256)
DATATYPE : NUMBER(1)

STRVAL : VARCHAR2(4000)

INTVAL : NUMBER

REALVAL : NUVBER

URIVAL : VARCHARZ(4000)

DATEYVAL : TIMESTANMP WITH THME ZONE
UNIT: VARCHARZ(4000)
(GENATTRIBSET_CODESPACE : VARCHAR2(4000)
BLOBVAL : BLOB

GEOMVAL : MDSYS.SD0_GEOMETRY
SURFACE_GEOMETRY_ID:: NUMBER
CITYOBJECT_ID: NUMBER

<PI{CITYOB._GENERICATTRI_PK: D
«FI4>GENERICATTRIB_CITY OBJ_F: CITYOBUECT_D
FI>GENERICATTRIE_GEOM _FIt. SURF ACE_GEOMETRY_ID
<Fi4>CENERICATTRIB_PARENT_FI: PARENT_GENATTRIE_D
<Fi6>CENERICATTRIB_ROOT_FK: ROCT_GENATTRIE_ID

0.4
=]

D: NUMBER
GINLID: VARCHAR2(258)
GMLID_CODESPACE : VARCHAR2(1000)
PARENT_ID : NUMBER

0.1 |ROGT_ID: NUVBER
1S_SOLID: NUMBER(1, 0)

atables
SURFACE_GEOMETRY.

IS_COMROSITE : NUMBER(1 , 0)
IS _TRIANGULATED : NUVBER(1, 0)
1S XLINK - NUMBER(1, 0)
15_REVERSE - NUMBER(, 0)
0.1 |GEOMETRY : IDS'S SDO_GEOMETRY
L 4SOLD_GEONETRY:MDSYS SDO_GEOMETRY
WPLICIT_GEONMETRY : MDS S SDO_GEONETRY
CITYOBJECT_D : NUMBER N
01
.

0.1
I

«PI{>SURF ACE_GEOMETRY_PI ID
«FH>SURFACE_GEOM_CITYOB._FI: CITYOBJECT_ID

<FisSURFACE_GEOM_PARENT_FK: PARENT_ID
<Fi4>SURFACE_GEOM_ROOT_FI: ROOT_ID

Figure 44: GenericCityObject and generic attributes database schema

curves

88 3D Geodatabase for CityGML 2018

CITYOBJECT_GENERICATTRIB, CITYOBJECT_GENERICATT_SEQ

The table CITYOBJECT GENERICATTRIB is used to represent the concept of generic
attributes. However, the creation of a table for every type of attribute was omitted. Instead a
single table CITYOBJECT GENERICATTRIB represents all types and the types are
differentiated via the values of the attribute DATATYPE.

The table provides fields for every data type, but only one of those fields is relevant in each
case. An overview of the meaning of the entries in the field DATATYPE is given in Table 17.
The relation between the generic attribute and the corresponding CityObject is established by
the foreign key CITYOBJECT ID.

DATATYPE attribute type

STRING

INTEGER

REAL

URI

DATE

MEASURE

Group of generic attributes
BLOB

Geometry type

Geometry via surfaces in the table SURFACE GEOMETRY

V| IN[ocU| DN WIN=

—_
o

Table 17: Attribute type

Please note that the binary and geometric data types (incl. geometry via surfaces) are not
supported by CityGML and cannot be exported using the CityGML Import / Export tool!
But, if a user wants to add additional attributes to thematic tables, he should use the schema of
the CITYOBJECT GENERICATTRIB table rather than adding additional columns to
existing tables, because only in this way the Import / Export tool can automatically write them
to CityGML.

Moreover, generic attributes can be grouped using the CityGML class genericAttributeSet.
Since genericAttributeSet itself is a generic attribute, it may also be contained in a generic
attribute set facilitating a recursive nesting of arbitrary depth. This hierarchy within a
genericAttributeSet is realized by the foreign key PARENT GENATTRIB ID which refers to
the superordinate genericAttributeSet (aggregate) and contains NULL, if such does not exist.
The foreign key ROOT GENATTRIB ID refers directly to the top level (root) of a
genericAttributeSet tree. In order to select all generic attributes forming a genericAttributeSet
one only has to select those with the same ROOT GENATTRIB ID.

The next available ID for the table CITYOBJECT GENERICATTRIB is provided by the
sequence CITYOBJECT GENERICATT SEQ.

3D Geodatabase for CityGML 2018 89

2.3.3.10 LandUse Model

The CityGML feature class LandUse and its attributes specified in the UML (cf. Figure 17)
diagram are directly mapped the LAND USE table and its corresponding columns. The
relation to table SURFACE GEOMETRY is established by the foreign keys

LODx MULTI SURFACE ID, where 0 <x <4,
=]

«tables
CITYOBJECT
1D - NUMBER
OBJECTCLASS_|D : NUMBER
GWILID : VARCHAR2(256)
GMLID_CODESPACE : VARCHAR2(1000)
MAME : v ARCHAR2(1000)
MNAME_CODESPACE : VARCHAR2(4000)
DESCRIPTION : VARCHAR2(4000)
ENVELOPE : MDS¥S.SDO_GEOMETRY
CREATION_DATE : TIMESTAMP WITH TIME ZONE
TERMINATION_DATE : TMESTAMP WITH TIME ZONE
RELATIVE_TO_TERRAIN : VARCHAR2(256)
RELATIVE_TO_WATER : VARCHAR2(258)
LAST_MODIFICATION_DATE : TIMESTAMP WITH TIME ZONE
UPDATING _PERSON : \ARCHAR2(256)
REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(258)

¥ML_SOURCE: CLOB
0.1

«PHsCITYOBJECT_PK: ID
«FKsCITYOBJECT_OBJECTCLASS_FK: OBJECTCLASS_ID

1

0.1 =]

atables
] ctables SURFACE_GEOMETRY

LAND_USE D NUMBER
ID: NUMBER GMLID : VARCHAR2(256)
OBJECTCLASS_|D : NUMBER . 0.1 GMLID_CODESPACE : VARCHAR2(1000)
CLASS : VARCHARZ2(256) PARENT_ID . NUMBER
CLASS_CODESPACE : ARCHAR2(4000) ROOT_ID : NUMBER
FUNCTION : VARCHAR2(1000) 1S_SOLID : NUMBER(1, 0)
FUNCTION_CODESPACE : VARCHAR2(4000) 0.1 |S_COMPOSITE : NUMBER(1, 0)
USAGE : VARCHARZ(1000) . IS_TRIANGULATED : NUMBER(1 , 0)
USAGE_CODESPACE : VARCHAR2(4000) 1S _XLINK : NUMBER(1, 0)
LODO_MULTI_SURFACE_ID : NUMBER IS_REVERSE : NUMBER(1,0)
LOD1_MULTI_SURFACE_ID : MUMBER ‘ 0.1 |GEOMETRY : MDS¥S SDO_GEOMETRY
LOD2_MULTI_SURFACE _ID : NUMBER SOLID_GECVETRY : MDS'¥S.SDO_GECHETR'Y
LOD3_MULTI_SURFACE _ID : NUMBER IMPLICIT_GEOMETRY : MDSYS.SDO_GECMETRY
LOD4_MULTI_SURFACE_ID : NUMBER . 0.1 |CITYOBJECT ID : NUMBER

. 0.1 |€PKsSURFACE_GEOMETRY_PK. ID

PIGLAND_USE_PK. D FH> SURFACE_GEOM_CITYOBJ_FK: CITYOBJECT_ID
«FsLAND_USE_CITYOBJECT_FK: ID «FH»SURFACE_GEOM_PARENT_FK: PARENT_ID
«FKsLAND_USE_LODOMSRF_FK: LODO_MULTI_SURFACE_ID «FH=SURFACE_GEOM_ROOT_FK: ROOT_D
«FKsLAND_USE_LOD1MSRF_FK: LOD1_MULTI_SURFACE_ID
«FHsLAND_USE_LOD2ZMSRF _FH: LOD2_MULTI_SURFACE_ID 01 Toa
«FHaL AND_USE_LOD3MSRF_FK: LOD3_MULTI_SURFACE_ID
«FHsLAND_USE_L ODAMSRF_FH: LOD4_MULTI_SURFACE_ID
«FKsLAND_USE_OBJCLASS_FK: OBJECTCLASS_ID

Figure 45: LandUse database schema

2.3.3.11 Transportation Model

For the realisation of transportation objects two tables are provided: TRAFFIC AREA and
TRANSPORTATION COMPLEX.

TRAFFIC_AREA

Next to the common attribute triple class, function and usage traffic areas can store
information about their surfaceMaterial. In the UML model this attribute is specified as
gml:CodeType which makes an additional CODESPACE column necessary. The
representation of geometry is handled by foreign keys LODx MULTI SURFACE ID (with 2
< x < 4). The aggregation relation between a transportation complex and the corresponding
traffic areas results from the foreign key TRANSPORTATION COMPLEX ID. The foreign
key OBJECTCLASS ID indicates whether a tuple represents a TrafficArea (value 47) or an
AuxiliaryTrafficArea (value 48) feature. If a CityGML ADE is used that extends any of the
two classes TrafficArea or AuxiliaryTrafficArea, further values for OBOJECTCLASS ID may

90 3D Geodatabase for CityGML 2018

be added by the ADE manager. Their concrete numbers depend on the ADE registration (cf.
section 6.3.3.1).

TRANSPORTATION_COMPLEX

As shown in the UML diagram, every traffic area object may have the attributes class,
function and usage. For differentiation between the subclasses an OBJECTCLASS ID
column is used again:

o 42 (TransportationComplex)

o 43 (Track)

e 44 (Railway)

e 45 (Road)

o 46 (Square)
If a CityGML ADE is used that extends any of the classes named above, further values for
OBJECTCLASS ID may be added by the ADE manager. Their concrete numbers depend on
the ADE registration (cf. section 6.3.3.1).

In the coarsest level transportation complexes are modelled by line objects. The
corresponding column is called LODO NETWORK of geometry type MultiCurve in Oracle and
MultiLineString Z in PostGIS. Starting form LODI1 the representation of object geometry is
handled by foreign keys LODx MULTI SURFACE ID (with 1 <x<4).

]

D NUMBER

OBJECTCLASS_ID : NUMBER

GMLID : VARCHAR2(258)

GMLID_CODESPACE : VARCHAR2(1000)

NAWVE : VARCHAR2(1000)

NAVE_CODESPACE : VARCHAR2(4000)

DESCRIPTION : VARCHAR2(4000)

ENVELOPE : MDSYS.SD0_GEOMETRY

CREATION_DATE : TESTAMP WITH TIME ZONE
0.1 TERMINATION DATE : TMESTAME WITH TIME ZONE
RELATIVE_TO_TERRAIN: VARCHAR2(256) 1
RELATIVE_TO_WATER : VARCHAR2(256)
LAST_MODIFICATION_DATE : TIMESTAMP WITH TIME ZONE
UPDATING PERSON : VARCHAR2(256)
REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)
¥ML_SOURCE: CLOB

atables
CITYOBJECT

<PK=CITYOBJECT_PK: D
aFH2CITYOBJECT_OBJECTCLASS FIt: OBJECTCLASS ID

0.1

o (] atables

] aables TRANSPORTATION_COMPLEX

TRAFFIC_AREA 1D NUVBER
1D : NUVBER OBJECTCLASS ID: NUMBER
OBUECTCLASS D : NUMBER CLASS : VARCHAR2(255)
CLASS ; VARCHAR2(256) CLASS_CODESPACE : VARCHAR2(4000)
CLASS_CODESPACE VARCHAR2(4000) FUNCTION : VARCHAR2(1000)
FUNCTION : VARCHARZ(1000) FUNCTION_CODESPACE : VARCHAR2(4000)
FUNCTICN_CODESPACE : VARCHAR2(4000) USAGE : VARCHAR2(1000)
USAGE VARCHAR2(1000) USAGE_CODESPACE : VARCHAR2(4000)
USAGE_CODESPACE : VARCHAR2(4000) LODO_NETVWORIS : 11DSYS.SDO_GEOMETRY
SURFACE_MATERIAL : VARCHAR2(256) LOD1_MULTI_SURFACE_ID: NUMBER
SURFACE_MATERIAL_CODESPACE | VARCHAR2(4000) LOD2_MULTI_SURFACE_ID: NUMBER
LOD2_MULTI_SURFAGE_D : NUMBER 0.4 LOD3_MULTLSURFACE_ID: NUWBER
LOD3_MULTI_SURFACE D : NUMBER [LOD4_MULTI_SURFACE ID: NUMBER

LOD4_MULTI_SURFACE_D : NUMBER
TRANSPORTATIGN_COMPLEX_ID : NUMBER

\<PK>TRANSPORTATION_COMPLEX_PK: D
\«FH>TRAN_COMPLEX_CITYOBJECT_FI: ID

«PK>TRAFFIC_AREA_PK: D ‘«FKTRAN_COMPLEX_L OD1MSRF_FK: LODI_MULT_SURFACE_ID

<FIG>TRAFFIC_AREA_CITYOBJECT_FIK: D
«FIG>TRAFFIC_AREA_LOD2MSRF_FIC: LOD2_MULTI_SURFACE_D
«FK>TRAFFIC_AREA_LODAMSRF_FK: LOD3_MULTI_SURFACE_D
<FIGTRAFFIC_AREA_LODAMSRF_FI: LOD4_MULTI_SURFACE_D

«FIt> TRAFFIC_AREA_OBICLASS_FIC: OBJECTCLASS_ID
‘<FK>TRAFFIC_AREA_TRANCMPLX_FIK: TRANSPORTATION_COMPLEX_ID

\<FK>TRAN_COMPLE)_LOD2MSRF_FK: LOD2_MULTI_SURFACE_ID
\aFH>TRAN_COMPLEX_LODIMSRF_FK: LOD3_MULT_SURFACE_ID
‘«FKTRAN_COMPLE)_| ODAMSRF_FK: LOD4_MULTI_SURFACE_ID
\<FK>TRAN_COMPLEY_OBJCLASS_FK: DBJECTCLASS_ID

]

aables
SURFACE_GEOMETRY T
D: NUMBER
GULID : VARCHAR2(256) 04
‘GMLID_CODESPACE : VARCHAR2(1000)

PARENT_ID': NUMBER
ROOT_ID : NUMBER

0.1 [5.50LD:NUMBER(1,0)
1S_COMPOSITE : NUMBER(, 0)
IS_TRIANGULATED : NUMBER(1, 0)
1S _LINK : NUMBER(1, 0)
1S_REVERSE : NUMBER(1, 0) 04

0.1 |GEOMETRY : MDSYS.SDO_GEOMETRY

LID_GEOMETRY : MDSYS.SDO_GEOVETRY

IMPLICIT_GEOWETRY : MDSY'S. SDO_GECMETRY 0.4

CITYOBJECT_ID : NUMBER

«PIt>SURFACE_GEOMETRY_PI: ID =
. |<FKxSURFACE_GEOM_CITYOBU_FI: CITYOBJECT D
FisSURFACE_GEOM_PARENT_FK: PARENT_ID

«FK»SURFACE_GEOM_ROOT_FK: ROOT_ID .
01 Jo1

Figure 46: Transportation database schema

3D Geodatabase for CityGML 2016

91

2.3.3.12 Tunnel Model

=]

1D NUMBER
OBUECTCLASS D : NUMBER
GMLID: VARCHAR2(256)
GMLID_CODESPACE : VVARCHAR2(1000)
NAME : VARCHAR2(1000)

ODESPACE

dables
aITyoBIECT

(=]

D: NUVBER
IVE_TYPE : VARCHAR2(256)

REFERENCE :_T0_LIBRARY : VARCHAR2(4000)
OBUECT : BLOB

dables
IMPLICIT_GEONETRY.

M:LATWE . BREP_ID: NUWBER

-
DESCRIPTION : VARCHAR2(4000)
ENVELGPE : NDSYS.SDO_GEOMETRY
CREATION_DATE: TINESTANP WITH TIME ZONE

(=]

D: NUVBER
OBJECTCLASS.ID: NUMBER

CLASS : VARCHAR2(256)

CLASS_CODESPACE : VARCHAR2(4000)

FUNCTION: VARCHAR2(1000)
FUNCHONJ:ODESPACE vARcHARz(mnny

USAGE : VARCHAR2(101

USAGE_CODESPACE vARcHARQuuum
TUNNEL_HOLLOW_SPACE D : NUME

OD4_BREP 1D : NUVEER

LOD4_OTHER_GEON : MDSY'S SDO_GEOMETRY

004 JMPLICIT_REP_ID : NUMBER

OD4_IMPLICIT_REF _POINT : MDSYS SDO_GEOMETRY
0D4_IMPLICIT_TRANSFORMATION : VARCHAR2(1000)

atables
TUNNEL_FURNITURE

<PKTUNNEL_FURNITURE_PK: D

<FIXSTUNNEL FURN LODABREP_Fl: LOD4 BREP_D
<FKsTUNNEL_FURN_L ODAIMPL_FK: LOD4_MPLICIT_REP_ID
<FISTUNNEL_FURN_OBJCLASS_F: OBUECTCLASS D)

"TERMINATION DATE : THESTAMP WITH TIE ZOKE
RELATIVE_TO_TERRAIN: VARCHAR2(256)
RELATIVE_TO_WATER : VARCHAR2(258)
LAST_MODFICATION_DATE : TIESTAMP WITH TIHE ZOKE
UPDATING_PERSON : VARCHAR2(256)
REASON_FOR_LPDATE : /ARCHAR2(4000)

UNEAGE »ARcHARZ(zﬁs)

\<PH>CITYOBUECT_PK: ID
\<Fi>CITYOBJECT_OBUECTCLASS_FK: OBJECTCLASS ID

0.1 |RELATIVE_OTHER_GEON : IDSYS.SDO_GEOMETRY
0.1
\<PaINPLICIT_GEOMETRY_PK: ID
\<FIGIMPLICIT_GEON_BREP_Fix: RELATIVE_BREP_D
. 0.1 o1 0.1
0.1
(] dables
SURFACE_GEOVETRY
ID : NUVBER

(GHILID : VARCHAR2(256)
(GMILID_CODESPACE : VARCHAR2(1000)
PARENT_ID : NUMBER

ROOT_ID: NUMBER

I5_SOLD : NUMBER(1, 0)
IS_COVPOSITE : NUMBER(1, 0)

is) REVERSE NuMEEEm 0

GEOMETRY : MDSYS.SDO_GEOMETRY
SOLID_GEOMETRY : MDSYS SDO_GEOMETRY
MPLICIT_GEOMETRY : MDSYS SDO_GEONETRY
(CITYOBJECT ID: NUMBER

|<PK»SURFACE_GECHETRY_PK: ID
\<FK»SURFACE_GEGIM_CITYOBJ_FIG: CITYCBJECT_D
|4F K> SURFACE_GEOI_PARENT_FI: PARENT_D
(FIG>SURFACE_GECI_ROOT_FI: ROOT_ID

(]

D : NUVBER
OBJECTCLASS 1D NUMBER

CLASS : VARCHAR2(258)
CLASS_CODESPACE : VARCHAR2({4000)
FUNCTION: VARCHAR2(1000)
FUNCTION_CODESPACE : 'ARCHAR2(4000)
us 00
USAGE_CODESPACE : VARCHAR2(4000)
TUNNEL_ID: NUMBER
LOD4_MULTI_SURFACE D : NUMBER
LOD4_SOLID_ID : NUMBER

dables
TUNNEL_HOLLOW_SPACE

AGE : VARCHARZ(11!

\«PK=TUNNEL_HOLLOW_SPACE_PK: D
\<FKsTUN_HSPACE_CITYOBJ_FIS: D

«FIaTUN_HSPACE_| ODAMSRF i LOD4 Mum suwcs D
\<FisTUN_HSPACE_|ODASOLID_FK: LOD4_SOLI

01 (<FKaTUN_HSPACE_OBJCLASS_FK: OBJECTCLASS ID

\<FIsTUN_HSPACE_TUNNEL_FI: TUNNEL_ID

1 .
]

D NUVBER
OBJECTCLASS 1D NUMBER

CLASS : VARCHAR2(256:
CLASS_CODESPACE : VARCHAR2(4000)
FUNCTION : VARCHAR2(1000)
FUNCTION_CODESPACE : VARCHAR2(4000)
USAGE : VARCHARZ(1000)

USAGE CODESPACE VARCHAR2(4000)

ables
TUNNEL_INSTALLATION

LODZIMPLICIT_TRANSFORMATION : VARCHAR2(1000)
LOD3 IMPLICIT_TRANSFORMATION : VARCHAR2(1000)
LODA IMPLICIT_TRANSFORMATION : VVARCHAR2(1000)

<PIaTUNNEL_INSTALLATION_PK: D
P TUNNEL_INST_CITYOBJECT_Fi: ID

(=] atables

TUNNEL

CLASS_CODESPACE : VARCHAR2(4000)
FUNCTION: VARCHAR2(1000)
FuNcﬂoN,coDEsPAcE VARCHARz(mnn)
VARCHAR2(101
USAGE_CODESPACE vmcHARmnnny
YEAR_OF_CONSTRUCTION : DATE

LOD1 TERR AIN INTERSECTION : MDS S SDG_GEOMETRY
LOD2_TERR AIN INTERSECTION : DS S SDG_GEOMETRY
LOD3_TERRAIN INTERSECTION : MDS /S SDO_GEOMETRY
LED4_TERRAIN INTERSECTION : MDS /S SDO_GEOMETRY

O 003 WLLTICURVE: DS YS S0 _GEOMETRY
LOD4_MULTI_CURVE: DS YS SDO_GEOMETRY
LOD1_MULTI_SURF ACE_ID : NUMBER
LOD2_MULTI_SURF ACE_D : NUMBER
LOD3_MULTI_SURFAGE D : NUMBER
LOD4_MULTI_SURFACE_D : NUMBER
MBER

LOD3_SGLID_ID : NUMBER
LOD4_SGLD 1D : NUMBER

(<PKsTUNNEL P D
\<FKsTUNNEL_CITYOBJECT_Fi: ID

\¢FIaTUNNEL LOD! MSRF_FK: LOD1_MULTI_SURFACE_ID
\<FisTUNNEL LOD1 SOLID_FK: LOD1_SOLID_ID
\<FisTUNNEL LOD2MSRF_FK: LOD2_MULTI_SURFACE_ID
(FK»NNNEL Lonzsoun _FI: LOD:

2_SOLD.
DMSRF_FH: LOD3_MULTI SuRFACE D
mmwa Lonsscun _Fi: LOD3_SOLID_ID

(<FKsTUNNEL LODANSRF_FK: LOD4_MULT|_SURFACE_D

«FIaTUNNEL LOD4SOLID_FK: LOD4_S
(¢FKsTUNNEL_OBJECTCLASS_F: OEJECTCLASS D

1> TUNNEL_PARENT_FIk: TUNNEL_PARENT_D

(<FKsTUNNEL_ROOT_FK: TUNNEL_ROOT_ID

o <FITUNNEL INST_HSPACE FI: TUNNEL_HOLLOW_SPACE D

<P TUNNEL INST_LOD2BREP_FK: LOD2_BREP_ID
- FIGTUNNEL INST_LODZIMPL _FK; LOD2 \MPL\CIT _REP_ID

K5 TUNNEL INST_LOD3BREP_FIK: LOD3,
01 + | eFKTUNNEL INST_LOD3IMPL_FK: LOD3. \MPUCIY _REP_ID

<P TUNNEL INST_LOD4BREP_FK: LODA_BREP_D
o1 FIATUNNEL INST_LODAIMPL_FH: LOD4_IWPLICIT REP D

<P TUNNEL INST_OBUCLASS_FK: OBJECTCLASS,

<FIGTUNNEL INST_TUNNEL FI TUNNEL_D.
0.1 on .
o
0 B
o1 .
0.1
0.1 .
04 B
0.1 B

=] dables.
TUNNEL_OPENING
D: NUMBER

OBUECTCLASS_ID: NUMBER

LOD3_MULTI_SURFACE D : NUMBER

LOD3_IMPLICIT_TRANSFORMATION : YARCHAR2(1000)
LOD4_IMPLICIT_TRANSFORMATION : VARCHAR2(1000)

\<PIsTUNNEL_OPENING_PK: ID
\¢FIaTUNNEL _OPEN_CITYOBJECT_FI: D

\<FisTUNNEL OPEN_LOD3MPL_Fi: LOD3_NPLICIT_REP_ID
\<FIsTUNNEL _OPEN_LOD3SRF_FH: LOD3_MULTI_SURFACE_ID
\¢FISaTUNNEL _QPEN_LODAIMPL_Fis: LOD4_NPLICIT_REP_ID
\¢FitsTUNNEL _OPEN_LOD4MSRF _FH: LOD4_MULTI_SURFACE_ID
\«FKsTUNNEL_OPEN_OBJCLASS_Fi: OBJECTCLASS_D

(=]

D NUVBER
OBJECTCLASS D : NUMBER
TUNNEL D NUNBER

dables
TUNNEL_THEMATIC_SURFACE

=

‘TUNNEL_OPENING_ID - NUNBER
TUNNEL_THEMATIC_SURF ACE_ID : NUMBER

dables.
TUNNEL_OPEN_TO_THEM_SRF.

\<PI<a TUNNEL _OPEN_TO_THEN_SRF_PK: TUNNEL_OPENING_D, TUNNEL_THEMATIC_SURFACE_ID
(<FI4TUN_OPEN _TO_THEM_SRF_FH: TUNNEL_OPENIN
'<Fi4aTUN_OPEN _TO_THEM_SRF_FK1: TUNNEL, wwmc _SURFACE_D

TUNINEL_HOLLOW_SPACE_ID : NUMBER
TUNNEL_INSTALLATION_ID : NUMBER
LOD2_MULTI_SURFACE D : NUMBER
LOD3_MULTI_SURFACE D : NUMBER
LOD4_MULTI_SURFACE D : NUMBER

\<PI< TUNNEL_THEMATIC_SURFACE_PK: D
\<FI<TUN_THEM_SRF_CITYOBJ_FI: ID
‘<FITUN_THEM_SRF_HSPACE_FI TUNNEL_HOLLOW_SPACE_ID
\aFI%TUN_THEM_SRF_LOD2MSRF_FK: LODZ_MULTI_SURFACE_ID
\<Fi€aTUN_THEM_SRF_L ODAMSRF_FK: LOD3_ULTI_SURFACE_ID
\<F145TUN_THEM _SRF L OD4MSRF_FK: LOD4_JAULTI_SURFACE_ID
‘aFISTUN_THEM_SRF_GBJCLASS_FK: OBUECTCLASS_ID
(<Fi€sTUN_THEM _SRF_TUNNEL_FIC: TUNNEL_ID
\<FITUN_THEM_SRF_TUN_INST_Fit: TUNNEL_INSTALLATION_ID

01

Figure 47: Tunnel database schema

92

3D Geodatabase for CityGML 2018

The tunnel model, described in paragraph 2.2.4.9 at the conceptual level, is realised by the
tables shown in Figure 47. The relational schema is identical to the building and bridge
schema for the most parts except for the naming. Please, refer to the explanation of the
building schema on the previous pages for a complete understanding. The main differences to
the building schema are the following:

Tunnels cannot be modelled in LoD 0. Therefore, no corresponding columns appear in
the TUNNEL table.

The CityGML feature HollowSpace can be seen analogue to the feature Room of a
building or a bridge

CityGML features of tunnels, such as boundary surfaces, installations, openings,
hollow spaces and furniture, are mapped to separate specific tables and are not stored
in already existent ones (e.g. THEMATIC SURFACE, OPENING). The reason for this
is to provide a schema that is as close to the UML model as possible. There are slight
differences between the building and the tunnel model that would lead to ambiguous
references e.g. a boundary surface of the building namespace cannot reference to a
tunnel feature.

OBJECTCLASS ID of table TUNNE L THEMATIC SURFACE allows the values:
89 (TunnelCeilingSurface),

90 (InteriorTunnelWallSurface)

91 (TunnelFloorSurface),

92 (TunnelRoofSurface),

93 (TunnelWallSurface),

94 (TunnelGroundSurface),

95 (TunnelClosureSurface),

96 (OuterTunnelCeilingSurface),

97 (OuterTunnelFloorSurface).

0 O O 0O O OO0 O O

In the TUNNEL INSTALLATION table external tunnel installations can be
identified by the OBJECTCLASS ID 86 and internal ones by 87.

The OBJECTCLASS ID column in table BRIDGE OPENING can be of integer value
100 (BridgeDoor) or 99 (BridgeWindow). They are associated to entries in the table
TUNNEL THEMATIC SURFACE via the TUNNEL OPEN TO THEM SRF link
table.

If a CityGML ADE is used that extends any of the named classes above, further values
for OBJECTCLASS ID may be added by the ADE manager. Their concrete numbers
depend on the ADE registration (cf. section 6.3.3.1).

In contrast to the building model tunnels and tunnel openings do not have addresses.

3D Geodatabase for CityGML 2018 93

2.3.3.13 Vegetation Model

The vegetation model specified in paragraph 2.2.4.10 is realized by the tables shown in Figure
48 which correspond largely to the UML model.

tables
CITYOBJECT

(2
(GILID_CODESPACE »ARcHARZ(mnn)
NAME : VARCHAR2(1000)
NAME_CODESPACE:: VARCHAR2(4000)

REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)
XWL_SOURCE: CLOB

«PI{3CITYOBJECT_PIt. ID
\<Fi6> CITYOBJECT_OBJECTCLASS_FH: OBJECTCLASS_D

01 01

] <ablez =] stable

SOLITARY_VEGETAT_OBJECT FLANT_COVER
[(0]
OBJECTCLASS D : NUVBER OBUECTCLASS D : NUVBER
CLASS : VARCHAR2(256) USAGE : VARCHARX(1
CLASS_CODESPACE : VARCHAR2(4000) USAGE_CODESPACE : VARCHAR2(4000)
FUNCTION : VARCHAR2(1 000) CLASS : VARCHAR2(256)
FUNCTION_CODESPACE : VARCHAR2(4000) CLASS_CODESPACE: VARCHAR2(4000)
USAGE : VARCHAR2(1000) FUNCTION : VARCHAR2(1000)
USAGE_CODESPACE : VVARCHAR2(4000) FUNCTION_CODESPACE : VARCHAR2(4000)
SPECIES | VARCHAR2(1000) \AVERAGE_HEIGHT : BINARY_DOUBLE
SPECIES_CODESPACE : VARCHAR2(4000) AVERAGE_HEIGHT_UNIT | VARCHAR2(4000)
HEIGHT : BINARY_DOUBLE LOD1_MULTI_SURFACE_D: NUMBER
HEIGHT_UNIT - VARCHAR2(4000) LOD2_MULTI_SURFACE_ID: NUMBER
TRUNK_DIAWETER : BINARY_DOUBLE LOD3_MULTI_SURFACE_D: NUMBER
TRUNK_DIAMETER_UNIT: VARCHAR2(4000) LOD4_MULTI_SURFACE D NUMBER
CROVWN_DIAMETER : BINARY_DOUBLE LOD1_MULTI_SOLID_ID: NUMBER
CROVAN_DIAMETER_UNIT : V/ARCHAR2(4000) LOD2_MULTI_SOLID_ID: NUMBER
LOD1_BREP_ID : NUMBER LOD3_MULTI_SOLID_ID: NUMBER
LOD2_BREP_ID : NUMBER LOD4_MULTI_SOLID_ID: NUMBER

LOD1_OTHER_GEOM : MDSYS.SD0_GEOMETRY
LOD2_OTHER_GEON : MDSYS.SD0_GEOMETRY.
LOD3 _OTHER_GEOM : DS YS.SDO_GEONETRY
4_OTHER_GEOM MDS vs SDO _GEOMETRY
LOD1 _MPLICIT_REPID
LOD2_MPLICIT_REP_ID NuMEER
LOD3_IMPLICIT_REP_ID : NUMBER
LOD4_IMPLICIT_REP_ID : NUMBES SEONER i LT SEE0
LOD1_MPLICIT_REF_PONT MDS ¥S.SDO_GEONETRY COVERS 7 LTS

‘4PIaPLANT_COVER_PIt: ID
\<FI>PLANT_COVER_CITYOBUECT_FI: ID
\<FI>PLANT_COVER L GD1MSOLID_FH: LOD1_MULTI_SOLIDID

LOD3_IMPLICIT_TRANSFORMATION : Y/ARCHAR2(1000)
LOD4_IMPLICIT_TRANSFORMATION : Y/ARCHAR2(1000)

<PK>SOLITARY VEG_OBJECT_PI: ID .
FK3SOL_VEG_OBJ_CITYOBUECT_Fit. ID

«FI3S0L_VEG_OBJ_LODIBREP_FI, LOD!

<FK»SOL_VEG_OB_LODIIMPL FK: LOD1 \MPUCW REPD .
FK>SOL_VEG_OB.|_LOD2BREP_FI: LOD2_BRER_ID

«FIS3SOL_VEG_0BJ_LOD2IPL Fit; LOD2_IMPLICIT_REP_D

<FK>SOL_VEG_OB._LODIBREP_FH: LODI_BRER_ID

FI(>SOL_VEG_OB_LOD3NPL_Fit: LOD3_IMPLICIT_REP_D.

<FK»SOL_VEG_OB.|_LODABREP_FI<: LOD4_BREP_ID

<FK>SOL_VEG_OB_LODAIMPL FK: LOD4_IMPLICIT_REP_D.

FI3SOL_VEG_OBJ_OBJCLASS_FI: OBJECTCLASS_D

01| o1|oa | 04| = 04 |ofor 01 |gq ot |01 |0

dables
SURFACE_GEONETRY

ID: NUMBER

(GMLID : VARCHAR?(256)

GMLID_CODESPACE : VARCHAR2(1000)

PARENT_ID : NUMBER

] e IS_SOLID : NUMBER(1, 0)
e T

GEOMETRY : MDSYS.SDO_GEONETRY
'SOLID_GEOMETRY : MDSYS SDO_GEOMETRY
IMPLICIT_GEOVETRY : MDSYS SDO_CEOMETRY
(CITYOBJECT ID : NUMBER

IBER
RELATIVE_OTHER_GEOH : NDSY'S.SDO_GECMETRY

\<PH=SURFACE_GEOMETRY_PK. D
(X3RRI THGEOKE TR VIRHCID) <FHsSURFACE_GEOM_CITYOB i CITYOBJECT_D
<FIGIMPLICIT_GEOI_BREP_FK: RELATIVE_EREP_ID [<FKa SURF ACE_ GEOM_PARENT FIK. PARENT.ID

\<FI=SURF ACE_GEON_ROOT_Fk: ROOT ID

Figure 48: Vegetation database schema

SOLITARY_VEGETAT_OBJECT

The attributes class, function, usage, species, height, trunkDiameter, and crownDiameter
describe single vegetation objects. The attribute species is of type gml:CodeList in CityGML
that can be referenced to a certain codespace. Therefore, another CODESPACE column is
provided in the SOLITARY VEGETAT OBJECT table. Similar to the building table attribute
with measure information can optionally be coupled with a reference to the used measuring
scale by an additional UNIT column.

94 3D Geodatabase for CityGML 2018

The geometry of the vegetation can either be described explicitly using the attribute
LOD4 OTHER GEOM or LOD4 BREP ID or implicitly using a foreign key relation the
IMPLICIT GEOMETRY table including a reference point and optionally a transformation
matrix (LODx_IMPLICIT REP_ID, LODx IMPLICIT REF POINT
LODx_ IMPLICIT TRANSFORMATION, with 1 <x<4).

PLANT_COVER

Information on vegetation areas are contained in attributes usage, class, function, and
averageHeight. There is also a UNIT column to specify the scale the averageHeight values
are based on. The geometry is restricted to a MultiSurface or (and this is unique for
PlantCover features) a MultiSolid, represented respectively by the foreign keys
LODx MULTI SURFACE ID (with I <x <4)and LODx MULTI SOLID ID which refer
to the SURFACE GEOMETRY table.

2.3.3.14 WaterBody Model

WATERBODY, WATERBOD TO_WATERBND_SRF

The modelling of the WATERBODY database schema corresponds largely to the respective
UML model. For LoD0O and LoD1 additional attributes are added, e.g. for modelling river
geometry (LODx MULTI CURVE).

The geometries of LODO and LODI1 areal water bodies are stored within the table
SURFACE_GEOMETRY. The foreign keys LODx MULTI SURFACE ID (with 0 < x < 1)
refer to the corresponding rows. Geometry for water filled volumes is handled in a similar
way using foreign keys LODx SOLID ID (with1<x<4).

For mapping the boundedBy aggregation which identifies the water body’s exterior shell
managed by the WATERBOUNDARY SURFACE table, the additional table
WATERBOD TO WATERBND_ SRF is needed to realise the m:n relationship.

WATERBOUNDARY_SURFACE

The exterior shell of a WaterBody can be differentiated semantically using features of the type
_WaterBoundarySurface. These features are stored in the WATERBOUNDARY SURFACE
table and can be distinguished by the OBJECTCLASS 1D attribute:

o 11 (WaterSurface)
o 12 (WaterGroundSurface)
e 13 (WaterClosureSurface)

If a CityGML ADE is used that extends any of the named classes above, further values for
OBJECTCLASS ID may be added by the ADE manager. Their concrete numbers depend on
the ADE registration (cf. section 6.3.3.1).

3D Geodatabase for CityGML 2018 95

Since every WaterBoundarySurface object must have at least one associated surface
geometry, the foreign keys LODx SURFACE ID (with 2 <x <4, no MultiSurface here) are
used to realise these relations.

L] stables
CITYOBJECT

1D : NUMBER

OBJECTCLASS_ID: NUMBER

GMLID : VARCHAR2(256)

GMLID_CODESPACE : W ARCHAR2(1000)

MNAME : VARCHAR2(1000)

NAME_CODESPACE : VARCHAR2(4000)

DESCRIPTION : VARCHAR2(4000)

ENVELOPE : MDSY'S.SDO_GEOMETRY

CREATION_DATE : TIMESTAMP VITH TIME ZONE
TERMINATION_DATE : TIMESTAMP WITH TIME ZONE
RELATIVE_TO_TERRAIN : VARCHAR2(256)
RELATIVE_TO_WATER : VARCHAR2(256)
LAST_MODIFICATION_DATE : TIMESTAMP VWWITH TIME ZONE | 1
UPDATING_PERSCN : VARCHAR2(256)
REASON_FOR_UPDATE : VARCHAR2(4000)

LINEAGE : VARCHAR2(256)
XML_SOURCE : CLOB

«PI=CITYOBJECT_PK: ID
«FI=CITYOBJECT_OBJECTCLASS Fi: OBJECTCLASS_ID

0.4
= atables
WATERBODY o
0.4
1D : NUMBER E
OBJECTCLASS_ID : NUMBER etables
CLASS : VARCHAR2(255) WATERBOUNDARY_SURFACE
CLASS_CODESPACE : VARCHARZ2(4000) ID : NUMBER
FUNCTION : VARCHAR2(1000) OBJECTCLASS_ID : NUMBER
FUNCTION_CODESPACE : Y ARCHAR2(4000) VWATER_LEVEL : W ARCHAR2(256)
USAGE : VARCHARZ(1000) D VVATER_LEVEL_CODESPACE : VARCHAR2(4000)
dables

/i LOD2_SURFACE_ID': NUMBER
USAGE_CODESPACE : VARCHAR2(4000) NATERBOD_TO_\WATERBND_SRF) -l
LODO_MULTI_CURVE : MDSY'S.SDO_GECMETRY LOD3_SURFACE_ID': NUMBER

\WATERBOUNDAR'Y_SURFACE_ID : NUMBER

LOD1_MULTI_CURVE : MDSYS SDO_GEOMETRY NATERBODY_ID: NUMBER

LODO_MULTI_SURFACE_ID : NUMBER
LOD1_MULTI_SURFACE_ID : NUMBER 1
LOD1_SOLID_D : NUMBER —

LOD4_SURFACE_ID : NUMBER

LOD2_SOLID_ID : NUMBER «PKAWATERBOD_TO_WATERBND_PK: WATERBOUNDAR'_SURF ACE_ID, WATEREODY D
LOD3_SOLID_ID : NUMBER «FKSWATERBOD_TO_WATERBND_FK: WATERBOUNDAR'Y_SURFACE_ID <PKsWATERBOLNDARY _SURFACE_PK. ID
LOD4_SOLID_ID : NUMBER FKAWATERBOD_TO_WATERBND_FK1: WATERBODY_ID (<P K WATEREND_SRF_CITYOBJECT FIC ID

«FKWATERBND_SRF_LOD2SRF_FK: LOD2_SURFACE_ID
«FKWATERBND_SRF_LCOD3SRF_FK: LOD3_SURFACE_ID
oFKWATERBND_SRF_LOD4SRF_FK: LODA_SURFACE_ID
\«FKWATERBND_SRF_OBJCLASS FI: OBJECTCLASS_D

«PK3VWATERBCDY _PK: ID

«FK3VWATERBODY _CITYOBJECT_FK: ID
«FK3VWATERBODY _L ODOMSRF_FIC LODO_MULTI_SURFACE_ID
«FK3WATERBODY _LOD1MSRF_FIC LOD1_MULTI_SURFACE_ID
«FK3WATERBODY _LOD1SOLID_FK: LOD1_SOLID_D
«FK3WATERBODY _LOD2SOLID_FK: LOD2_SOLID_D nj tables
<FKsWATERBODY_LOD3SOLID_FK: LOD3_SOLID_D SURFACE_ GEONETRY
<FKSWATERBODY_LOD4SOLID_FK: LOD4_SOLID_D SO =

<FK3WATERBODY_OBJCLASS_FK: OBJECTCLASS_D (GMLID : VARCHAR2(256)

. [BMLID_CODESPACE : VARCHAR2(1000) 0.4
PARENT_ID : NUMBER
ROOT_ID : NUMBER

0.1 |S_SOLID: NUMBER(1, 0)

IS_COMPOSITE : NUMBER(1, 0)
IS_TRIANGULATED : NUMBER(1, 0) 01

0.1 |ISXLINK: NUMBER(1, 0)

1S_REVERSE : NUWBER(1, 0)

GEOMETRY : MDSYS SDO_GEOMETRY

SOLID_GEOMETRY : MDS'Y'S SDO_GEOMETRY

IMPLICIT_GEOMETRY : MDSYS.SDO_GEOMETRY

(CITYOBJECT ID : NUMBER

(«PH>SURFACE_GEOMETRY_PK: ID
l<FIK>SURFACE_GEOM_CITYCBJ_FK: CITYOBJECT_ID
(<FI>SURFACE_GEOM_PARENT_FI<: PARENT_ID
|<FK>SURFACE_GEOM_ROOT_Fk: ROOT_ID

m]m—

Figure 49: WaterBody database schema

2.3.4 Sequences

Figure 50 lists predefined sequences from which multiple users may generate unique integers
for primary keys automatically. Sequences help to coordinate primary keys across multiple
rows and tables. For instance, the ID values of the BUILDING table are generated from the
CITYOBJECT SEQ sequence. The sequences are defined to start with 1 and to be
incremented by 1 when a sequence number is generated. It is highly recommended to generate
ID values for all tables by using the predefined sequences only.

The sequence GRID COVERAGE RDT SEQ does not exist in the PostgreSQL version as the
corresponding table does not exist.

96 3D Geodatabase for CityGML 2018

e ADE_SEQ T SCHEMA_SEQ

Increment : 1 Increment : 1

Maximum Value : Maximum Value :

Minimum *alue : 1 Minimum *alue : 1

Start With : 1 Start With : 1
e «SeqUences o aSefuences i 4Sequences

ADDRESS_SEQ APPEARAMCE_SEQ IMPLICIT_GECMETRY _SEGQ

Increment : 1 Increment : 1 Increment : 1

Maximum “alue :
Minimum Yalue : 1

Start With : 1

el “SequUences
CITYMODEL _SEQ

Increment : 1

Maximum Value :
Minimum Value : 1

Start With : 1

.13. aSequences
CITYOBJECT_SEQ

Increment : 1

Maximum Value :
Minimum Value : 1

Start With : 1

.13. “Sequences
TEX_IMAGE_SEQ

Increment : 1

Maximum Value :
Minimum Value : 1
Start With : 1

Maximum *alue :
Minimum alue : 1

Start With : 1

= SequUences
SURFACE_DATA_SEQ

Increment : 1

Maximum “alue :
Minimum alue : 1

Start With : 1

i IDCHtyDB
CITYOBJECT_GEMERICATT_SEQ

Increment : 1

Maxdmum “alue :
Minimum alue : 1

Start With : 1

“.J:.E. asequences
SRID_COVERAGE_SEQ

Increment : 1

Maxdmum “alue :
Minimum alue : 1
Start With : 1

Maximum Value :
Minimum “alue : 1

Start With : 1

el 4Sequences
SURFACE_GECMETRY _SEQ

Increment : 1

Mandimum Value :
Minimum “alue : 1

Start With : 1

.13. sequences
EXTERMAL_REF_SEGQ

Increment : 1

Mandimum Yalue :
Minimum “alue : 1

Start With : 1

.13. asequences
GRID_COVERAGE_RDT_SEGQ

Increment : 1

Mandimum Yalue :
Minimum “alue : 1
Start With : 1

Figure 50: Overview of all sequences used in 3DCityDB

2.3.5 Definition of the CRS for a 3D City Database instance

The definition of the CRS of a 3D City Database instance consists of two components: 1) a
valid Spatial Reference Identifier (SRID, typically the EPSG code) and 2) an OGC GML
conformant definition identifier for the CRS. Both components are defined during the database
setup (see chapter 3.3) and are further stored in the table DATABASE SRS (see Figure 28).

The SRID is an integer value key pointing to spatial reference information within Oracle’s
MDSYS.CS SRS table or PostGIS’ SPATIAL REF SYS table. Both DBMSs are shipped
with a large number of predefined spatial reference systems. At setup time, the SRID chosen
as default value for the 3D City Database instance must already exist in the mentioned
tables.

The GML conformant CRS definition identifier is used as value for the gml : srsName
attribute on GML geometry elements when exporting database contents to CityGML instance
documents. It should follow the OGC recommendation for the Universal Resource Name
(URN) encoding of CRSs given in the OGC Best Practice Paper Definition identifier

3D Geodatabase for CityGML 2018 97

URNs in OGC namespace [Whiteside 2009]. At setup time, please make sure to provide a
URN value which corresponds to the spatial reference system identified by the default SRID
of the database instance. Since CityGML is a 3D standard, the URN encoding shall always
represent a three-dimensional CRS which, for example, can be denoted as compound
coordinate reference systems [Whiteside 2009]. The general syntax of a URN encoding for a
compound reference system is as follows:

urn:ogc:def:crs,crs:authority:version:code,crs:authority:
version:code

Authority, version, and code depend on the information authority providing the CRS
definition (e.g. EPSG or OGC). The following example shows a possible combination of an
SRID (here referring to a 2D CRS) and CRS URN encoding (3D) to set up an instance of the
3D City Database:

SRID: 31466
URN: urn:ogc:def:crs,crs:EPSG:7.7:31466,crs:EPSG:7.7:5783

The example SRID is referencing a Projected CRS defined by EPSG (DHDN / 3-degree
Gauss-Kriiger zone 2; used in the western part of Germany; EPSG-Code: 31466). The URN

encodes a compound coordinate reference system which adds a Vertical CRS as height
reference (DHHN92 height, EPSG-Code: 5783).

98

3D Geodatabase for CityGML 2018

3D Geodatabase for CityGML 2018 99

3 Implementation and Installation

The 3D City Database comes with SQL scripts for setting up an instance of the relational
schema on a spatial database system (Oracle Spatial/Locator or PostgreSQL/PostGIS) and
with a database loading and extracting tool called Importer/Exporter. Installers are available
for download at http://www.3dcitydb.org. The source code of the 3D City Database project is
hosted on https://github.com/3dcitydb. Please follow the instructions on the next pages to
complete a proper installation.

The individual components of the 3D City Database are also available as images for the
Docker virtualization technology. This makes it possible to install and configure a 3D City
Database with a single command line statement in almost any runtime environment. See
chapter 9 for more details.

3.1 System requirements

3.1.1 3D City Database

Setting up an instance of the 3D City Database requires a running installation of an Oracle or
PostgreSQL database server.

Oracle

Supported version are Oracle 10g R2 or higher. The 3D City Database requires spatial data
support provided either through the Oracle Spatial or Locator extension. It is highly
recommended to install available patches to avoid unexpected errors and to benefit from the
latest functionality. For Oracle 10g R2, at least patch set 10.2.0.4.0 is required for using the
KML/COLLADA/gITF export capabilities.

PostgreSQL

Supported versions are PostgreSQL 9.3 or higher with the PostGIS extension 2.0 or
higher. Please also make sure to always install the latest patches and updates.

The SQL scripts to create the database schema are written to be executed by the default
command-line-based client interface of the DBMS — which is SQL*Plus for Oracle and psql
for PostgreSQL. The scripts include meta commands specific to these clients and would not
work properly when using a different client software. So please make sure SQL*Plus or psql
is installed on the machine from where you want to setup the 3D City Database.

3.1.2 Importer/Exporter Tool

The Importer/Exporter tool can run on any platform providing support for Java 8 (or higher).
It has been successfully tested on (but is not limited to) the following operating systems:

e Microsoft Windows XP, Vista, 7, 8, 10;
e Apple Mac OS X and macOS;
e Ubuntu Linux 9 to 18.

http://www.3dcitydb.org/
https://github.com/3dcitydb

100 3D Geodatabase for CityGML 2018

Prior to the setup of the Importer/Exporter tool, the Java 8 Runtime Environment (or
higher) must be installed on your system. The installation package can be obtained from
http://www.java.com/en/download. Follow the installation instructions for your operating
system.

The Importer/Exporter is shipped with a universal installer that will guide you through the
steps of the setup process. A full installation of the Importer/Exporter including
documentation and example CityGML files requires approx. 505 MB of hard disk space.
Installing only the mandatory application files will use approx. 350 MB of hard disk space.
Installation packages can be selected during the setup process.

The Importer/Exporter runs with 1 GB of main memory per default. This setting should be
reasonable on most platforms and for most import/export procedures. If required, you can
manually adapt the main memory limits in the starter script of the program. Please refer to
chapter 5.1 for more details.

3.2 Installation of the Importer/Exporter and the 3D City
Database SQL Scripts

Download the universal installer from the 3DCityDB website at http://www.3dcitydb.org or at
https://github.com/3dcitydb/importer-exporter/releases and save it to your local file system.
The installer is shipped as an executable Java Archive (JAR) file. To run the installation
wizard, simply double-click on the 3DCityDB-Importer-Exporter-4.0.0-Setup.jar file.

F7] setup - 3D City Database Importer/Exporter v4.0.0 = O x

Select Installation Packages [EemmsEs |
Select which application compeonents you want to install. bl L L}
CityGML
Step 50f 9 -

48 Select the packs you want to install:
Q Mote: Grayed packs are required.

: Core application files 348,42 MB
3D City Database 2,11 MB
- [] Documentation 46,82 MB
- 30 Web Map Client 29,52 MB
[Sample CityGML and KML/COLLADA datasets 57,95 MB
=[] Plugins 0 bytes
+ [] Spreadsheet Generator Plugin 13,51 MB
“.. [] ADE Manager Flugin 5,78 MB
Description
Total space required: 434,82 MB
Available space: 78,03 GB

{Made with |zPack - http:/fizpack.ong/)

@ Previous @ Quit

Figure 51: Installation wizard of Import/Export tool (Step 5).

After accepting the license agreement and specifying an installation directory, you can choose
the software packages to be installed. It is recommended to at least select the packages ‘3D
City Database’ and ‘Documentation’. The ‘3D City Database’ package contains all SQL
scripts that are required for setting up an instance of the 3D City Database on your spatial

http://www.java.com/en/download
http://www.3dcitydb.org/
https://github.com/3dcitydb/importer-exporter/releases

3D Geodatabase for CityGML 2018 101

database system. Please refer to chapter 3.3 for a step-by-step guide on how to use the SQL
scripts. The package ‘Sample CityGML and KML/COLLADA datasets’ contains license-free
sample data that may be used in first tests.

The option ‘Plugins’ allows a user to install plugins for the Importer/Exporter, which add
further functionality to the tool. This release is shipped with the ‘Spreadsheet Generator
Plugin’ and the ‘ADE Manager Plugin’. A documentation of both plugins is provided in
chapters 6.2 and 6.3. More plugins may be added in future releases.

The ‘3D Web Map Client’ is a web-based viewer for 3DCityDB content and provides high-
performance 3D visualization and interactive exploration of arbitrarily large semantic 3D city
models on top of the open source Cesium Virtual Globe (refer to chapter 0 for the complete
documentation).

After successful installation, the contents of all selected installation packages are available in
the installation directory. To run the Importer/Exporter, simply use the starter script in the bin
subfolder (refer to chapter 5.1 for more information).

Note: Before the Importer/Exporter can connect to an Oracle/PostgreSQL database, the 3D
City Database schema must have been set up. Please follow the instructions
provided in the next chapter.

The installation directory contains the following subfolders:

Folder Optional | Explanation
. X Contains all SQL scripts and stored procedures for operating the
Selelyple 3DCityDB
X Contains a ZIP archive containing all files required to install the 3D Web

BTz el Map Client on a web server

Contains extension packages to support CityGML ADEs. ADE extensions

ade-extensions only must be copied to this directory to make them available in the
program.
Platform-specific starter scripts to launch the Importer/Exporter. For
bin instance, under Windows, double-click on 3DCityDB-Importer-

Exporter.bat to run the program
Third-party tools required by the Importer/Exporter (e.g. collada2gltf

EenEs converter binaries)
lib Contains all libraries required by the Importer/Exporter
licence Contains the license documents for Importer/Exporter
manual X Contains the documentation for the 3DCityDB and the tools
lugins Contains plugins of the Importer/Exporter. Plugins only have to be copied
plug to this directory to make them available in the program.
samples X Contains CityGML and KML/COLLADA test datasets
Contains HTML templates for information balloons for KML/COLLADA
templates exports, a selection of coordinate reference systems in the form of XML
P documents, and example XSLT stylesheets to be used in imports and
exports.
uninstaller Contains a JAR executable that uninstalls the Importer/Exporter
README.txt A brief information about the application

Table 18: Contents of the installation directory.

102 3D Geodatabase for CityGML 2018

3.3 Setting up the database schema

The required scripts for setting up the 3D City Database are in the installation directory of the
Importer/Exporter within the 3dcitydb/oracle/ or 3dcitydb/postgresql/ subfolders.

3.3.1 Shell Scripts

In previous versions of the 3D City Database the setup was managed through user prompts in
SQL scripts. To facilitate continuous integration workflows these inputs have been moved to
batch (Windows) and shell scripts (UNIX/Linux/macOS). The following table provides an
overview of the different shell scripts:

File Oracle | PgSQL | Explanation

CONNECTION_DETAILS X X Sets database credentials

CREATE_DB X X Runs all scripts for creating the relational schema of the
3DCityDB incl. user-defined types and functions

CREATE_SCHEMA X Creates an additional 3DCityDB instance in a separate
schema within the same database

DROP_DB X X Deletes all elements of the 3DCityDB

MIGRATION/ X Deletes all deprecated elements of a 3DCityDB v2 after a

DROP_DB V2 successful migration towards v4

DROP_SCHEMA X Removes a given database schema that contains a
3DCityDB instance

MIGRATION/ X Grants access on a 3DCityDB v2 to a v4 user (only

GRANT_ACCESS_V2 relevant for migration)

GRANT_ACCESS X X Grants read-only of read-write access on the 3DCityDB for
a given user

MIGRATION/ X X Starts the migration process from an older version

MIGRATE_DB

REVOKE_ACCESS X X Revokes access rights for a given user

Table 19: Overview of all shell scripts within 3dcitydb/oracle or 3dcitydb/postgresql folder.

The batch/shell scripts can be executed on double click. On some UNIX/Linux distributions
though, you will have to run the .sh scripts from within a shell environment. Please open your
favorite shell and check whether execution permission is set for the starter script. Change to
the installation folder and enter the following to make the starter script executable for the
owner of the file, e.g.:

chmod u+x CREATE DB.sh
Afterwards, simply run the shell script by typing:
./CREATE_DB.sh

Note: The database connection details need to be set in the CONNECTION DETAILS
script prior to executing the batch/shell scripts.

3D Geodatabase for CityGML 2018 103

3.3.2 SQL Scripts

The SQLScripts directory contains four subfolders:
SCHEMA

Includes SQL files about the logical (tables, constraints) and physical (datatypes, indexes)
database schema of the 3D City Database exported from the schema modelling tools
JDeveloper (Oracle) or pgModeler (PostgreSQL) (with minor changes). INSERT statements
for the prefilled lookup tables OBJECTCLASS and AGGREGATION INFO as well as
converter functions between table names and objectclass IDs can be found in the
OBJECTCLASS subfolder. Because of PostgreSQL’s way to handle database schemas the
SCHEMA folder contains a few more scripts with stored procedures. See next chapter for
more details.

CITYDB_PKG

Contains scripts that create database objects and stored procedures mainly to be used by the
Importer/Exporter application. They are written in PL/SQL (Oracle) or PL/pgSQL
(PostgreSQL) and grouped by the type of operation (data manipulation, maintenance etc.).
The APIs are introduced in chapter 0.

UTIL
This folder assembles different database management utilities:

e Grant and revoke read rights to and from the 3D City Database.

e Create additional database schemas with a 3D City Database layout (PostgreSQL-
only)

¢ Enable or disable versioning (execution can be time-consuming) (Oracle-only)

e Update table statistics for spatial columns (PostgreSQL-only)

MIGRATION

Provides a migration path from previous releases to the newest version. See chapter 1.1 for
more details. This folder will also include upgrade scripts for upcoming minor releases.

3.3.3 Installation steps on Oracle Databases

Step 1 - Define a user for the 3D City Database

A dedicated database user should be created for your work with the 3D City Database. This
user must have the roles CONNECT and RESOURCE assigned and must own the privileges
CREATE SEQUENCE and CREATE TABLE.

Note: The privileges CREATE SEQUENCE and CREATE TABLE are required for
enabling and disabling spatial indexes. It is not sufficient to inherit these privileges
through a role.

104 3D Geodatabase for CityGML 2018

Step 2 — Edit the CONNECTION_DETAILS[.sh | .bat] script

Go to the 3dcitydb/oracle/ShellScrpts directory, choose the folder corresponding to your
operating system and open the file named CONNECTION DETAILS within a text editor.
There are five variables that will be used to connect to the DBMS. If SQL*Plus is already
registered in your system path, you do not have to set the directory for the SQLPLUSBIN
variable. The other parameters should be obvious to Oracle users. Here is an example how the
complete CONNECTION_ DETAILS can look like:

SQLPLUSBIN= C:\Oracle\instantclient 11 2
HOST=localhost

PORT=1521

SID=orcl

USERNAME:Citydb_V4

Note, that the scripts to grant or revoke read access require SYSDBA privileges. You can
specify a SYSDBA user in the CONNECTION DETAILS script under an additional
parameter called SYSDBA USERNAME.

Step 3 - Execute the CREATE_DB script:

As soon as the database credentials are defined run the CREATE DB script — located in the
same folder as CONNECTION DETAILS (see also chapter 3.3.1).

Step 4 - Define the coordinate reference system

When executing the CREATE DB script, the user is prompted for the coordinate reference
system (CRS) to be used in the 3D City Database. You have to enter the Oracle-specific SRID
(spatial reference ID) of the CRS which — in most cases — resembles the EPSG code of the
CRS. There are three prompts in total to define the spatial reference:

e First, specify the SRID to be used for the geometry columns of the database. Unlike
previous version of the 3D City Database there is no default CRS defined.

e Second, specify the SRID of the height system if no true 3D CRS is used for the data.
This can be regarded as metadata and has no effect on the geometry columns in the
database. The default value is 0 — which means “not set”.

e Third, provide the GML-conformant uniform resource name (URN) encoding of the
CRS. The default value uses the OGC namespace and comprises of the first two user
inputs: urn:ogc:def:crs,crs:EPSG: :<crsl>[,crs:EPSG: :<crs2>].

More information about the SRID and the URN encoding can be found in chapter 2.3.5.

Step 5 — Enable or disable versioning

After providing the CRS information, the user is asked whether or not the database should be
versioned-enabled. Versioning is realized based on Oracle’s Workspace Manager
functionality (see the Oracle documentation for more information). Please enter ‘yes’ or ‘no’.
The default value ‘no’ is confirmed by simply pressing Enter. Note that, in general, insert,
update, delete and index operations on version-enabled tables take considerably more time
than on tables without versioning support.

3D Geodatabase for CityGML 2018 105

Step 6 — Choose Spatial or Locator license option

You can set up a 3D City Database instance on an Oracle database with Spatial or Locator
support. Since Locator differs from Spatial with respect to the available spatial data types,
you need to specify which license option is valid for your Oracle installation. Simply enter ‘L’
for Locator or °S’ for Spatial (default value) to make your choice.

Note: Since Locator lacks the GeoRaster data type, the 3D City Database tables for storing
raster reliefs (RASTER RELIEF, GRID COVERAGE, GRID COVERAGE RDT) are
not created when choosing Locator.

Note: Several spatial operations and functionalities that are available in Oracle Spatial are
not covered by the Locator license even though they might be available from your

Oracle installation. It
Oracle license option.

is the responsibility of the database user to observe the
Choosing Locator or Spatial when setting up the 3D City

Database does neither affect the license option nor the users’ responsibility.

The following figure exemplifies the required user input during steps 4 to 6.

B C\Windows\system32\cmd.exe

I_ IR
YA 2 TN A T
I__/

HEHEHE

Documentation and help:

HEHEHE

Please enter a valid SRID

already 3D).

(default UERSIONING:=no):

(default DBUERSION=S): L

3D City Database - The Open Source CityGHML Database

HEHEHE R R H BB BB R B E HE B HH B HE BB R R BH B HE R R R U B HHHE

Welcome to the 3DCityDB Setup Script. This script will guide you through the pro
cess
of setting up a 3DCityDB instance. Please follow the instructions of the script.

Enter the required parameters when prompted and press ENTER to confirm.
Just press ENTER to use the default values.

3DCityDB webhsite: https://wwu.3dcitydb.org

3DCityDB on GitHub: https://github.com/3dcitydb
Having problems or need support?

Please file an issue here:

https://github.com/3dcitydb/3dcitydb/issues

HHHE R R R H BB R R R B E B B H B R R R R R R R R HHHE

(SRID must be an integer greater than zero): 25833
Please enter the EPSG code of the height system (use @ if unknown or '25833' is
(default HEIGHT_EPSG=0): 5783

Please enter the corresponding gml:srsName to be used in GML exports.
(default GMLSRSNAME=urn:ogc:def:crs,crs:EPSG::25833,crs:EPSG: :5783):

Shall versioning be enabled (yes/no)?

Which database license are you using (Spatial=S/Locator=L)?

|:|@%

(e.g., EPSG code of the CRS to be used).

Figure 52: Example user input when executing CREATE DB on an Oracle database.

106 3D Geodatabase for CityGML 2018

Step 7 — Check if the setup is correct

After successful completion of the setup procedure, the tables, sequences and packages (that
contain stored procedures) should appear in the user schema.

Versioning of the database can also be switched on and off at any time. The corresponding
scripts are ENABLE VERSIONING.sql and DISABLE VERSIONING.sql. These scripts
invoke routines of the Oracle Workspace Manager and will take some time for execution
depending on the amount of data stored in the 3D City Database instance.

Last but not least, the schema and stored procedures of the 3D City Database can be dropped
with the DROP_DB script, which is executed like CREATE DB. Similar to CREATE DB,
you need to provide the license option (Locator or Spatial). Note that the script will delete all
data stored in the 3D City Database schema. The database user will, however, not be deleted.

3.3.4 Installation steps on PostgreSQL
Step 1 - Create an empty PostgreSQL database

Choose a superuser or a user with the CREATEDB privilege to create a new database on the
PostgreSQL server (e.g. 'citydb v4'). As owner of this new database, choose or create a user
who will later set up the 3D City Database instance. Otherwise, more permissions have to be
granted. In the following steps, this user is called 'citydb user'.

Connect to the database and type:

CREATE DATABASE citydb v4 OWNER citydb user;

or use a graphical database client such as pgAdmin that is shipped with PostgreSQL. Please
check the pgAdmin documentation for more details.

Step 2 — Add the PostGIS extension

The 3D City Database requires the PostGIS extension to be added to the database. This can
only be done as superuser. The extension is added with the following command (or,
alternatively, using pgAdmin):

CREATE EXTENSION postgis;

Some 3D operations such as extrusion or volume calculation are only available through the
PostGIS SFCGAL extension. The installed PostGIS add-on should at least be on version
2.2 to execute the DDL command:

CREATE EXTENSION postgis sfcgal;
Step 3 — Edit the CONNECTION_DETAILS|.sh | .bat] script

Go to the 3dcitydb/postgresql/ShellScrpts directory, choose the folder corresponding to your
operating system and open the file named CONNECTION DETAILS within a text editor.
There are five variables that will be used to connect to the DBMS. If psql is already registered
in your system path, you do not have to set the directory for the PGBIN variable. The other

3D Geodatabase for CityGML 2018 107

parameters should be obvious to PostgreSQL users. Here is an example how the complete
CONNECTION DETAILS can look like:

PGBIN=C:\PostgreSQL\9.6\bin
PGHOST=localhost
PGPORT=5432

CITYDB=citydb v4
PGUSER=citydb user

Step 4 - Execute the CREATE_DB script

As soon as the database credentials are defined run the CREATE DB script — located in the
same folder as CONNECTION DETAILS (see also chapter 3.3.1).

Step 5 — Specify the coordinate reference system

Like with the Oracle version, the user is prompted to enter the SRID used for the geometry
columns, the SRID of the height system and the URN encoding of the coordinate reference
system to be used (see chapter 2.3.5. for more information).

Note: The setup process will terminate immediately if an error occurs. Reasons might be:

e The user executing CREATE DB.sql is neither a superuser nor the owner of the
specified database (or does not own privileges to create objects in that database);

e The PostGIS extension has not been installed; or

e Parts of the 3D City Database do already exist because of a previous setup
attempt. Therefore, make sure that the schemas ‘citydb’ and ‘citydb pkg’ do not
exist in the database when setting up the 3D City Database.

After a series of log messages reporting the creation of database objects, the chosen reference
system is applied to the spatial columns (expect for those that will store data with local
coordinate systems). This takes some seconds and is finished when the word ‘Done’ is
displayed.

Step 5 — Check if the setup is correct

The 3D City Database is stored in a separate PostgreSQL schema called ‘citydb’. The stored
procedures are written to a separate PostgreSQL schema called ‘citydb pkg’. Usually
different schemas have to be addressed in every query via dot notation, e.g.

SELECT * FROM citydb.building;

Fortunately, this can be avoided when the corresponding schemas are on the database search
path. The search path is automatically adapted during the setup. Execute the command

SHOW search path;

to check if the schemas citydb, citydb pkg and public (for PostGIS elements) are contained.

108 3D Geodatabase for CityGML 2018

Note: When using the created 3D City Database as a template database for new databases,
the search path information is not transferred and thus has to be set again, e.g.:

ALTER DATABASE new citydb v4 SET search path TO citydb,
citydb pkg, public;

The search path will be updated upon the next login, not within the same session.

To drop the 3D City Database with all data, execute the DROP_DB.sql script in the same way
like CREATE DB.sql. Simply dropping the schemas ‘citydb’ and ‘citydb pkg’ in a cascading
way will also do the job.

3.4 Working with multiple database schemas

Most users rarely work with only one 3D City Database. They maintain multiple instances for
each data set, for different city projects or user groups and probably for various test demos.
The new ability to manage CityGML ADEs sets the ground for even more experiments. This
chapter explains how to manage multiple 3D City Databases in separate schemas.

3.4.1 Create and address database schemas
Databases and schemas in PostgreSQL

PostgreSQL provides a clustering concept for database schemas that allows users to group
multiple instances of the 3D City Database. This means within one database object a user can
create more schemas like in the ‘citydb’ schema, that store the table layout of the 3D City
Database. They can be regarded as separate namespaces. To address the different namespaces,
dot notation should be used in queries. Note, if tables are not schema-qualified the first
namespace in the database search path (see chapter 3.3.4) that contains the tables will be used.
One advantage of using multiple schemas instead of many databases is the ability to join
tables from different namespaces. Cross-database queries are not directly possible in
PostgreSQL (see postgres fdw extension).

To create an additional 3D City Database instance within a given database run the
CREATE _SCHEMA shell script and define a name for the new schema. The new instance
will obtain the CRS from the ‘citydb’ schema, which can be changed later (see chapter 4.5).
To drop a schema, call the DROP_SCHEMA shell script.

Oracle user schemas

In Oracle, schemas are bound to one user. All user schemas belong to one database. There is
no clustering concept like in PostgreSQL, so a CREATE _SCHEMA script would not make
too much sense. In fact, a new instance should be created with a new user and the
CREATE DB script. Like with PostgreSQL schemas, it is possible to join tables from
different user namespaces if sufficient privileges were granted (see next chapter). As another
alternative Oracle databases can be set under version control with the Oracle Workspace
Manager so that a user can also work with multiple versions of a city model in separate
workspaces. To change the workspace a user must execute the DBMS WM. GotoWorkspace
procedure.

3D Geodatabase for CityGML 2018 109

3.4.2 Read and write access to a schema

A shell script called GRANT ACCESS is provided to grant either READ-ONLY (RO) or
READ-WRITE (RW) access rights to a 3D City Database instance. The user who acts as the
grantor must be specified in the CONNECTION DETAILS file. The user name of the grantee
must be entered when executing the script.

Read-only access rights

Granting only read access is useful if you want to protect your data from unauthorized or
accidental modification. This is the default setting in the GRANT ACCESS script. Read-only
users will be allowed to:

e connect to the given database schema and use its objects (tables, views, sequences,
types etc.),
e cxport data in both CityGML and KML/COLLADA formats,

e generate database reports, query the index status and calculate envelopes.

But they can neither import new data into the 3DCityDB nor alter the data already stored in
the tables in any way (incl. updating envelopes, dropping and creating indexes).

Read and write access rights

By choosing the RW option in the GRANT ACCESS script the grantee will also be able to
perform UPDATE and DELETE operations against the schema content. This is especially
useful for Oracle users, who want to manage different database schemas with primarily one
user. In PostgreSQL however, one user can be the owner of multiple schemas. Still, write
access can be interesting in a multi-editor scenario.

Note: Dropping and creating indexes is not possible in PostgreSQL, if you’re not the owner
of the table.

Revoke access

Like with the GRANT ACCESS script, access rights can also be revoked, of course. Simply
call the REVOKE ACCESS script and enter the user name of the grantee and the schema
name from which the rights shall be revoked from.

3.4.3 Schema support in stored procedures

Since v3.0.0, most stored procedures of the 3D City Database offer an input argument to
specify the schema name against which the operation will be executed. The default for Oracle
is the schema of the currently connected user, for PostgreSQL it is “citydb’. For v4.0.0 this
parameter has been removed for those type of stored procedures that operate on the logical
level of the database, because managing different ADEs in separate schemas can result in a
different table structure. E.g. one central delete script is not guaranteed to work against every
schema. Thus, for PostgreSQL these procedures are now part of an instance schema such as
‘citydb’ (see also chapter 0). Instead of calling a delete function from the central ‘citydb pkg’
schema like this:

110 3D Geodatabase for CityGML 2018

SELECT citydb pkg.delete cityobject(l, ‘my schema’);
you now have to schema-qualify the function itself:

SELECT my schema.delete cityobject(1l);

In Oracle, every stored procedure could be called this way, as every user schema stores the
PL/SQL packages.

3.5 Migration from previous major releases

Scripts are located in the folder 3dcitydb/[oracle/postgresql]/MIGRATION within the
installation directory of the Importer/Exporter tool. A migration path is provided for 3D City
Databases of version 2.1 and of version 3.3.

Hint: Another safe and simple migration approach is to export the database content from
the v2.x/v3.x instance as CityGML with the previous version of the
Importer/Exporter and to re-import the data into the new 3D City Database version
by using the new Importer/Exporter shipped with this release. This approach might
take more time though, depending on the amount of data stored in the database.

Note: The migration scripts do not handle version-enabled tables under Oracle. Therefore,
if you are using Oracle and have enabled versioning, then exporting and re-importing
the data is the recommended way to migrate to the new 3DCityDB version.

To start the migration process run the MIGRATE DB shell script. Make sure, the database
credentials taken from the CONNECTION DETAILS file are correct. With the first input you
need to enter the major version number of the currently installed 3D City Database instance —
either 2 or 3. To identify the actual version of your 3D City Database you can use the
Importer/Exporter tool to connect to the 3D City Database instance that you want to upgrade.
Starting from v3.0.0 the version string is printed to the console window after the connection
has been successfully established as shown below (see chapter 5.2.1 for details).

.

Console

[11:24:23 INFO] Connected to database profile 'citydb'.

[11:24:23 INFOI[3D City Database- 3. 0.0 |

[11:24:23 INFDO] Database: PostgreSQL

[11:24:23 INFO] Versiom: 3.5.0

[11:24:23 INFO] SRID: 3088 (Projected)

[11:24:23 INFO] SRS: DHDN / Soldner Berlin

[11:24:23 INFO] gml:sraName: urn:ogo:def:crs, cra:EPSE::3088, crs:EPSE: 5783
[11:24:-23 INFO] WVersioning: Not supported

Figure 53: Version information of a 3D City Database.

3D Geodatabase for CityGML 2018 111

If the version string does not show up, you are running a v2.x instance. Alternatively, the
version information can also be queried using database-side functions. For Oracle the
command is:

SQL> select MAJOR VERSION from
table (CITYDB_UTIL . CITYDB_VERSION) ;

For PostgreSQL it is:
psgl> SELECT major version FROM citydb pkg.citydb version();

If the function is not known to the system, you are probably running a v2.x instance. For
Oracle Database, migrating from v2 to v4 has some prerequisites which will be explained in
detail in the next chapter.

3.5.1 V2 to V4 Migration on Oracle

Step 1 — Upgrade an existing installation

The migration to v4.0.0 must be carried out on a version 2.1.0 instance of the 3D City
Database. Versions prior to version 2.1.0 must first be upgraded to 2.1.0 since the internal
storage of envelopes of city objects changed substantially. Corresponding upgrade scripts are
shipped with the v2.1.0 release. Upgrades to 2.1.0 can be carried out from any older version
2.0.0 to 2.0.6. A more detailed description of the upgrade procedure can be found in the
document “Documentation of the 3D City Database v2.1.0 and the Importer/Exporter v1.6.0”.

Before upgrading your 3D City Database, a database backup is highly recommended to secure
all data. The latter can be easily done using the Importer/Exporter tool or by tools provided by
Oracle.

Important: Please note that the last step in the upgrade process is a lengthy one. Altering the
internal storage of the envelopes of all city objects in a large and/or versioned database may
take hours. Depending on their initial state, spatial indexes may be disabled and re-enabled in
the process, adding to the duration as a whole. This process MUST NOT be interrupted since
it could lead to an inconsistent state. Please be patient and remember that backing up all of
your data before starting any database upgrade is the commonly recommended practice.

Step 2 — Creating a new installation

The migration script transfers data from a user schema with the v2.1.0 installation to another
user schema that has to contain the 3D City Database schema v4.0.0. Install the new version
like it is described in chapter 3.3 if not done so yet.

Step 3 — Grant select on v2.1.0 schema to v4.0.0 schema

The migration process requires that the user with the v4.0.0 schema can access the user
schema with the v2.1.0 version. Therefore, run the GRANT ACCESS V2 shell script (see
chapter 3.3.1) as the V2 user. When executed the user is requested to type in the schema name
for the 3D City Database v4.0.0 instance.

112 3D Geodatabase for CityGML 2018

Step 4 —- Run MIGRATE_DB

Now, start the MIGRATE DB script located in the same folder like GRANT ACCESS V2
as the V4 user. Choose the value 2 as first input and specify the name of the schema with the
v2.1.0 instance.

Step 5 — Be sure of using unique texture URIs

Starting from v3.0.0 of the 3D City Database, textures that are referenced to more than one
geometry are no longer stored redundantly in the SURFACE DATA table but only once in the
TEX IMAGE table. This optimization can also be done during the migration process, if it is
guaranteed that texture URIs are unique and not used for different texture files. Otherwise,
some textures would get lost during the migration and remaining images would be referenced
to wrong surfaces. Therefore, if you can assure the non-existence of duplicate texture URIs,
verify with ‘y’ or ‘yes’. In case you know that textures in the database are named equally (or
if you do not know) you can still run the script by entering ‘n’ or nothing (because it is the
default). Entries in the TEX IMAGE column of the SURFACE DATA table from version 2.1
are then further mapped 1:1 to the TEX IMAGE table of version 4.0.0.

Note: A simple unification of texture URIs in advance of the migration will not help to
store the textures only once, because same textures with different URIs are regarded
as different image files and would all end up in the new TEX IMAGE table. You
would have to compare the binary data itself.

Step 6 — Choose Spatial or Locator license option

With the last input parameter you specify the database license running on your Oracle server,
like you have done when setting up the v4.0.0 instance of the 3D City Database. Choose ‘S’
for Spatial (which will additionally migrate raster data) and ‘L’ for Locator.

Step 7 — Check if the setup is correct

The script temporary disables databases indexes and foreign key constraints and creates an
additional package with migration procedures (CITYDB MIGRATE). The package is
removed again when the migration progress is completed and the message "DB migration is
completed successfully." is displayed on the console. It is recommended to generate a
database report of the new user schema and compare it with a report of the schema that
contains the 2.1 instance of the 3D City Database (done with the previous version of the
Import/Export tool). Verify that

e no city objects are missing (do a database report),

¢ indexes and foreign keys got activated again,

e relations between features and attributes are correct, and
e cxports look correct inside a viewer application.

Step 8 — Drop the deprecated v2.x schema

If the migration was successful, the v2.x user simply has to invoke the DROP_DB (of version
2.x) to drop the deprecated schema. Deleting the v2.x user works as well.

3D Geodatabase for CityGML 2018 113

3.5.2 V2 to V4 Migration on PostgreSQL
Step 1 - Run MIGRATE_DB

For PostgreSQL, setting up a new v4.0.0 instance is not necessary. Simply execute the
MIGRATE DB shell script and choose the value 2 as first input.

Step 2 — Be sure of using unique texture URIs

Like with the Oracle version, you are requested to guarantee that no texture URI is used for
different images. See Step 5 in the workflow explanation of the Oracle version for further
details.

Step 3 — Check if the setup is correct

After a series of log messages reporting the selection of data from the v2.x schema, updates of
references and the creation of database objects, the script is finished with the message
'3DCityDB migration complete!'. If the old database schema is not dropped during the
migration (see last step), both versions of the 3D City Database will remain in one database.
This is actually a good thing, because you can further compare if everything has been
transferred correctly.

Idempotent migration

If the migration process has been interrupted by the user or by severe software errors, the
migration script can simply be executed again (only if the old v2.x schema still exists) without
manually dropping already created parts of the v4.0.0 schema because the script does it for
you.

Step 4 — Drop the deprecated v2.x schema

To remove the deprecated parts of your 3D City Database invoke the DROP_DB_V2 shell
script. DO NOT execute the DROP_ DB script as the old and new instance of the 3D City
Database are both stored inside the same database (new = citydb schema, old = public
schema). DROP_DB drops all database schemas where it finds a DATABASE SRS table, so
all you data would be lost. Be careful!

3.5.3 V3 to V4 Migration

The migration process from v3 to v4 does not require any user inputs after entering the value
3 in the MIGRATE DB script (except for choosing the license under Oracle). Please note,
that schema changes on existing tables are applied with ALTER TABLE statements which
can lock these tables for a longer period if they contain millions of rows.

3.6 Upgrade between minor releases

Every minor release of the 3D City Database is shipped with an upgrade script if necessary.
Starting from version 4.x.x it can be found in the MIGRATION folder. Like with other
database DDL tasks a shell script will be provided as well to ease the upgrade process. Make

114 3D Geodatabase for CityGML 2018

sure to first check the current version of your 3D City Database installation before performing
an upgrade, as mentioned in the migration chapter 3.5. During an upgrade check the output
messages of the script for errors and warnings. The process should finish the message “3D
City Database upgrade complete”.

3D Geodatabase for CityGML 2018 115

4 Stored procedures and additional features

The 3D City Database is shipped with a set of stored procedures referred to as the CITYDB
package (formerly known as the GEODB package in v2.x). They are automatically installed
during the setup procedure of the 3D City Database. For the Oracle version, it comprises of
eight PL/SQL packages. In the PostgreSQL version, functions are written in PL/pgSQL and
stored either in their own database schema called ‘citydb pkg’ or as part of an instance
schema like ‘citydb’. Many of these functions and procedures expose certain tasks on the
database side to the Importer/Exporter client. When calling stored procedures, the package
name has to be included for the Oracle version. With PostgreSQL, the ‘citydb pkg’ schema
has not to be specified as prefix since it is put on the database search path during setup.

26 citydb_v4 o = atydb_va
#-kg Tables (Filtered) ; [% Casts
#-{E9 Views H & Catalogs
w=-{89 Editioning Views 1 [Event Triggers
(a8 Indexes = g Extensions (3)
BL’@ Packages T plpgsql
@@ CITYDB_CONSTRAINT - Dpostgs
- CITYDB_DELETE B postgis_sfcgal
{‘fﬁ CITYDB_EMNVELOPE £ Foreign Data Wrappers
- CITYDB_IDX 5 &5 Languages (1)
@) CITYDB_OBICLASS plpgsql
- CITYDB_SRS 5+ & schemas (3)
N 4 ©2 i
- CITYDB_STAT 99 citydb
=@ CITYDB_UTIL 41 9 citydb_pkg
- 99 public

Figure 54: Graphical database client connected to the 3D City Database (left: SQL Developer (Oracle), right:
pgAdmin 4 (PostgreSQL)

4.1 User-defined data types

The Oracle version defines a set of user-defined data types that are used by functions from the
PL/SQL packages. They are not necessary in PostgreSQL, because of how it deals with arrays
and returns of multiple variables.

e STRARRAY, a nested table of the data type VARCHAR?2
e ID ARRAY, anested table of the data type NUMBER

e DB VERSION OBJ, an object that bundles version information of the installed 3D
City Database instance

e DB VERSION TABLE, anested table of DB VERSION OBJ
e DB INFO OBJ, an object that bundles metadata of the used reference system
e DB INFO TABLE, anested table of DB INFO OBJ

The definition of the data types can be found in the SQL file for the CITYDB UTIL package.

116

3D Geodatabase for CityGML 2018

4.2 CITYDB_UTIL

The CITYDB UTIL package can be seen as a container for various single utility functions. If

further releases will bring more stored procedures with similar functionality some of them
will probably be outsourced in their own package (like CITYDB CONSTRAINT in v4.0.0).
Nearly all functions take the schema name as the last input argument (“schema-aware”).
Therefore, they can be executed against another user schema in Oracle or database schema in

PostgreSQL. Note, for the function get seq values the schema name must be part of the

first argument — the sequence name, e.g. 'my schema.cityobject seq’.

Here is overview on API of the CITYDB UTIL package in Oracle:

Function

Return Type

Explanation

citydb_version

DB_VERSION TABLE

Returns version information of the currently
installed 3DCityDB

construct_solid (geom_root _id)

SDO_GEOMETRY

Tries to construct a solid geometry based on a
given root_id value in SURFACE GEOMETRY table

db_info (schema_name)

3 OUT variables

Returns three columns: schema_srid INTEGER,
schema_gml_srs_name VARCHARZ2, versioning
VARCHAR2

db_metadata (schema_name)

DB _INFO TABLE

Returns a set of 3DCityDB metadata

drop_tmp_tables (schema_name) | void Drop existing temporal tables
get_id_array_size (ID_ARRAY) NUMBER Returns the size of an ID_ARRAY nested table
get_seq_values (seq_name, ID ARRAY Returns the next k values of a given sequence
seq_count)

min (NUMBER, NUMBER) NUMBER Returns the smaller of two given numbers
sdo2geojson3d CLOB Returns a given geometry into a 3D GeoJSON
(SDO_GEOMETRY, character object

decimal_places, compress_tags,

relative2mbr)

split (VARCHAR2, delimiter) STRARRAY Splits a String based on a given delimiter into a

STRARRAY object

ST_Affine (SDO_GEOMETRY,
row1col1, row1col2, row1col3,
row2col1, row2col2, row2col3,
row3col1, row3col2, row3col3,
row1col4, row2col4, row3col4)

SDO_GEOMETRY

Performs an affine transformation on a given
geometry a given 3x3 matrix plus 3 offset values

string2id_array (VARCHAR2,
delimiter)

ID ARRAY

Transforms a String into an ID_ARRAY with a
given delimiter

to_2d (SDO_GEOMETRY, srid)

SDO_GEOMETRY

Returns a geometry without Z values

versioning_db (schema_name)

VARCHAR2

Returns either ‘ON’ or ‘OFF’

versioning_table (table_name,
schema_name)

VARCHAR?2

Returns either ‘ON’ or ‘OFF’

Table 20: API of CITYDB UTIL package for Oracle

The PostgreSQL API includes less functions, as some functionality is provided by the
PostGIS extension, such as ST AsGeoJSON, ST Affine and ST Force2D. Returning
multiple variables is always performed with OUT variables.

Function

Return Type

Explanation

citydb_version ()

4 OUT variables

Returns version information of the currently
installed 3DCityDB

db_info (schema_name)

3 OUT variables

Returns three columns: schema_srid INTEGER,
schema_gml_srs_name TEXT, versioning TEXT

3D Geodatabase for CityGML 2018 117

db_metadata (schema_name) 6 OUT variables Returns six variables: schema_srid INTEGER,
schema_gml_srs_name TEXT,

coord_ref_sys name TEXT, coord_ref_sys kind
TEXT, wktext TEXT, versioning TEXT

Drop existing temporal tables

Returns the next k values of a given sequence

void
SETOF INTEGER

drop_tmp_tables (schema_name)
get_seq_values (seq_name,
seq_count)

Min (NUMERIC, NUMERIC) NUMERIC Returns the smaller of two given numbers
versioning_db (schema_name) TEXT Returns ‘OFF’
versioning_table (table_name, TEXT Returns ‘OFF’

schema_name)

Table 21: API of CITYDB UTIL package for PostgreSQL

4.3 CITYDB_CONSTRAINT

The CITYDB CONSTRAINT packages includes stored procedures to define constraints or
change their behavior. A user can temporarily disable certain foreign key relationships
between tables, e.g. the numerous references to the SURFACE GEOMETRY table. The
constraints are not dropped. While it comes at the risk of data inconsistency it can improve the
performance for bulk write operations such as huge imports or the deletion of thousands of
city objects.

It is also possible to change the delete rule of foreign keys from ON DELETE NO ACTION
(use 'a' as input) to ON DELETE SET NULL ('n') or ON DELETE CASCADE ('c').
Switching the delete rule will remove and recreate the foreign key constraint. The delete rule
does affect the layout of automatically generated delete scripts as no explicit code is necessary
in case of cascading deletes. However, we do not recommend to change the behavior of
existing foreign key relationships because some delete operations might not work properly
anymore. For Oracle databases, there is an additional procedure to define spatial metadata for
single geometry column. All functions are schema-aware and their return type is void.

Function Explanation

set_column_sdo_metadata Inserts a new entry in the USER_SDO GEOM METADATA view

(geom_column_name, dimension, srid,
table_name, schema_name)

for a given geometry column

set_enabled_fkey (fkey_name, table_name,
BOOLEAN, schema_name)

Disables / enables a given foreign key constraint

set_enabled_geom_fkeys (BOOLEAN,
schema_name)

Disables / enables all foreign key constraints that reference
the SURFACE_GEOMETRY table

set_enabled_schema_fkeys (BOOLEAN,
schema_name)

Disables / enables all foreign key constraints within a given
user schema

set_fkey_delete_rule (tkey_name, table_name,
column_name, ref_table, ref_column,
on_delete_param, schema_name)

Changes the delete rule of a given foreign key constraint

set_schema_fkey_delete_rule
(on_delete_param, schema_name)

Changes the delete rule of all foreign key constraint within a
given user schema

set_schema_sdo_metadata (schema_name)

Inserts new entries in the USER SDO_GEOM METADATA View
for all geometry columns of a given schema (some
expections)

Table 22: API of CITYDB_CONSTRAINT package for Oracle

118 3D Geodatabase for CityGML 2018

There is only one significant difference in the API in PostgreSQL. Instead of specifying the
name, table and schema of a foreign key, the OID of the corresponding integrity trigger is
enough. This is because there is no ALTER TABLE command in PostgreSQL to disable
foreign keys.

Function Explanation

set_enabled_fkey (fkey_trigger_oid, BOOLEAN) Disables / enables a given foreign key constraint trigger

Table 23: Notable difference in the APl of CITYDB CONSTRAINT package for PostgreSQL

4.4 CITYDB_IDX

The package CITYDB IDX provides functions to create, drop, and check both spatial and
non-spatial indexes on tables of the 3D City Database by using a user-defined data type called
INDEX OBJ. In the Oracle version, the data type offers three member functions to construct
an INDEX OBJ. In the PostgreSQL version, these are just separate functions within the
‘citydb_pkg’ schema:

e construct spatial 3d for a 3-dimensional spatial index
e construct spatial 2d for a2-dimensional spatial index

e construct normal for a normal B-tree index

The easiest way to take use of this package is by using the Importer/Exporter (see chapter
5.2.2), which provides an interface for enabling and disabling indexes (ON and OFF).
Disabling spatial indexes can accelerate some operations such as bulk imports, deletion of
many objects, and migration of data from a 3D City Database v2.1.0 instance to version 4.0.0.
The methods used by the Importer/Exporter iterate over the entries in the INDEX TABLE
table which is part of the database schema. In order to include more indexes the user need to
insert their metadata into INDEX TABLE. The differences between Oracle and PostgreSQL
only apply to different data types. Instead of STRARRAY an array of TEXT is used as return

type.

Function Return Type | Explanation

create_index(INDEX_OBJ, VARCHAR2 Creates a new index based on the metadata of the input
is_versioned, schema_name) INDEX OBJ. Returns a text status.
create_normal_indexes STRARRAY Creates indexes for all normal indexes to be found in
(schema_name) INDEX TABLE. Returns an array of status reports.
create_spatial_indexes STRARRAY Creates indexes for all spatial indexes to be found in
(schema_name) INDEX TABLE. Returns an array of status reports.
drop_index (INDEX_OBJ, VARCHAR2 Drops an index that matches the metadata of the input
is_versioned, schema_name) INDEX OBJ. Returns a text status.
drop_normal_indexes STRARRAY Drops indexes that match all normal indexes to be found in
(schema_name) INDEX TABLE. Returns an array of status reports.
drop_spatial_indexes STRARRAY Drops indexes that match all spatial indexes to be found in
(schema_name) INDEX TABLE. Returns an array of status reports.
get_index(table_name, INDEX OBJ Returns an INDEX OBJ from INDEX TABLE based on the
column_name, inputs

schema_name)

index_status(INDEX_OBJ, VARCHAR2 Returns a text status for an index that matches the
schema_name) metadata of the input INDEX OBJ

3D Geodatabase for CityGML 2018 119

index_status(table_name, VARCHAR?2 Returns a text status for an index that matches the input
column_name, argument

schema_name)

status_normal_indexes STRARRAY Returns an array of status reports for all normal indexes to
(schema_name) be found in INDEX TABLE

status_spatial_indexes STRARRAY Returns an array of status reports for all spatial indexes to
(schema_name) be found in INDEX TABLE

Table 24: API of CITYDB IDX package for Oracle

4.5 CITYDB_SRS

The package CITYDB SRS provides functions and procedures dealing with the coordinate
reference system used for an 3D City Database instance. The most essential procedure is
change schema srid to change the reference system for all spatial columns within a
database schema. If a coordinate transformation is needed because an alternative reference
system shall be used, the value ‘1’ should be passed to the procedure as the third parameter. If
a wrong SRID had been chosen by mistake during setup, a coordinate transformation might
not be necessary in case the coordinate values of the city objects are already matching the new
reference system. Thus, the value 0 should be provided to the procedure, which then only
changes the spatial metadata to reflect the new reference system. It can also be omitted, as 0 is
the default value for the procedure. Either way, changing the CRS will drop and recreate the
spatial index for the affected column. Therefore, this operation can take a lot of time
depending on the size of the table. Note that in Oracle, the reference system cannot be
changed for another user schema. So, there is no schema name parameter. The is also an
additional function called get dim(column name, table name, schema name)
to fetch the dimension of the spatial column which is either 2 or 3.

Function Return Type | Explanation

change_column_srid void Changes the reference system for a given geometry

(table_name, column_name, column. Spatial metadata is needed to recreate the

dimension, srid, do_transform, spatial index.

geometry_type, schema_name)

change_schema_srid (srid, void Changes the reference system for all spatial columns

gml_srs_name, do_transform, inside a database schema. The second parameter

schema_name) needs to be a GML-compliant URN to the CRS (see
chapter 2.3.5)

check_srid (srid) TEXT Returns the message 'SRID ok' if the CRS with the

given EPSG code exists in the database. Returns
'SRID not ok’ if not.

is_coord_ref_sys_3d (srid) INTEGER Tests if CRS with given EPSG code is a 3D CRS.
Returns 1 if yes and 0 if not.

is_db_coord_ref_sys_3d INTEGER Tests if the current CRS of a given schema is a 3D one.

(schema_name) Returns 1 if yes and 0 if not.

transform_or_null GEOMETRY Applies a coordinate transformation on the input

(GEOMETRY, srid) geometry with the given CRS. Returns NULL, if the input

geometry is not set.

Table 25: API of CITYDB SRS package for PostgreSQL

120 3D Geodatabase for CityGML 2018

4.6 CITYDB_STAT

The package CITYDB STAT currently only serves a single purpose: To count all entries in
all tables and generate a report as an array of string values (STRARRAY data type in Oracle,
text [] in PostgreSQL). The tabulator escape sequence \t is used to generate a nice
looking report for the Importer/Exporter.

Function Return Type | Explanation

table_content (table_name, NUMBER Returns the count result obtained from a query

schema_name) against the given table

table_contents (schema_name) STRARRAY Returns a text array with row count results for most
tables in 3D City Database (excluding metadata
tables and system tables)

Table 26: API of CITYDB_STAT package for Oracle

4.7 CITYDB_OBJCLASS

The CITYDB OBJCLASS package only provides two convenience functions to cast between
table names and ID values of the OBJECTCLASS table. In contrast to the previously
introduced packages these functions cannot be applied against different database schemas as
this would require dynamic SQL. While it would not be problem when converting single
values, the performance with dynamic SQL could be a lot worse when these functions are
integrated in a full table scan. Therefore, for PostgreSQL they are now part of the ‘citydb’
schema as pure SQL functions. In Oracle, they make up another PL/SQL package.

Function Return Type | Explanation

objectclass_id_to_table_name VARCHAR2 Returns the corresponding table name to a given
(objectclass_id) object class ID
table_name_to_objectclass_ids ID_ARRAY Returns an array of object class IDs that a are
(table_name) managed in the given table

Table 27: APl of CITYDB OBJCLASS package for Oracle

4.8 CITYDB_DELETE

The package CITYDB DELETE consists of several functions that facilitate to delete single
and multiple city objects. Each function automatically takes care of integrity constraints
between relations in the database. The package is meant as low-level API providing a delete
function for each relation (except for linking tables) — from a single polygon in the table
SURFACE GEOMETRY (del surface geometry) up to a complete CityObject
(del cityobject) or even a whole CityObjectGroup (del cityobjectgroup). This
should help users to develop more complex delete operations on top of these low-level
functions without re-implementing their functionality.

Most of the stored procedures take the primary key ID value of the entry to be deleted as
input parameter and return the ID value if the entry has been successfully removed. So, if
NULL is returned, the entry is either already gone or the deletion did not work due to an error.
Nearly every delete function comes with a pendant to delete multiple entries at once. These

3D Geodatabase for CityGML 2018 121

alternative functions take an array of ID values as input and return an array of successfully
deleted entries. For PostgreSQL, the array is unrolled inside the functions as PL/pgSQL can
return a SET OF INTEGER values.

In order to illustrate the low-level approach of this package, assume a user wants to delete a
building feature together with all its nested sub features. For this purpose, the user calls the
del building (or del cityobject) function, which internally leads to subsequent
calls to the following stored procedures:

e del building for the building and its dependent building parts (recursive call)

e del thematic surface for dependent boundary surfaces of the building (nested
call of del opening for dependent openings of the boundary surfaces)

e del building installation for dependent outer installations of the building
(nested call of del thematic surface for boundary surfaces of the
installations)

e del room for dependent rooms of the building (nested call of
del thematic surface for interior boundary surfaces,
del building installation for interior installation and
del building furniture for furniture within the room)

e del address for dependent addresses that are not referenced by other buildings
and bridges

e del implicit geometry for each prototype geometry of a nested feature, e.g.
Openings, BuildinglInstallation

e del surface geometry for deleting the geometry of the building and its nested
features

e del cityobject to remove the entry in the CITYOBJECT table that corresponds
to the deleted building and the deleted child features (also deletes generic attributes,
external references, appearances, etc.)

Note, that global Appearances with no direct reference to a CityObject are not deleted during
such a deletion process. Therefore, the method cleanup appearances should be
executed afterwards, to remove all Appearance information (incl. entries in tables
APPEAR TO SURFACE DATA, SURFACE DATA and TEX IMAGE). Like with the stored
procedures from the CITYDB OBJCLASS package, the delete functions are part of the
‘citydb’ schema and not ‘citydb pkg’. This is not only because of a better performance
without dynamic SQL. It is mandatory as the code for the delete functions is generated
automatically based on the foreign keys.

The del prefix is used to not exceed 30 characters in Oracle. As explained in chapter 3.4,
managing different CityGML ADEs in different schema would require different delete scripts
for each schema. A simple code block to delete objects based on a query result can look like
this:

122 3D Geodatabase for CityGML 2018

Oracle:
DECLARE
deleted id NUMBER;
dummy ids ID ARRAY := ID ARRAY ();
BEGIN
FOR rec IN (SELECT * FROM cityobject WHERE ...) LOOP
deleted id := citydb delete.del cityobject (rec.id);
END LOOP;
dummy ids := citydb delete.cleanup appearances;
END;
DECLARE
pids ID ARRAY := ID ARRAY ();
deleted ids ID ARRAY := ID ARRAY();
dummy ids ID ARRAY := ID ARRAY ();
BEGIN

SELECT id BULK COLLECT INTO pids
FROM cityobject WHERE ...;

deleted ids := citydb delete.del cityobject (pids);
dummy ids := citydb delete.cleanup appearances;
END;
PostgreSQL:

SELECT citydb.del cityobject (id) FROM cityobject WHERE ... ;
SELECT citydb.cleanup appearances () ;

SELECT citydb.del cityobject (array agg(id))
FROM cityobject WHERE ... ;
SELECT citydb.cleanup appearances();

Which delete function to use depends on the ratio between the number of entries to be deleted
and the total count of objects in the database. One array delete executes each necessary query
only once compared to numerous single deletes and can be faster. However, if the array is
huge and covers a great portion of the table (say 20% of all rows) it might be faster to go for
the single version instead or batches of smaller arrays. Nested features are deleted with arrays

anyway.

The previously available CITYDB DELETE BY LINEAGE package has been included into
the CITYDB DELETE package and reduced to only one function. It allows to delete multiple
city objects that share a common value in the LINEAGE column of the CITYOBJECT table.

3D Geodatabase for CityGML 2018 123

The procedure cleanup schema provides a convenient way to reset an entire 3DCityDB
instance under both Oracle and PostgreSQL. After invoking this procedure, all entries from all
tables are deleted and all sequences are reset.

The following table only lists functions that differ from each other where
del cityobject stands for the general layout of a delete function:

Function Return Type Explanation
cleanup_appearances ID ARRAY Removes unreferenced Appearences incl.
(only_global) SurfaceData and textures and returns an array of

their IDs. Pass 1 (default) to only delete global
appearances, or 0 to include local appearances

cleanup_schema void Truncates most tables and resets sequences in a

(schema_name) given 3D City Database schema

cleanup_table (table_name) ID ARRAY Removes entries in given table which are not
referenced by any other entities

del_cityobject (NUMBER) NUMBER Removes the CityObject with the given ID incl. all
references to other tables. The 1D value is returned
on success

del_cityobject (ID_ARRAY) ID_ARRAY Removes CityObjects with the given 1Ds incl. all

references to other tables. An array of I1Ds of
successfully deleted objects is returned
del_cityobjects_by_lineage ID ARRAY Removes all CityObjects on behalf of a LINEAGE
(lineage_value) value and returns an array of their IDs

Table 28: APl of CITYDB DELETE package for PostgreSQL

Function Return Type Explanation
cleanup_appearances SET OF INTEGER Removes unreferenced Appearences incl.
(only_global) SurfaceData and textures and returns an set of their

1Ds. Pass 1 (default) to only delete global
appearances, or 0 to include local appearances

cleanup_schema void Truncates most tables cascadingly and resets

(schema_name) sequences in a given 3D City Database schema

cleanup_table (table_name) SET OF INTEGER Removes entries in given table which are not
referenced by any other entities

del_cityobject (INTEGER) INTEGER Removes the CityObject with the given ID incl. all
references to other tables. The 1D value is returned
on success

del_cityobject (INTEGER[]) SET OF INTEGER Removes CityObjects with the given IDs incl. all

references to other tables. A set of 1Ds of
successfully deleted objects is returned
del_cityobjects_by_lineage SET OF INTEGER Removes all CityObjects on behalf of a LINEAGE
(lineage_value) value and returns a set of deleted IDs

Table 29: API of CITYDB DELETE package for PostgreSQL

4.9 CITYDB_ENVELOPE

The package CITYDB ENVELOPE provides functions that allow a user to calculate the
maximum 3D bounding volume of a CityObject identified by its ID. For each feature type, a
corresponding function is provided starting with env_ prefix. In PostgreSQL, they are part of

an instance schema like ‘citydb’ and not ‘citydb pkg’ due to unforeseen schema changes by
adding CityGML ADEs.

124 3D Geodatabase for CityGML 2018

The bounding volume is calculated by evaluating all geometries of the city object in all LoDs
including implicit geometries. In PostGIS, they are first collected and then fed to the
ST 3DExtent aggregate function which returns a BOX3D object. In Oracle the aggregate
function SDO AGGR MBR is used which produces a 3D optimized rectangle with only two
points. The box2envelope function turns this output into a diagonal cutting plane through the
calculated bounding volume. This surface representation follows the definition of the
ENVELOPE column of the CITYOBJECT table as discussed in chapter 2.3.3.2 (see also
Figure 29). All functions in this package return such a geometry.

The CITYDB ENVELOPE API also allows for updating the ENVELOPE column of the city
objects with the calculated value (by simply setting the set envelope argument that is
available for all functions to 7). This is useful, for instance, whenever one of the geometry
representations of the city object has been changed or if the ENVELOPE column could not be
(correctly) filled during import and, for example, is NULL.

To calculate and update the ENVELOPE of all city objects of a given feature type, use the
get envelope cityobjects function and provide the OBJECTCLASS ID as
parameter. If 0 is passed as OBJECTCLASS ID, then the ENVELOPE columns of all city
objects are updated. To update only those ENVELOPE columns having NULL as value, set the
only if null parameter to /.

Function Return Type Explanation

box2envelope (BOX3D) GEOMETRY Takes a BOX3D and returns a 3D polygon that
represents a diagonal cutting plane through this
box. Under Oracle the input is an optimized 3D
rectangle (SDO_INTERPRETATION = 3)

env_cityobject (cityobject_id, GEOMETRY Returns the current envelope representation of the

set_envelope) given CityObject and optionally updates the
ENVELOPE column

get_envelope_cityobjects GEOMETRY Returns the current envelope representation of all

(objectclass_id, set_envelope, CityObjects of given object class and optionally

only_if_null) updates the ENVELOPE column with the individual
bounding boxes

get_envelope_implicit_geometry | GEOMETRY Returns the envelope of an implicit geometry which

(implicit_rep_id, reference_point, has been transformed based on the passed

transformation_matrix) reference point and transformation matrix

update_bounds (o/d_box, GEOMETRY Takes two GEOMETRY objects to call

new_box) box2envelope and returns the result. If one side is
NULL, the non-empty input is returned.

Table 30: API of CITYDB ENVELOPE package for PostgreSQL

3D Geodatabase for CityGML 2018 125

5 Importer / Exporter

The 3D City Database Importer/Exporter is a Java-based front-end for the 3D City Database
and allows for high-performance loading and extracting 3D city model data.

The supported import and export operations are:

Import of CityGML models (cf. chapter 5.3);

e Export data as CityGML models (cf. chapter 5.4);

e Export data in KML/COLLADA/gITF format (cf. chapter 5.5); and
e Export data as spreadsheets (available as plugin, cf. chapter 6.2).

Please refer to chapter 3.1 for system requirements and a documentation of the installation
procedure.

The 3D City Database Importer/Exporter is free software under the Apache
License, Version 2.0. See the LICENSE . txt file shipped with the software
for more details. For a copy of the Apache License, Version 2.0, please visit

APACHE

http://www.apache.org/licenses/.

5.1 Running and using the Importer / Exporter

The 3D City Database Importer/Exporter offers both a graphical user interface (GUI) and a
command line interface (CLI). The CLI allows for embedding the tool in batch processing
workflows and third-party applications. The usage of the CLI is documented in chapter 5.8.

To launch the GUI, simply use the starter scripts located in the bin subfolder of the
installation directory of the 3D City Database Importer/Exporter. A desktop icon as well as
shortcuts in the start menu of your operating system will additionally be available in case you
chose to create shortcuts during setup. Depending on your platform, one of the following
starter scripts is provided:

e 3DCityDB-Importer-Exporter.bat (Microsoft Windows family)
e 3DCityDB-Importer-Exporter.sh (UNIX/Linux/Mac OS family)

On most platforms, double-clicking the starter script or its shortcut runs the
Importer/Exporter.

For some UNIX/Linux distributions, you will have to run the starter script from within a shell
environment though. Please open your favourite shell and first check whether execution rights
are correctly set on the starter script. If not, change to the installation folder and enter the
following command to make the starter script executable for the owner of the file:

chmod u+x 3DCityDB-Importer-Exporter.sh
Afterwards, simply run the software by issuing the following command:

./3DCityDB-Importer-Exporter.sh

http://www.apache.org/licenses/

126 3D Geodatabase for CityGML 2018

Note: With every release, the README . txt file in the installation folder provides up-to-
date and version-specific information on how to run the Importer/Exporter.

The starter scripts define default values for the Java Virtual Machine (JVM) that runs the
Importer/Exporter. Most importantly, they specify the minimum amount of main memory for
the application through the —Xms parameter of the JVM. The default value has been chosen to
be reasonable for most platforms but may need to be adapted to your needs before launching
the application (e.g., if you want to increase or limit the available main memory).

The graphical user interface of the Importer/Exporter is organized into four main components
as shown in Figure 55. A menu bar [1] is located either below (Windows, some Linux
distributions) or above (Mac, some Linux distributions) the title bar. The main application
window is divided into an operations window [2] that renders the user dialogs of the separate
operations of the Importer/Exporter and a console window [4] that displays log messages. Via
the View entry in the menu bar, the console window can be detached from the main window
and rendered in a separate window. At the bottom of the operations window, a status bar [3]
provides information about running processes and database connections.

@ 3D City Database Importer/Expr - o x
ty p P
Ina Project View HE\E h |
4 ansale

Import Export KML/COLLADA/GITF o @base Preferences

Q | gmiid

choose

@ ComplexFiter
[aml:name
choose

[cityObjectiember / appearanceMember featureMemby

from # |1

[J Bounding Box

[Festure Classes

Relief
Transportation
Tunnel
Vegetation
WaterBody

e e B B e B

6 Import Just validate | Jf
Read

y Database disconnected

Figure 55: Organization of the Importer/Exporter GUI.

The tab menu on top of the operations window lets you switch between the operations of the
Importer/Exporter and their user dialogs. The following tabs are available:

® Import Import of CityGML models into the database
® Export Export of city model data as CityGML

® KML/COLLADA/glTF Export Export of city model data in KML, COLLADA
or glTF format

3D Geodatabase for CityGML 2018 127

® Database Database connection settings and operations
® pPreferences Preference settings for each operation

Note: If you have installed plugins, the tab menu may contain additional entries. Please
refer to the documentation of your plugin in this case.

The main menu bar [1] offers the entries File, Project, View and Help. The File
menu only contains one entry Exit to close the application.

The Project menu lets a user store and load settings from a config file. The separate menu
entries provide the following functionality:

Open Project.. Load a config file and recover all settings from this file.

Save Project Save all settings made in the GUI to the default config
file.

Save Project As.. Save all settings made in the GUI to a separate config
file.

Restore Default Settings Set all settings to default values.

Save Project XSD As.. Save the XML Schema defining the XML structure of
config files to a separate file. The XML Schema is
helpful in case a user wants to manually edit the config
file. Only config files conforming to the XML Schema
definition will be successfully loaded by the
Importer/Exporter.

Recently Used Projects.. List of recently loaded config files.

Note: The Importer/Exporter uses one default config file per operating system user running
the Importer/Exporter. All settings made in the GUI are automatically stored to this
default config file when the Importer/Exporter is closed and are loaded from this file
upon program start. The default config file is named project.xml and is stored in
the home directory of the user. Precisely, you will find the config file in the subfolder
3dcitydb/importer—-exporter/config. However, the location of the home
directory differs for different operating systems. Using environment variables, the
location can be identified dynamically:

e S%HOMEDRIVE$%$HOMEPATH%\3dcitydb\importer-
exporter\config (Windows 7 and higher)
e SHOME/3dcitydb/importer-exporter/config (UNIX/Linux, Mac

OS families)
The View menu affects the GUI elements of the Importer/Exporter and offers the following
entries:
Open map window Opens the 2D map window for bounding box

selections (cf. chapter 5.7).

128 3D Geodatabase for CityGML 2018

Detach Console Renders the console window in a separate application
window.

Restore default Restores the GUI to its default settings.

perspective

Finally, the He1p menu gives access to an Info dialog and the Read Me file shipped with
the Importer/Exporter. Amongst other information, the Info dialog displays the official
version and build number of the Importer/Exporter.

5.2 Database connections and operations

The Database tab of the operations window shown in the figure below allows a user to
manage and establish database connections [1] and to execute database operations [2].

[#. 3D City Database Importer/Exporter - O x
File Project View Help

Import Export KML/COLLADA/QTF Export Database preferences

Connection | citydb w
Connection details
Description |citydb Apply
Username |citydb_user New

Password |esssss

Copy
/] Save password
: Delete
Type PostgreSQL PostGIS w
Server localhost Port 5432

Database |citydb

Schema v Fetch schemas

Info

Database operations

Workspace |Use default workspace Timestamp (DD.MM.YYY)

Genereepc.rl

Ready Database disconnected

Figure 56: Database tab.

5.2.1 Managing and establishing database connections
In order to connect to an instance of the 3D City Database, valid connection parameters must
be provided on the Database tab.

Mandatory database connection details comprise the username and password of the database
user, the #ype of the database, the server name (network name or IP address) and port number
(default: 1521 for Oracle; 5432 for PostgreSQL) of the database server, and the database
name (when using Oracle, enter the database SID or service name here). The optional schema
parameter lets you define the database schema you which to connect to. Leave it empty to
connect to the default schema. More information on how to work with multiple 3DCityDB

3D Geodatabase for CityGML 2018 129

schemas can be found in chapter 3.4. If you need assistance, ask your database administrator
for connection details and schemas. For convenience, a user can choose to save the password
in the config file of the Importer/Exporter. Please be aware that the password will be stored as
plain text.

To manage more than one database connection, connection details are assigned a short
description text. The drop-down list at the top of the Database tab allows a user to switch
between connections based on their description. By using the Apply, New, Copy and Delete
buttons, edits to the parameters of the currently selected connection can be saved, a new
connection with empty connections details can be created, and existing connections can be
copied or deleted from the list.

The Connect /| Disconnect button lets a user connect to / disconnect from a 3D City Database
instance based on the provided connection details.

Note: With this version of the Importer/Exporter, you will be able to connect to version
4.0 to 3.0 instances of the 3D City Database but not to any previous version. See
chapter 3.5 for a guide on how to migrate a version 2 and 3 instances of the 3D City
Database to the latest version 4.0.

The console window logs all messages that occur during the connection attempt. In case a
connection could not be established, error messages are displayed that help in identifying the
cause of the connection problem. Otherwise, the console window contains information about
the connected 3D City Database instance like those shown in Figure 57. This information
comprises the version of the 3D City Database, the name and version of the underlying
database system, the connection string, the schema name, the spatial reference system ID
(SRID) as well as its name and GML encoding (as specified during the setup of the 3D City
Database), and whether the database tables are version-enabled.

[3D City Database Importer/Exporter - Console — O X

Console

[10:54:-08 INFO] Connecting to database profile 'citydb' .
[10:54:-0& INFO] Database connection established.

[10:54:08 IMFQ] 3D City Database: 4.0.0

[10:54:06 INFO] DBEMS: PostgreSQL 10.1

[10:54:08 INFC] Connection: citydb user@localhost:543Z2/citydb
[10:54:08 IMNFQ] Schema: citydb

[10:54:06 INFO] SRID: 25832 (Projected)

[10:54:0& INFO] SRS: ETRS58% / UIM zone 3ZN

[10:54:08 INF2] gml:srsMName: urn:ogc:def:crs, crs:EPSE::25832, cra:EPSGE- 5783
[10:54:08 INFO] Versioning: Not supported

Figure 57: Log messages for a successful database connection.

This information can be requested from a connected 3D City Database at any time using the
Info button on the Database tab. Upon successful connection, the description of the active
connection is moreover displayed in the title bar of the application window.

130 3D Geodatabase for CityGML 2018

5.2.2 Executing database operations

After having established a connection to an instance of the 3D City Database, the Database
tab (cf. [2] in Figure 56) offers the following database operations to be executed on that
instance:

e (Generating a database report;

e (alculating/updating the bounding box of selected feature types;
e Managing indexes on database tables;

e Managing the spatial reference system of the database; and

e Displaying supported CityGML ADEs.

Generating a database report. A database report is a list of all tables of the 3D City
Database together with their total number of rows. This operation therefore provides a quick
overview of the contents of the 3D City Database. The report is printed to the console
window.

Database operations

Workspace n " Timestamp (DD.MM.YYY) a

Database report Bounding box Indexes Reference system ADEs

Generate database report

Figure 58: Generating a database repott.

If the database is version-enabled (Oracle only), the database report can be created for the
contents of a specific workspace [1] at a given timestamp [2]. If no workspace is specified, the
default workspace is chosen per default (Oracle: LIVE). If the workspace does not exist, a
corresponding error message is provided. Workspaces are not a feature of the 3D City
Database but are managed through the Oracle Workspace Manager tool. Please refer to the
Oracle database documentation for details. Since PostgreSQL does currently not support
workspaces, the corresponding input fields are disabled when connecting to a 3D City
Database running on PostgreSQL.

Calculating/updating the bounding box. This dialog lets you calculate the 2D bounding box
of the city objects stored in the database. The bounding box is useful, for instance, as input to
spatial filters in CityGML imports and exports as well as KML/COLLADA/gITF exports (see
documentation of the corresponding operations).

3D Geodatabase for CityGML 2018 131

Database operations

Waorkspace Timestamp (DD.MM. YY)

'Z'X Indexes Reference system ADEs

IBounding box for top-evel feature | core: jiect VI

Cregng
Re all

Calculate

Figure 59: Calculating the bounding box for selected feature types.

The coordinate values of the lower left (Xmin, Ymin) and upper right (Xmax, Ymax) corner of
the calculated bounding box are rendered in the corresponding fields of the dialog [3]. The
values are also copied to the clipboard of your operating system and can therefore easily be
pasted into the import and export dialogs. You can also manually copy the values to the
clipboard by clicking the £ button [4], or by right-clicking on a data field [3] and choosing
the corresponding option from the context menu.

The calculation of the bounding box can be restricted to a specific city object type such as
Building or WaterBody [1]. Like the generation of a database report, the user can request
the bounding box for city objects living in a specific workspace at a given timestamp if the
database is version-enabled (Oracle only). The coordinate values can optionally be
transformed into a user-defined coordinate reference system that is available from the drop-
down list [2]. Per default, the coordinate values are presented in the same reference system as
specified for the 3D City Database instance during setup. See chapter 2.3.5 for details on how
to define and manage user-defined reference systems.

By using the map button @ [4], the calculated bounding box is rendered in a separate 2D map
window for visual inspection as shown below. The usage of this map window is described in
chapter 5.7.

132 3D Geodatabase for CityGML 2018

6 3D City Database Importer/Exporter - Map window >
ty P P P

|Berlin,Germany| v| | Go |

1 matchies) returned from geocoder (0,437 seconds)

! Bounding Box ‘ \\Q

|13.3869267 |[13.4240995 |

| Show | | Clear |

' Address lookup

Use popup menu for queries
?‘ Show in Google Maps.
@ Help

Click the link in the upper right corner
of the map for usage hints

A [
“'\(l.ll-lBrai'ﬁienhu
il

8

Figure 60: Map window for displaying and choosing bounding boxes. Note that the coordinate values of the
bounding box are shown in the upper left component.

The calculation of the bounding box is based on the values stored in the ENVELOPE column
of the CITYOBJECT table. If this column is NULL or contains an incorrect value (e.g., in case
the value could not correctly filled during import or the geometry representation of a city
object has been changed), then the resulting bounding box will be wrong and subsequent
operations might not provide the expected result. To fix the ENVELOPE values in the
database, simply let the Importer/Exporter create missing values (i.e., replace NULL values)
or recreate all values by clicking on the corresponding buttons [5]. This update process either
affects only the city objects of a given feature type or all city objects based on the selection
made in [1].

Note: This process directly updates the ENVELOPE column of the affected city objects and
might take long to complete since the new values are calculated by evaluating all
geometries of the city objects in all LoDs including implicit geometries.

Managing indexes. The Importer/Exporter allows the user to manually activate or deactivate
indexes on predefined tables of the 3D City Database schema, and to check their status.

3D Geodatabase for CityGML 2018 133

Database operations

Workspace Timestamp (DD.MM. YY)

Database report Bounding box Indexes Reference system ADEs

Spatial indexes
Mormal indexes

Activate Deactivate Status VACLLIM

Figure 61: Managing spatial and normal indexes.

The operation dialog differentiates between spatial indexes on geometry columns and normal
indexes on columns with any other datatype [1]. The buttons Activate, Deactivate, and Status
trigger a corresponding database process on spatial indexes only, normal indexes only or both
index types depending on which checkboxes are selected [1]. Again, the user can define a
workspace and timestamp on which the operation shall be executed if the database is version-
enabled (Oracle only).

The index operations only affect the following subset of all indexes defined by the 3D City
Database schema:

e Spatial index on column ENVELOPE of table CITYOBJECT

e Spatial index on column GEOMETRY of table SURFACE GEOMETRY

e Spatial index on column SOLID GEOMETRY of table SURFACE GEOMETRY

e Normal index on columns GMLID, GMLID CODESPACE of table CITYOBJECT
e Normal index on column LINEAGE of table CITYOBJECT

e Normal index on columns GMLID, GMLID CODESPACE of table
SURFACE GEOMETRY

e Normal index on columns GMLID, GMLID CODESPACE of table APPEARANCE

e Normal index on column THEME of table APPEARANCE

e Normal index on columns GMLID, GMLID CODESPACE oftable SURFACE DATA
e Normal index on columns GMLID, GMLID CODESPACE of table ADDRESS

The result of an index operation is reported in the console window as shown below. For
instance, Figure 62 shows the result of a status query on both spatial and normal indexes. The
status ON means that the corresponding index is enabled.

134 3D Geodatabase for CityGML 2018

[# 3D City Database Imparter/Exporter - Console - O X

Console
[11:17:44 INFO] Checking spatial indexes...
[11:17:44 INFO] ON: CITYOBJECT_ENVELOPE_SPX on RAR_CITYORBJECT (ENVELOEE)
[11:17:44 INFC] CON: SURFRCE_GECM SPX on RARR_SURFACE_GECMETRY (GEOMETRY)
[11:17:44 INFO] ON: SURFACE GECM SOLID SPX on RRR.SURFACE GEOMETRY (SOLID GEOMETRY)
[11:17:44 INFO] Checking normal indexes...
[11:17:44 INFQ] ON: CITYOBJECT INX on AAA.CITYOBJECT (GMLID, GMLID CODESPACE)
[11:17:44 INFO] ON: CITYOBJECI_LINEAGE INX on A2AZL.CITYOBJECT (LINEAGE)
[11:17:44 INFC] ON: SURFRCE GECM INX on ARR_SURFACE GECOMETRY (GMLID, GMLID CODESPRCE)
[11:17:44 INFC] ON: APPERRANCE INX on RAR_RPTPEARANCE (GMLID, GMLID CODESPACE)
[11:17:44 INFC] ON: APPERRRANCE THEME INX on RRA_APPEARRNCE (THEME)
[11:17:44 INFC] ON: SURFRCE DATR INX on ARR_SURFACE DATR (GMLID, GMLID CODESPRCE)
[11:17:44 INFO] ON: ADDRESS_TNX on ARRA_RDDRESS (GMLID, GMLID CODESDRCE)
[11:17:44 INFO] Querying index status successfully finished.

Figure 62: Result of a status query on spatial and normal indexes.

Note: 1t is strongly recommended to deactivate the spatial indexes before running a
CityGML import on a big amount of data and to reactive the spatial indexes
afterwards. This way the import will typically be a lot faster than with spatial indexes
enabled. The situation may be different if only a small dataset is to be imported.
Deactivating normal indexes should however never be required.

Note: Activating and deactivating indexes can take a long time, especially if the database
fill level is high. Note that the operation cannot be aborted by the user since this
could result in an inconsistent database state.

Managing the spatial reference system of the database. When setting up a 3DCityDB
instance, you have to choose a spatial reference system (SRS) by picking a spatial reference
ID (SRID) supported by the database and a corresponding SRS name identifier
(gml:srsName) that is used in CityGML exports (see chapter 3.3). These settings can be easily
changed at any later time using the reference system operation.

Database operations

Workspace Timestamp (DD, MM, YYY)

Database report Bounding box Indexes Reference system apEs

SRID 25332 0 Edit cﬂ

gml:srsiame | urn:ogo:deficors:EPSG: 25832

Geometries | (@) Transform coordinates () Only update metadata

Restore Apply

Figure 63: Changing the SRS information of the 3DCityDB instance.

After connecting to a 3DCityDB, the SRID and gml:srsName input fields shown in the above
dialog [1] are assigned the current values from the database. Simply edit the fields to pick a
new SRID or SRS name identifier. Since changing the SRID potentially affects all geometries
in your database and thus may take a long time to complete, the SRID field is disabled per
default. Click on Edit [2] to enable changes to this field. Use the Check button [2] to make
sure that your new SRID value is supported by the database. The gm/:srsName field provides
a drop-down list of common SRS identifier encoding schemes (such as OGC URN encoding,

3D Geodatabase for CityGML 2018 135

see chapter 2.3.5). You may pick one of these proposals (be careful to replace the
HEIGHT SRID token with the correct value if required) or enter any other value.

When changing the SRID, you can choose whether the coordinates of geometry objects
already stored in the database should be transformed to the new SRID or whether only the
metadata should be updated [3]. The latter option might be enough, for example, if you
accidentally picked a wrong SRID that does not match the imported geometries when setting
up the database, and you simply want to correct this mistake.

Click on Apply to update the reference system information in the database according to your
settings. The Restore button lets you discard any changes made to the SRID and gml:srsName
fields.

Note: If you just want to use different gml:srsName values for different CityGML exports,
then instead of changing the identifier in the database before every export it is
simpler to create multiple user-defined reference systems for the same SRID (cf.
chapter 5.6.4) and pick one for each CityGML export (cf. chapter 5.4).

Displaying supported CityGML ADEs. This tab provides a list of all CityGML Application
Domain Extensions (ADESs) that are registered in the 3DCityDB instance and/or are supported
by the Importer/Exporter. The following screenshot shows the corresponding dialog.

Database operations

Warkspace |lUse default workspace Timestamp (DD.MM.YYY)

Database report Bounding box Indexes Reference system ADES

Mame Version Database Importer [Exporter
TestADE Lo X \ v \

T

Figure 64: Table of all supported CityGML ADEs.

The ADE table [1] contains one entry per CityGML ADE. Each entry lists the name and the
version of the ADE and indicates whether it is supported by the database and/or the
Importer/Exporter (using check or cross signs). Database support requires that the ADE has
been successfully registered in the 3DCityDB instance using the ADE Manager Plugin (see
chapter 1.1.1). Additional support by the Importer/Exporter requires that a corresponding
ADE extension has been copied into the ade-extensions folder within the installation directory
of the Importer/Exporter. Only if both conditions are met both fields will contain a check sign.
If no ADE has been detected upon database connection, the table remains empty.

In the example of Figure 64, there is only an Importer/Exporter extension for an ADE called
TestADE but the connected 3DCityDB instance lacks support for it. TestADE data would
therefore not be handled by the Importer/Exporter and thus not stored into the database in this
scenario.

136

3D Geodatabase for CityGML 2018

If you select an entry in the ADE table and click the /nfo button (or simply double-click on
the entry), metadata about the ADE will be displayed in a separate window as shown below.
The Status field shows whether the ADE is fully supported, or some user action is required.

TestADE 1.0

Mame
Version

Description

Identifier
CityGML

Status

Features

Database
Table prefix
ObjectClassId

XML schema

Mamespaces

ﬂ ADE information

TestADE
1.0
Test ADE

06b4f55820d9dacd999223c2c4b00dae
200 [Ji00

CD The ADE must be registered in the database.

Top-evel features

test:IndustrialBuilding
test:OtherConstruction

test
10000 .. 10010

http: /fwww, citygml. org/ade /TestADE/ 1.0

Ok

X

Prefix test

Figure 65: ADE metadata dialog.

3D Geodatabase for CityGML 2018 137

5.3 Importing CityGML files

To load 3D city model content into a 3D City Database instance, the Importer/Exporter
supports the import of CityGML files. Supported CityGML versions are 2.0.0, 1.0.0 and
0.4.0. The CityGML import operation is available on the Import tab of the operations
window as shown below.

@ 3D City Database Importer/Exparter - O *

File Project View Help

Import | Export KML/COLLADA/gITF Export Database Preferences

Browse

ersioning
Warkspace

@] gml:id

choose

@® Complex Filter
gml:name

choose

cityObjectMember [appearanceMember [featureMember

00 |00

from # T
Bounding Box
a 3| f’l oeference system | Same as in database b
Xmin T
fmin =

Feature Classes

E-] cityObject
" [] Bridge
B[] Building
" [] CityFurniture
B [] CityObjectGroup
" [] Generics
B[] LandUse
B[] Relief
B [] Transportation
B[] Tunnel
B [] Vegetation
- [] WaterBady

@ Just validate

Ready Database disconnected

Figure 66: The CityGML import dialog.

Input file selection. At the top of the Import dialog [1], a list of one or more CityGML files
to be imported must be provided. Files can be selected through clicking on the Browse button,
which opens a regular file selection dialog. Alternatively, you can drag&drop files from your
preferred file explorer onto the Import tab. If the file list already contains entries, the
drag&drop operation will replace its content. If you want to keep the previous entries and

138 3D Geodatabase for CityGML 2018

only append additional files, keep the CTRL key pressed while dropping (on Windows). The
Remove button or DEL key lets you remove selected entries from the input files. Note that
adding folders to the list is also supported. Each folder will be recursively scanned for
CityGML files, and every CityGML file found will be imported.

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the
name of the workspace into which the data shall be imported can be specified [2]. If no
workspace is given, the default workspace is assumed (Oracle: LIVE).

Note: Importing into version-enabled tables typically takes considerably more time than
importing into non-version-enabled tables. The import time can be reduced if spatial
indexes are disabled beforehand.

Import filter. The import dialog allows for setting thematic and spatial filter criteria to
narrow down the set of CityGML top-level features that are to be imported from the input
files. Two radio buttons at the left side of the import dialog let you choose between a simple
gml: id filter and a complex filter setting. For the gm1 : id filter, simply enter the gm1:1id
that has to be matched by a CityGML feature [3]. More than one gm1 : 1d can be provided in
a comma-separated list.

A complex filter setting may consist of a gml:name filter, a counter filter, a spatial
bounding box filter and a feature class filter. A filter only applies if its checkbox is enabled. If
more than one filter is chosen to be active, then the filter criteria are combined in a logical
AND operation. If no checkbox is enabled, no filter criteria are applied and thus all CityGML
features contained in the input file(s) will be imported.

e gml :name filter This filter takes a gml:name as parameter [4] and only
imports CityGML features having a matching gml:name.
Multiple gm1 : name values are not supported.

e Counter filter The counter filter lets you import a subset of the top-level
features based on their position index over all input file(s).
Simply provide the lower and upper boundary [5] for the
position index to define the subset (both boundary limits are
inclusive).

e Bounding box filter This filter takes a 2D bounding box as parameter that is given
by the coordinate values of its lower left (Xmin, Ymin) and
upper right corner (Xmax, Ymax) [6]. The bounding box is
evaluated against the gml:boundedBy property of the
CityGML input features.

e Feature class filter ~ With the feature class filter, you can restrict the import to one
or more CityGML features types by enabling the
corresponding checkboxes [8]. Only features of the chosen
type(s) will be imported.

Note: The filters only work on fop-level features but not on nested sub-features.

3D Geodatabase for CityGML 2018 139

For the bounding box filter, make sure that you choose a coordinate reference system from the
drop-down choice list [6] that matches the provided coordinate values. Otherwise, the spatial
filter may not work as expected. The coordinate reference system list can be augmented with
user-defined reference systems (see chapter [_]for more information).

The coordinate values of the bounding box filter can either be entered manually or chosen
interactively in a 2D map window. To open the map window, click on the map button @ [7].

6 3D City Databaze Importer/Exporter - Map window x
ty p P P

[v e]

52.4862931

|13.3509244 |[13.3633588 |

| Show || Clear | 5

' Address lookup

Use popup menu for queries
"
@ Help

Click the link in the upper right corner
of the map for usage hints

Figure 67: Bounding box selection using the 2D map window.

In the map window, keep the left mouse button clicked while holding the ALT key. This lets
you draw a bounding box on the map. In order to move the map to a specific location or
address, simply enter the location or address in the input field on top of the map and click the
Go button or use the map navigation controls. If you are happy with the bounding box
selection, click the Apply button. This will close the map window and carry the coordinate
values of the selected area into the corresponding fields of the bounding box filter [6]. Click
Cancel if you want to close the map window but skip your selection. A more comprehensive
guide on how to use the map window is provided in chapter 5.7.

With the 2 button on the bounding box filter dialog [7], you can copy a bounding box to the
clipboard, while the " button pastes a bounding box from the clipboard to the input fields of
the bounding box filter [6] (or use the right-click context menu).

140 3D Geodatabase for CityGML 2018

XML validation. Before importing, the CityGML input files can be validated against the
official CityGML XML schemas. Simply click the Just Validate button [10] in order to run
the validation process. Filter settings are not considered in this process. Note that this
operation does not require internet access since the XML schemas are packaged with the
application. The CityGML features are not imported into the database during validation. The
validation results are printed to the console window.

Note: 1t is strongly recommended that only CityGML files having successfully passed
XML validation are imported into the database. Otherwise, errors in the data may

lead to unexpected behavior or abnormal termination.

Import preferences. More fine-grained preference settings affecting the CityGML import are
available on the Preferences tab of the operations window. Make sure to check these
settings before starting the import process. A full documentation of the import preferences is
available in chapter 5.6.1. The following table provides a summary overview.

Preference name

Description

Continuation

Metadata that is stored for every object in the database such as the
data lineage, the updating person or the creationDate property.

gml : id handling

Generates UUIDs where gml : ids are missing on input features or
replaces all gm1 : ids with UUIDs.

Bounding box

More settings on how to apply the bounding box filter.

Controls the way in which xAL address fragments are imported into the

AllTEEs database.

Appearance Defines whether appearance information is imported.

Geometry Allows for applying an affine transformation to the input geometry.
Indexes Settings for automatically enabling/disabling spatial and normal indexes

during imports.

XML validation

Performs XML validation automatically and exclude invalid features

from being imported.

Defines one or more XSLT stylesheets that shall be applied to the city
objects in the given order before import.

Creates a list of all successfully imported CityGML top-level features.
Allocation of computer resources used in the import operation.
Table 31: Summery overview of the import preferences.

XSL transformations

Import log
Resources

CityGML import. Once all import settings are correct, the /mport button [9] starts the import
process. If a database connection has not been established manually beforehand, the currently
selected entry on the Database tab is used to connect to the 3D City Database. The separate
steps of the import process as well as all errors that might occur during the import are reported
to the console window, whereas the overall progress is shown in a separate status window.
The import process can be aborted at any time by pressing the Cancel button in the status
window. The Importer/Exporter will make sure that all pending city objects are completely
imported before it terminates the import process.

After having completed the import, a list enumerating the types and number of imported
CityGML top-level features is printed to the console window as summary.

3D Geodatabase for CityGML 2018 141

Note:

Note:

The import operation does not automatically apply a coordinate transformation to
the internal reference system of the 3D City Database instance. Thus, if the
coordinate reference system of the CityGML input data does not match the
coordinate reference system defined for the 3D City Database instance, the user must
transform the coordinate values before importing the data (or use an affine
transformation during import if this is sufficient). A possible workaround procedure
can be realized as follows:

1) Set up a second (temporary) instance of the 3D City Database with an internal
CRS matching the CRS of the CityGML instance document.

2) Import the dataset into this second 3D City Database instance.

3) Export the data from this second instance into the target CRS by applying a
coordinate transformation (see CityGML export documentation in chapter 5.4).

4) The exported CityGML document now matches the CRS of the target 3D City
Database instance and can be imported into that database. The temporary
database instance can be dropped.

Alternatively, you can change the reference system in the database to the one used by
the imported geometries (see the corresponding database operation in chapter 5.2.2).

The Importer/Exporter does not check by any means whether a CityGML feature
from an input file already exists in the database. Thus, if an import is executed twice
on the same dataset, all CityGML features contained in the dataset will be imported
twice.

142 3D Geodatabase for CityGML 2018

5.4 Exporting to CityGML

3D city model content stored in a 3D City Database instance can be fully or partially exported
as CityGML datasets. The CityGML export is available on the Export tab of the operations
window as depicted in the following figure.

M. 2D City Database Impaorter/Exporter — O X

a Browse

File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

Versioning and coordinate transformation

Workspace Timestamp {DD.MM 2

Reference system | Same as in database

LoD Filter
[J oo [Jtlbi [z [D3 [] LoD4 Filter mode |Or Searchdepth | 115

O arl:id

choose

® Complex Filter
aml:name
choose
cityObjectMember [appearanceMember [featureMember
from #
Bounding Box
t—) %] E'l Reference system
Xmin

fmin

Feature Classes

B[] cityObject

(-] Bridge
B[] Building
B[] CityFurniture
B] cityObjectGroup
B] Generics
B] LandUse
-] Relief
B+] Transpertation
B] Tunnel

B[] vegetation
B[] waterBody

Export

Ready Database disconnected

Figure 68: The CityGML export dialog.

Output file selection. At the top of the export dialog, the folder and filename of the target
CityGML dataset have to be specified [1]. You can either manually enter the target file or
open a file selection dialog via the Browse button. The export operation supports tiled exports,
which typically results in multiple datasets being written to the file system. Nevertheless, also
for tiled exports, only a single target file must be specified. More details on tiled exports are
provided in chapter 5.6.2.2.

3D Geodatabase for CityGML 2018 143

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the
name of the workspace and the timestamp from which the data shall be exported can be
specified [2]. If no workspace is provided, the default workspace is assumed (Oracle: LIVE).

Coordinate transformation. In general, coordinate values of geometry objects are associated
with the coordinate reference system defined for the 3D City Database instance during setup
and are exported “as is” from the database. The export operation allows a user to apply a
coordinate transformation to another reference system during export. The target coordinate
reference system is chosen from the corresponding drop-down list [3]. This list can be
augmented with user-defined reference systems (cf. chapter 5.6.4 for more details). When
picking the entry “Same as in database”, no transformation will be applied (default behavior).

Export filter. Like importing of CityGML datasets, the export operation supports thematic
and spatial filter criteria to restrict exports to subsets of the 3D city model content. The
corresponding filter dialog [4] is almost identical to the one on the Import tab. Please refer
to chapter 5.3 for a description of the filter settings that are common to both operations. In
addition to the import filters, an export can further be restricted to specific LoD levels.

e LoD filter This filter allows for exporting only specific LoDs of the city
objects. The LoD selection can be either AND or OR
combined. City objects not having a spatial representation in
one (OR) or all (AND) of the selected LoDs will not be
exported. The search depth parameter specifies how many
levels of nested city objects shall be considered when
searching for matching LoD representations.

Note: The gml:name filter internally uses an SQL LIKE operator and wildcards for
identifying matches. For example, if you provide the string “castle” as parameter to
this filter, this will be translated to “LIKE ‘%castle% ™ in the query statement.

Note: When choosing a spatial bounding filter, make sure that spatial indexes are enabled
so that filtering can be performed on the database (use the index operation on the
Database tab to check the status of indexes, cf. chapter 5.2.2). Otherwise, the
Importer/Exporter will do the filtering on the client side, which will run more slowly.

Note: The feature class filter in general behaves like for the CityGML import. However,
regarding city object groups the following rules apply:

1) If only the feature type CityObjectGroup is checked, then all city object groups
and all their group members (independent of their feature type) are exported.

2) If further feature types are selected in addition to CityObjectGroup, then only
group members matching those feature types are exported. Of course, all features
that match the type selection but are not group members are also exported.

Export preferences. In addition to the settings on the Export tab, more fine-grained
preference settings affecting the CityGML export are available on the Preferences tab of
the operations window. Make sure to check these settings before starting the export process.

144 3D Geodatabase for CityGML 2018

A full documentation of the export preferences is available in chapter 5.6.2. The following
table provides a summary overview.

Preference name |Description
CityGML version CityGML version to be used for exports.

More settings on how to apply the bounding box filter. Most importantly,
tiled exports are configured here.

Bounding box

CityObjectGroup Defines whether group members are exported by value or by reference.
Controls the way in which xAL address fragments are exported from the
Address
database.
Appearance Defines whether appearance information is exported.

Controls whether referenced features or geometry objects are exported
using XLinks or as deep copies.

Defines one or more XSLT stylesheets that shall be applied to the
exported city objects in the given order before writing them to file.

Resources Allocation of computer resources used in the export operation.

XLinks

XSL transformation

Table 32: Summery overview of the export preferences.

CityGML export. Having completed all settings, the CityGML data export is triggered with
the Export button at the bottom of the dialog (cf. Figure 68). If a database connection has not
been established manually beforehand, the currently selected entry on the Database tab is
used to connect to the 3D City Database. Progress information is displayed within a separate
status window. This status window also offers a Cancel button that lets a user abort the export
process. The separate steps of the export process as well as possible error messages are
reported to the console window.

3D Geodatabase for CityGML 2018 145

5.5 Exporting to KML/COLLADA/gITF

3D City Database contents can be directly exported in KML [Wilson 2008], COLLADA
[Barners & Finch 2008], and gITF [Khronos 2016] formats for presentation, viewing, and
visual inspection in a broad range of applications such as Earth browsers like Google Earth,
ArcGIS Explorer, and Cesium etc.

Note: KML/COLLADA/gITF formatted exports come straight from the 3D City Database.
No direct file transformation CityGML - KML/COLLADA/gITF is supported yet.
If a CityGML file shall be converted to KML/COLLADA/gITF, the CityGML
content must be imported into the database first and then exported into the
KML/COLLADA/gITF format.

The KML/COLLADA/gITF Export tab shown in Figure 69 collects all parameters required for
the export in a similar fashion as for a CityGML export (see the previous chapter). In
addition, more fine-grained preference settings affecting the KML/COLLADA/gITF export
are available on the Preferences tab of the operations window. Make sure to check these
settings before starting the export process. A full documentation of the export preferences is
available in chapter 5.6.3. The following table provides a brief summary overview.

Preference name Description
General Preference Some common settings of the exported files

Defines the look of the KML/COLLADA/gITF exports when
visualized in the virtual globes (e.g. Cesium, Google Earth,
NASA World Wind, ESRI ArcGlobe). Each of the top-level
feature categories has its own Rendering settings here

KML offers the possibility of enriching its placemark elements
with information bubbles, so-called balloons. They can be

Rendering Preferences

Information Balloon

Preferences o

specified here
Altitude/Terrain Controls the way through which the exported datasets to be
Preferences perfectly displayed in the Earth browser

Table 33: Summery overview of the KML/COLLADA/gITF export preferences.

146

3D Geodatabase for CityGML 2018

File Project View Help

Importl Export | KML/COLLADA/gITF Export | Database I Preferencesl

Browse I

Versioning

Workspace

Timestamp (DD.MM. YY)

Export contents

(™) Single object
aml:id

@ Bounding Box
[
Xmirn

Ymin

Reference system .Same as in database

Xmax

Ymax

Tiling

@ Motling (7 Automatic

™ Manual

a Columns |1

Export from level of detail

Display as
[[] Footprint

wisible from pixels

wisible from | 120

pixels

Geometry visible from pixels

Extruded
]
]

COLLADA/falTF visible from pixels

Appearance /Theme |none Fetch themes from DB

Feature Classes

=[] CityObject
- [] Bridge
- [] CityFurniture
- [] CityObjectGroup
- [GenericCityObject
- [] LandUse
- [ReliefFeature
-+ [] Transportation
=[] Tunnel
- [] vegetation
- [WaterBody

Database disconnected

Figure 69: The KML/COLLADA/gITF Export tab allowing for exporting KML/COLLADA/gITF models from
the 3DCityDB.
Output file selection. Type the filename directly into the text field or activate the file dialog
provided by the operating system after pushing the Browse button [1].

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the
name of the workspace and the timestamp from which the data shall be exported can be
specified [2]. If no workspace is provided, the default workspace is assumed (Oracle: LIVE).

Export contents. These KML/COLLADA/gITF Exporter allows for specifying/selecting the
objects of interest for the export. These can be single objects or whole areas delimited by a

3D Geodatabase for CityGML 2018 147

bounding box. Two radio buttons [3] at the left side of the export dialog let you choose
between those two options.

e Single object: Enter the GML IDs of the object(s) of interest. Multiple IDs have to be
separated by commas.

e Bounding Box: Enter the coordinates of a bounding box defining the area of interest.
Objects are exported if their centroids lie within the specified bounding box. The
reference system used for defining the bounding box can be the same as the one used
in the database or any other one supported by Oracle and PostGIS. It is also possible to
add further user-defined reference systems (see the previous chapter). New reference
systems can be added to the Import/Export tool (preferences tab, node Database,
subnode Reference systems) as long as they are supported by the used database server.
The target system with the same dimensionality (WGS84 for 2D, WGS84 3D for 3D)
will be applied for the coordinate transformation during the KML/COLLADA/gITF
Export.

Tiling only applies to exports of areas defined by a bounding box. Tiled exports are used in
order to load and unload parts of the exported model depending on their current visibility
when viewed, for example, in Google Earth. Since the Earth Browser's responsiveness
decreases greatly with single files larger than 10 Mb, tiled exports (with tile file sizes usually
a lot smaller than that) are highly recommended. As mentioned above, only objects whose
centroids lie within the tile's bounding box will be exported.

There are three tiling modes [4] available for a KML/COLLADA/gITF export:

e no tiling: as the name implies, no tiling takes place. Just a single tile holding all the
exported objects is exported. This is only advisable when the resulting file is at most
10 Mb in size.

e automatic: the area enclosed by the bounding box will be exported in tiles having
roughly the side length set on the preferences tab wunder the node
KML/COLLADA/gITF Export, subnode Rendering (default value is 125m.). The
amount of exported rows and columns will be calculated by dividing the length and
width (in unit of meters) of the delimiting bounding box by the preferred tile side
length and rounding up the result. For example: if the user wants to export a 1000m x
1100m bounding box with a preferred tile side length of 300m, 4x4 tiles will be
generated since 1000/300 = 3.333 and 1100/300 = 3.666. This also implies: in case of
automatic tiling it cannot be guaranteed that tiles will be perfectly square, but they will
tend to.

e manual: the number of rows and columns can be freely set by the user. The area will
be divided in equally spaced portions horizontally and vertically in WGS84 and the
resulting tile sizes and forms will adapt to the values specified.

The exported tiles are organized with a hierarchical directory structure which means that each
individual tile file is named by its column number and all the tile files that belongs to the
same row are stored in a separate subfolder named by their corresponding row number. The
numbering of both rows and columns should start with 0. All those subfolders are in turn

148 3D Geodatabase for CityGML 2018

stored in a folder named “Tiles”. This hierarchical directory structure (cf. Figure 70) ensures
that the exported tile files are distributed over different subfolders in order to avoid putting all
tile files into a single folder which may result in significant performance issues at least under
MS Windows operating systems.

3

:

|

°
=

\
9

©,2) | (1,2) o N
@ _ 0 7 leoLaoa
Ellon|a, |:> Tiles — | 1 { | 2
©0,0) | (1,0 S

e

Longitude) :
g {
1 —

Figure 70: Example: hierarchical directory structure for export of 2x3 tiles

Export from level of detail. The Level of Detail as defined by the CityGML specification
should be used as basis information for the KML/COLLADA/gITF export. For the same city
object higher levels of detail usually contain many more geometries and these geometries are
more complex than in lower levels. For instance, a building made of 40 polygons in LoD2
may consist of 3000 polygons in LoD3. This means LoD3 based exports are a lot more
detailed than LoD2 based exports, but they also take longer to generate, are bigger in size and
therefore load more slowly in the Earth browser.

By using the drop-down list [5] a single constant LoD can be used as basis for all exports or it
can be left to the Importer/Exporter to automatically determine which the highest LoD
available for each cityobject is and then use it as the basis for the KML/COLLADA/gITF
exports.

Display as. These fields in the export dialog [6] determines what will be shown when
visualizing the exported dataset in earth browsers.

e Footprint: objects are represented by their ground surface projected onto the earth
surface. This is a pure KML export.

o Extruded: objects are represented as blocks models by extruding their footprint to
their height (calculated by using their 3D envelopes). This is a pure KML export.

e Geometry: objects are represented with fully detailed geometry information with
respect to the selected Level of Detail. It can explicitly show the different thematic

3D Geodatabase for CityGML 2018 149

surfaces (e.g. wall and roof surfaces) by means of coloring them (textures are not
supported by KML) according to the settings in the preferences tab
(KML/COLLADA/gITF Export node, Rendering subnode). If not explicitly modeled,
thematic surfaces will be inferred for LoD1 or LoD2 based exports following a trivial
logic (surfaces touching the ground — that is, having a lowest z-coordinate- will be
considered wall surfaces, all other will be considered roof surfaces), in LoD3 or LoD4
based exports surfaces not thematically modeled will be colored as wall surfaces.

o COLLADA/GITF: shows the detailed geometry in COLLADA and gITF formats
including support for textures. The Appearance/Theme combo box below allows
choosing from all possible appearance themes (as defined in the CityGML
specification [Groger et al. 2012]) available in the currently connected 3DCityDB
instance. The list is workspace- and timestamp sensitive and will be filled on demand
when clicking on the fetch button. Default value is none, which renders no textures at
all and colors all surfaces according to the settings in the preference tab
(KML/COLLADA/gITF Export node, Rendering subnode).

Figure 71: The same building displayed as (top down and left to right) footprint, extruded, geometry,
COLLADA

150 3D Geodatabase for CityGML 2018

Note: For Oracle, the Footprint and Extruded display forms internally use the spatial
function SDO AGGR UNION. This function is not allowed to be used under Oracle
10g/11g with the Locator license option even if it happens to be available. The
Importer/Exporter does not check the Oracle license option. Thus, it is up to the user to
observe the Oracle license and not to use the Footprint and Extruded display forms
under Oracle 10g/11g Locator. This restriction does not hold for the Oracle Spatial
license option. Likewise, starting from Oracle 12¢, SDO AGGR UNION is also
available for Locator.

Depending on the chosen level of detail, some display form checkboxes will become enabled
or disabled, depending on whether the level of detail offers enough information for this
display form or not. For instance, Footprint can be exported from any CityGML LoD (0 to 4),
whereas Extruded, Geometry, and COLLADA/gITF exports are possible from LoD1 upwards.
Exports will have their filename enhanced with a suffix specifying the selected display form.
This applies for both tiled and untiled exports.

With the visibility field next to each display form the user can control the KML element
<minLodPixels>, see [Wilson 2008]: measurement in screen pixels that represents the
minimum limit of the visibility range for a given <Region>. A <Region> is in the
generated tiled exports equivalent to a tile. The <maxLodPixels> value is identical to the
<minLodPixels> of the next visible display form, so that display forms are seamlessly
switched when the viewer zooms in or out. The last visible display form has a
<maxLodPixels> value of -1, that is, visible to infinite size. Visibility ranges can start at a
value of 0 (they do not have to, though). Please note that the region size in pixels depends on
the chosen tile size. Thus, if the tile size is reduced also the visibility ranges should be
reduced. Increases in steps of a third of the tile side length are recommended. An example of a
good combination for a tile size of about 250m x 250m could be: Footprint, visible from 50
pixels, Geometry, visible from 125 pixels, COLLADA/gITF, visible from 200 pixels. Some
display forms, like Extruded in this example, can be skipped. The visibility field only
becomes enabled for bounding box exports; single building exports are always visible.

Feature Classes. Similar to CityGML imports and exports it is also possible to select what
top-level feature types shall be displayed in a KML/COLLADA/gITF export. With the
selection tree panel [7] it is possible to pick each category individually and also leave single
categories out, i.e.:. export CityFurniture and WaterBody only, or export everything but
Building and so on. Between LoD1 and LoD4 all feature types are available. For LoDO only
those top-level feature types offering LoD0 geometry in the CityGML 2.0 schema (Building,
Waterbody, LandUse, Transportation and GenericCityObject) are selectable, whereas the rest
of the feature class checkboxes will become automatically disabled.

Note: Support for Relief features in KML/COLLADA/gITF exports is currently limited to
the type TIN RELIEF. Other Relief types such as MASSPOINT RELIEF,
BREAKLINE RELIEF, and RASTER RELIEF are not supported currently. Also, due
to the usually wide-streched area of Relief features and the non-clipping nature of the
BoundingBox filter it is recommended to export Relief features in a single step
making use of the no tiling option and using an extensive enough BoundingBox.

3D Geodatabase for CityGML 2018 151

As an alternative, the digital terrain model data can be divided in smaller
ReliefComponents tailored to match the tiling settings of the desired export (their
area contained in or equal to the resulting tiles). This requires altering the original
data nevertheless and, as such, it must be done before the CityGML contents are
imported into the database at all.

Google earth

Figure 72: Example for exported CityGML top-level features (building, bridge, tunnel, water, vegetation,
transportation etc.) displayed as KML/COLLADA

KML/COLLADA/gITF export. Having completed all settings, the KML/COLLADA/gITF
data export is triggered with the Export button at the bottom of the dialog (cf. Figure 69). If a
database connection has not been established manually beforehand, the currently selected
entry on the Database tab is used to connect to the 3D City Database. Progress information
is displayed within a separate status window. This status window also offers a Cancel button
that lets a user abort the export process. The separate steps of the export process as well as
possible error messages are reported to the console window.

After having completed the export, multiple files along with the Tiles folder will be written to
the prespecified output location. One of them is called master KML file which contains a list
of <NetworkLink> elements pointing to every exported tile files stored in the Tiles folder.
This KML file can therefore be directly opened in Google Earth for viewing and exploring the
exported KML/COLLADA models. In addition, for each selected display form (Footprint,
Extruded, Geometry, and COLLADA/gITF), a JSON formatted file called master JSON file is
created and its contents should look like the following example:

Master JSON file example:
{

"version": "1.0.0",
"layername": "NYC Buildings",
"fileextension": ".kmz",
"displayform": "extruded",
"minLodPixels": 140,
"maxLodPixels": -1,

152 3D Geodatabase for CityGML 2018

"colnum": 29,
"rownum": 23,

"bbox": {
"xmin": -74.0209007,
"xmax": -73.9707756,

"ymin": 40.6996416,
"ymax": 40.7295678
}
}

As the name of each JSON parameter implies, this JSON file contains the relevant
information about the specified export settings and can hence be seen as a kind of metadata
allowing applications to interpret the contents of the exported datasets. For example, the
length and width (in WGS84) of each tile can be determined using the following formulas:

TileWidth = (bbox.xmax - bbox.xmin) / colnum

TileLength = (bbox.ymax - bbox.ymin) / rownum

With these two calculated values, applications are also able to use the following formulas to
rapidly retrieve the row and column number of the tile in which a given point lies:

ColumnNumber = floor ((X - bbox.xmin) / TileWidth)
RowNumber = floor ((Y - bbox.ymin) / TileLength)
where X and Y denote the WGS84 coordinates of the given point.

Further, if a bounding box is given, which is formed by a lower-left corner and an upper-right
corner and their row and column numbers are expressed as (RI, CI) and (R2, C2)
respectively, all those tiles that intersect with the given bounding box can be found iteratively,
as their row and column numbers must fulfil the following conditions:

R1 < RowNumber < R2 A C1 < columnNumber < C2.

5.5.1 Support of GenericCityObject having any geometry types

The earlier versions of KML/COLLADA/gITF Exporter have been designed to only support
exports of surface-based geometries for all CityGML classes. Starting from version 3.0.0 of
the 3DCityDB, the KML/COLLADA/gITF Exporter has been functionally enhanced with the
support for exporting point and curve geometry types of GenricCityObject objects in
KML/KMZ format. GenricCityObject is a feature class defined within the CityGML’s
Generics module (see chapter 2.2.4.6) that allows for modeling and exchanging of 3D city
objects which are not covered by any other thematic modules of CityGML. The geometry of a
GenericCityObject can be explicitly defined in LODO0-4 using arbitrary 3D GML geometry
object (class gml: Geometry). Thus, any complex structured objects that have point, line,
surface, or solid geometries can be geometrically represented by means of GenricCityObject
objects for every LOD. For example, the indoor routing network model, which are not defined
in the current CityGML specification, could be even though modeled using the CityGML’s
Generics module where each GenricCityObject object may represent a node or an edge of the
network model.

3D Geodatabase for CityGML 2018 153

GMLID: 8344

Existing generic attributes (mouseOver for values): e =
Area, DIN277_, DIN277Untergruppe_, Flooring_, LAYER_ID, Level, z -
3

Original_RoomMumber_, Room_no, SPACE_STATE_ID, STATE_NAME,
TUMWebLink

Figure 73: Visualization of the network model of the building interior of Technical University Munich (TUM)

Depending on the chosen Level of Detail, the point and curve geometries of GenricCityObject
objects are exported, along with their surface and solid geometries, into the output
KML/KMZ file whose filename is enhanced with a suffix denoting the selected display form
(e.g. Footprint, Extruded, Geometry, or COLLADA/gITF).

5.5.2 Loading exported models in Google Earth and Cesium Virtual
Globe

In order to make full use of the features and functionalities provided by Google Earth, it is
highly recommended to use the enhanced version of Google Earth — Google Earth Pro which
is available free of charge starting from January 2015. Some of the features described in this
documentation, like highlighting, can also flawlessly work in the normal Google Earth with
version 6.0.1 or higher.

Displaying a file in Google Earth can be achieved by opening it through the menu ("File",
"Open") or double-clicking on any kml or kmz file if these extensions are associated with the
program (default option at Google Earth's installation time).

Loaded files can be refreshed when generated again after loading (if for example the balloon
template file was changed) by choosing the "Revert" option in the context menu on the
sidebar. There is no need to delete and load them again or shutdown or restart the Earth
browser.

For best performance, cache options ("7ools", "Options", "Cache") should be set to their
maximum values, 1024MB for memory cache size, 2000MB for disk cache. Actual
maximums may be lower depending on the computer's hardware.

154 3D Geodatabase for CityGML 2018

Google Earth enables showing the terrain layer by default for realistic display of 3D models.
Disabling of terrain layer is only possible in Google Earth Pro. You may need to disable the
terrain layer in case that the exported models cannot be seen although shown as loaded in
Google Earth's sidebar, since they are probably buried into the ground (see chapter 5.6.3.4).

When exporting balloons into individual files (one for each object) written together into a
balloon directory access to local files and personal data must be allowed ("7ools", "Options",
"General"). Google Earth will issue a security warning that must be accepted, otherwise the
contents of the balloons (when in individual files and not as a part of the doc.kml file) will not
be displayed.

It is also possible to upload the generated KML/COLLADA/gITF files to a web server and
access them from there via internet browser with Cesium Virtual Globe (starting from
December 2015, the Google Earth Plugin is no longer supported by most modern web
browsers due to security considerations). In this case, the Cross Origin Resource Sharing
(CORS) shall be enabled on the web server to allow cross-domain AJAX requests sent from
the based-web frontend.

Note: Starting with version 7 (and at least up to version 7.1.1.1888) Google Earth has
changed the way transparent or semi-transparent surfaces are rendered. This is
especially relevant for visualizations containing highlighting surfaces (explained in
chapter 5.6.3.2). When viewing KML/COLLADA models in Google Earth it is
strongly recommended to use Google Earth (Pro) version 7 or higher and switch to the
OpenGL graphic mode for an optimal viewing experience. Changing the Graphic
Mode can be achieved by clicking on Tools, Options entry, 3D View Tab.

i Google Earth Options @Iﬂ—hj

3D View | Cache I Touring I MNavigation I General /\

Texture Colors Anisotropic Filtering Labels/Icon Size Graphics Mode \
) High Color {16 bit) o Off = small @ OpenGL

@ True Color (32 bit) @ Medium @ Medium) Directx

Compress _) High) Large [Use safe maode

Show LatfLong Units of Measurement Fonts

) Decimal Degrees @ System default

@ Degrees, Minutes, Seconds) Feet, Miles Choose 3D Font

Degrees, Dedmal Minutes
- g ') Meters, Kilometers
) Universal Transverse Mercator

Terrain

Elevation Exaggeration (also scales 30D buildings and trees): 1 (0.01-3)
[Use high quality terrain {disable for quicker resolution and faster rendering)
[] Use 30 Imagery (disable to use legacy 30 buildings)

Cverview Map

Map Size: Small D Large
Zoom Relation: infinity 1:1 D Liinfinity
Restore Defaults OK] [Cancel] [Apply]
h

Figure 74: Setting the Graphics Mode in Google Earth

3D Geodatabase for CityGML 2018 155

Figure 75: KML/COLLADA models rendered with DirectX, highlighting surface borders are noticeable
everywhere

“GGogle earth

Figure 76: The same scene rendered in OpenGL mode

156 3D Geodatabase for CityGML 2018

5.6 Preferences

In addition to the settings on the Tmport, Export, KML/COLLADA/glTF Export and
Database tabs of the operations window, more preferences affecting the separate operations
of the Importer/Exporter are available on the Preferences tab shown below.

[# 3D City Database Importer/Exporter - O >

File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

[=1-CityGML Import Continuation
~gmliid handling Continuation information
--Bounding box)
Data lineage
--Address g
- Appearance Reason for update
--Geometry
-~ Indexes 3
Updating person
%ML validation £ dE
¥5L transformation (@ Use database user name
~Import log () Spedfy updating person
--Resources
[#-CityGML Export
[#-KML/COLLADA/glTF Export
[+-Database Methed for creationDate allocation
[+-General (O Inherit missing creationDate from parent object {or set to current date instead)

(O) Setmissing creationDate values to current date

(@) Replace all creationDates with the current date

Method for terminationDate allocation
(O Inherit missing terminationDate from parent object (or set to null instead)

(0 Setmissing terminationDate values to null
(@ Setall terminationDate values to null

Restore Default Apply e

Ready Database disconnected

Figure 77: The preferences dialog.

The preferences are structured in a tree view [1] on the left side of the dialog with the
following main nodes:

e CityGML Import Settings affecting the CityGML import operation

e CityGML Export Settings affecting the CityGML export operation

e KML/COLLADA/glTF Export Settings affecting the KML/COLLADA/gITF export
operation

e Database Database-specific settings

® General General settings affecting the entire application

Below these main nodes, further subnodes organize the preferences into separate topics.
When selecting a node in the tree view, the associated settings dialog is displayed on the right
side [2]. Changes made to the settings of the selected node are applied through the Apply
button [3]. The buttons Restore and Default allow for resetting the preferences to their
previous state or to their default values.

The preferences (including the settings on the separate operation tabs) are automatically
stored in the config file of the Importer/Exporter and are restored from this file upon program

3D Geodatabase for CityGML 2018 157

start. Thus, changes made to the preferences are remembered on restart. Via the Project
menu available from the menu bar of the Importer/Exporter, the preferences can optionally be
stored in or loaded from user-defined config files (cf. chapter 5.1).

5.6.1 CityGML import preferences

5.6.1.1 Continuation

The Continuation preferences allow for specifying metadata that is assigned to every city
object at import time. The metadata is carried to columns of the table CITYOBJECT and is
therefore accessible in SQL queries.

3D City Database Importer/Exporter - O *
ty P P
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

[=)-CityGML Import Continuation
~-gml:id handiing Continuation information
-Bounding box "
Data lineage
--Address g
- Appearance Reason for update

~-Geometry
--Indexes

- ¥ML validation
- ¥5L transformation (® Use database user name
- Impart log (O) Specify updating person
~Resources

H-CityGML Export
H-KML/COLLADAfQITF Expart
t-Database Method for creationDate allocation

+-General (O Inherit missing creationDate from parent object {or set to current date i

Updating person

-

() Set missing creationDate values to current date

(® Replace all creationDates with the current date

Methed for terminationDate allocation
(O Inherit missing terminationDate from parent object {or set to null inste;

©

() Set missing terminationDate values to null
@ Setall terminationDate values to null

Restore Default Apply

Ready Database disconnected

Figure 78: CityGML import preferences — Continuation.

The following metadata can be set:

Metadata Description

A string value denoting the origin of the data.
(column: LINEAGE; default value: NULL)

A string value providing the reason for a data update.
(column: REASON FOR UPDATE; default value: NULL)

A string value identifying the person being responsible for importing or
Updating person [2] updating the city object.
(column: UPDATING PERSON; default value: name of the database user)

A timestamp value denoting the date of creation of the city object. If this
date is not available from the CityGML feature during import, it may either
be set to the import date or be inherited from the parent feature (if
available). Alternatively, the user can choose to replace all creation dates
from the input files with the import date.

(column: CREATION DATE; default value: import date)

Data lineage [1]

Reason for update [1]

creationDate [3]

158 3D Geodatabase for CityGML 2018

A timestamp value denoting the date of termination of the city object. If this
date is not available from the CityGML feature during import, it may either
be set to NULL or be inherited from the parent feature (if available).
Alternatively, the user can choose to replace all termination dates in the
input files with NULL.

(column: TERMINATION DATE; default value: NULL)

terminationDate [4]

Table 34: Metadata stored with every city object in the table CITYOBJECT.

Note: Both creationDate and terminationDate are CityGML properties of city objects and
therefore are exported to CityGML datasets. The remaining metadata information
does not map to CityGML properties. It is therefore not exported to CityGML
datasets but is only available in the database.

5.6.1.2 gml:id handling

Globally unique object identifiers are crucial for ensuring data consistency and for enabling
data management workflows. Especially when it comes to (subsequently) updating the city
model content in the database, unique identifiers will help to quickly identify and replace
objects in the database with candidates from external datasets. Unfortunately, gm1 : id values
do not meet the requirement of global uniqueness since they are, per definition, optional and
only unique within the scope of a single dataset.

m 3D City Database Importer/Exporter — O X
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

=I-CityGML Impart gmkid handling
~Continuation
...
--Bounding box
~-Address

Method for gml:id assignment
(® Only use UUIDs in case of missing aml:id

- AppPEErance (O Replace all gml:ids by UUIDs

~Geometry Store original gml:ids as external reference

--Indexes

XML validation i

¥5L transformation Codespace for gml:ids

~Impart log (® Do notstore a codespace

~Resaurces (O Use file name of CityGML file
T--CityGML Export)
‘&‘"KMLJ’COLLADAJ’QH‘F Export (0 Use path and file name of CityGML file
+-Database (O User-defined codespace

+)-General
LuID

Restore Default Apply

Ready Database disconnected

Figure 79: CityGML import preferences — gml : id handling.

Per default, the Importer/Exporter assumes that the gm1: id values associated with the city
objects to be imported are globally unique and therefore imports them ‘“as is” into the
database. Only in case a city object (or geometry object) lacks a gm1 : id, a UUID value will
be generated at import time and stored with the object.

This default behavior can be overridden with this preferences dialog in order to let the
Importer/Exporter replace all gm1 : id values in the input file(s) with generated UUID values.

3D Geodatabase for CityGML 2018 159

Use this option with caution. The original gm1 : id value may optionally be stored as external
reference to not lose this information.

In addition to the gm1 : id, the 3DCityDB allows for storing a second GMLID CODESPACE
metadata value. The idea is that the compound value of gml:id and GMLID CODESPACE
is globally unique. The user can choose to use the file name of the CityGML import file, its
complete path or a user-defined string as GMLID CODESPACE. Per default, the
Importer/Exporter does not import a GMLID CODESPACE value though.

Note: The Importer/Exporter internally only relies on the gml:id value to identify
objects, for example, when resolving XLink references. The GMLID CODESPACE
value therefore supports user-defined data management processes in the first place.

5.6.1.3 Bounding box

On the Import tab, a bounding box filter can be defined in order to only import features
within a given geographic area (cf. chapter 5.3). The provided bounding box is evaluated
against the gml :boundedBy property of the input features. Per default, features whose
bounding box is inside or overlaps with the filter geometry are imported.

m 3D City Database Importer/Exporter — O X
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

—J-CityGML Import Bounding box
-~Continuation

~amliid handling Feature selection using bounding boxes

™ nunding
- Address
--Appearance O Only select features fully covered by bounding box
-Geometry

- Indexes

XML validation

- %5L transformation
--Import log

~Resources

+-CityGML Export

- KML /COLLADA /alTF Export
%—--Datahase

+|-General

@ Selectalso features partly covered by bounding box

Restore Default Apply

Ready Database disconnected

Figure 80: CityGML import preferences — Bounding box.

This preference dialog lets the user change the behavior of the bounding box filter to be more
restrictive in that only those features whose bounding box is completely inside the filter
geometry are imported.

5.6.1.4 Address

CityGML relies upon the OASIS Extensible Address Language (XAL) standard for the
representation and exchange of address information. XAL provides a flexible and generic
framework for encoding address data according to arbitrary address schemes. The columns of

160 3D Geodatabase for CityGML 2018

the ADDRESS table of the 3D City Database however only map the most common fields in
address records (cf. chapter 2.3). Moreover, the Importer/Exporter currently does not support
arbitrary xAL fragments but is tailored to the parsing of following two xAL templates that are
taken from the CityGML specification.

<bldg:Building>

<bldg:address>
<Address>
<xalAddress>
<!-- Bussardweg 7, 76356 Weingarten, Germany -->
<xAL:AddressDetails>
<xAL:Country>
<xAL:CountryName>Germany</xAL:CountryName>
<xAL:Locality Type="City">
<xAL:LocalityName>Weingarten</xAL:LocalityName>
<xAL:Thoroughfare Type="Street">
<xAL:ThoroughfareNumber>7</xAL:ThoroughfareNumber>
<xAL:ThoroughfareName>Bussardweg</xAL:ThoroughfareName>
</xAL:Thoroughfare>
<xAL:PostalCode>
<xAL:PostalCodeNumber>76356</xAL:PostalCodeNumber>
</xAL:PostalCode>
</xAL:Locality>
</xAL:Country>
</xAL:AddressDetails>
</xalAddress>
</Address>
</bldg:address>
</bldg:Building>

<bldg:Building>

<bldg:address>
<Address>
<xalAddress>
<!-- 46 Brynmaer Road Battersea LONDON, SWl1l 4EW United Kingdom -->
<xAL:AddressDetails>
<xXAL:Country>
<xAL:CountryName>United Kingdom</xAL:CountryName>
<xAL:Locality Type="City">
<xAL:LocalityName>LONDON</xAL:LocalityName>
<xAL:DependentlLocality Type="District">
<xAL:DependentLocalityName>Battersea</xAL:DependentLocalityName>
<xAL:Thoroughfare>
<xAL:ThoroughfareNumber>46</xAL:ThoroughfareNumber>
<xAL:ThoroughfareName>Brynmaer Road</xAL:ThoroughfareName>
</xAL:Thoroughfare>
</xAL:DependentLocality>
<xAL:PostalCode>
<xAL:PostalCodeNumber>SW1ll 4EW</xAL:PostalCodeNumber>
</xAL:PostalCode>
</xAL:Locality>
</xAL:Country>
</xAL:AddressDetails>
</xalAddress>
</Address>
</bldg:address>
</bldg:Building>

Figure 81: xAL fragments supported by the Importer/Exporter.

If xAL address information in a CityGML instance document does not comply with one of the
templates (e.g., because of additional or completely different entries), the address information
will only partially be stored in the database (if at all). In order to not lose any original address
information, the entire <xal :AddressDetail> XML fragment can be imported “as is”

3D Geodatabase for CityGML 2018 161

from the input CityGML file and stored in the XAL SOURCE column of the ADDRESS table
in the 3D City Database.

For this purpose, simply check the Import original <xal:AddressDetail> XML option (this is
the default value). Note that the import of the XML fragment does not affect the filling of the
remaining columns of the ADDRESS table (STREET, HOUSE NUMBER, etc.) from the xAL
address information.

[3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/aITF Export Database Preferences

[=-CityGML Import Address
--Continuation
-gml:id handling

- Bounding box
--Appearance
--Geometry

- Indexes

- ¥ML validation

- X5L transformation

%AL address information
Import original <xal:AddressDetails > XML fragment

--Impart log
--Resources
[#-CityGML Export
[#-KML/COLLADA/gITF Export
[+-Database
[#-General
Restore Default Apply
Ready Database disconnected

Figure 82: CityGML import preferences — Address.

The symmetrical setting for CityGML exports (i.e., recovering the xAL fragment from
XAL SOURCE) is explained in chapter 5.6.2.4.

162 3D Geodatabase for CityGML 2018

5.6.1.5 Appearance
The Appearance preference settings define how appearance information (i.e., materials and
textures associated with the observable surfaces of a city object) is processed at import time.

[3D City Database Importer/Exporter — O X
File Project View Help

Import Export KML/COLLADA/GITF Export Database Preferences

=1-CityGML Import Appearance
--Continuation
~-gml:id handling Import of appearances
iodl-d":edls? box (®) Import appearances, impert texture files
m (") Import appearances, do not impart texture files
~Geometry () Do notimport appearances
--Indexes
- %ML validation -
%51 transformation Conversion from TexturedSurface (deprecated) to Appear,
--Import log Store in theme | rgbTexture
--Resources
—

+-CityGML Export
+-KML/COLLADA/gITF Expart
+-Database

+-General

Restore Default Apply

Ready Database disconnected

Figure 83: CityGML import preferences — Appearance.

Per default, all appearance information as well as all related texture image files are loaded
into the 3D City Database [1]. The Importer/Exporter will work on both image files located in
a relative path to the CityGML dataset and image files referenced by a valid URL. The latter
might require network access. Alternatively, a user may choose to only consider the
appearance information but to not load the texture image files. As a third option, appearance
information can be completely skipped during import [1].

Prior to version 1.0 of the CityGML standard, material and texture information of surface
objects was modelled using the TexturedSurface concept. This concept was however
replaced by the Appearance module in CityGML 1.0 and therefore is marked deprecated.
Although the CityGML specification disadvises the use of the TexturedSurface concept,
it is still allowed even in CityGML 2.0 datasets. The Importer/Exporter can parse and
interpret TexturedSurface information but will automatically convert this information
losslessly into the Appearance module. Since TextureSurface information is not
organized into themes but a theme is mandatory in the context of the Appearance module,
the user has to define a theme that shall be used in the conversion process [2]. The default
value is rgbTexture.

5.6.1.6 Geometry

Before importing the city objects into the 3D City Database, the Importer/Exporter can apply
an affine coordinate transformation to all geometry objects. Per default, this option is disabled
though.

3D Geodatabase for CityGML 2018

163

R’. 3D City Database Importer/Exporter -
File Project Wiew Help
Import Export KML/COLLADA/QITF Export Database Preferences
—=|-CityGML Import Geometry
-Continuation
~gml:id handing Affine transformation of coordinates
--Bounding box
- Address a
-~ Appearance) .
.- Transformation matrix (3x4)
- Indexes (my3m e y5my) = [1]]
1173ty
- ¥ML validation
--%5L transformation (M 3/M 3eMp3My) = |0 1 0
--Import log (Mg M agyMan o) =
oM 3955, =0 a 1
--Resources T 34)
+-CityGML Export
+-KML/COLLADA/gITF Export Predefined transformation matrices
?--Database Identity matrix Swap X/Y
+-General
Restore Default Apply
Ready Database disconnected

Figure 84: CityGML import preferences — Geometry.

An affine transformation is any transformation that preserves collinearity (i.e., points initially
lying on a line still lie on a line after transformation) and ratios of distances (e.g., the midpoint
of a line segment remains the midpoint after transformation). It will move lines into lines,
polylines into polylines and polygons into polygons while preserving all their intersection
properties. Geometric contraction, expansion, dilation, reflection, rotation, skewing, similarity
transformations, spiral similarities, and translation are all affine transformations, as are their
combinations.

The affine transformation is defined as the result of the multiplication of the original
coordinate vectors by a matrix plus the addition of a translation vector.

p'=Ap+b

In matrix form using homogenous coordinates:

X
x' myy Mz Myz Myy y
y'| = [M21 Mgz Myz Myy|- ,
z' M3y Mgy Mgz3z M3z, 1

The coefficients of this matrix and translation vector can be entered in this preferences dialog
(cf. Figure 84). The first three columns define any linear transformation; the fourth column
contains the translation vector. The affine transformation does neither affect the
dimensionality nor the associated reference system of the geometry object, but only changes
its coordinate values. It is applied the same to all coordinates in all objects in the original
CityGML file. This also includes all matrixes in CityGML like the 2x2 matrixes of
GeoreferencedTextures, the 3x4 transformation matrixes of TexCoordGen elements
used for texture mapping and the 4x4 transformation matrixes for ImplicitGeometries.

Note: An affine transformation cannot be undone or reversed after the import using the
Importer/Exporter.

164 3D Geodatabase for CityGML 2018

Two elementary affine transformations are predefined: 1) Identity matrix (leave all geometry
coordinates unchanged), which serves as an explanatory example of how values in the matrix
should be set, and 2) Swap X/Y, which exchanges the values of x and y coordinates in all
geometries (and thus performs a 90 degree rotation around the z axis). The latter is very
helpful in correcting CityGML datasets that have northing and easting values in wrong order.

Example: For an ordinary translation of all city objects by 100 meters along the x-axis and 50
meters along the y-axis (assuming all coordinate units are given in meters), the identity matrix
must be applied together with the translation values set as coefficients in the translation
vector:

5.6.1.7 Indexes

In addition to the Database tab on the operations window, which lets you enable and
disable spatial and normal indexes in the 3D City Database manually (cf. chapter 5.2.2), with
this preference settings a default index strategy for database imports can be determined.

[3D City Database Importer/Exporter -] X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

=1-CityGML Import Indexes
-Continuation

~-gmlid handling Spatial indexes

--Bounding box)
- Address (@ Keepindex status

--AppEarance () Deactivate before import and autematically reactiva
--Geometry

() Deactivate before import and keep deactivated

.
- ¥ML validation
- %51 transformation

- Import log (® Keepindex status 0

Mormal indexes

--REesoUrces

(C) Deactivate before import and automatically reactiva
+-CityGML Export

3] -KML/COLLADA/TF Export (O) Deactivate before import and keep deactivated
%--Database
+-General
Restore Default Apply
Ready Database disconnected

Figure 85: CityGML import preferences — Indexes.

The dialog differentiates between settings for spatial indexes [1] and normal indexes [2] but
offers the same options for each index type.

The default setting is to not change the status (i.e., either enabled or disabled) of the indexes.
This default behavior can be changed so that indexes are always disabled before starting and
import process. The user can choose whether the indexes shall be automatically reactivated
after the import has been finished.

Note: All indexes are enabled after setting up a new instance of 3D City Database.

Note: 1t is strongly recommended to deactivate the spatial indexes before running a
CityGML import on a big amount of data and to reactive the spatial indexes

3D Geodatabase for CityGML 2018 165

afterwards. This way the import will typically be a lot faster than with spatial indexes
enabled. The situation may be different if only a small dataset is to be imported.
Deactivating normal indexes should however never be required.

Note: Activating and deactivating indexes can take a long time, especially if the database
fill level is high. Note that the operation cannot be aborted by the user since this
could result in an inconsistent database state.

5.6.1.8 XML validation

On the Import tab of the operations window, the CityGML input files to be imported into
the database can be manually validated against the official CityGML XML Schemas. This
preference dialog lets a user choose to perform XML validation automatically with every
database import.

m 3D City Database Importer/Exporter - [m] X

File Project VWiew Help
Import Export KML/COLLADA/oTF Export Database Preferences

=I-CityGML Impart XML validation
--Continuation

~-gmlid .handling validation of CityGML documents
~Bounding box [Perform ¥ML validation during database import

~-Address)]
- Appearance Invalid top-evel features wil not be imported

- Geometry [] Justreport one error per top-evel feature
--Indexes

- ¥5L transformation
--Import log

-~-Resources

+-CityGML Export
+1-KML/COLLADAgITF Export
+-Database

+-General

Restore Default Apply

Ready Database disconnected

Figure 86: CityGML import preferences — XML validation.

In general, it is strongly recommended to ensure (either manually or automatically) that the
input files are valid with respect to the CityGML XML schemas. Invalid files might cause the
import procedure to behave unexpectedly or even to abort abnormally.

If XML validation is chosen to be performed automatically during imports, then every invalid
top-level feature will be discarded from the import. Nevertheless, the import procedure will
continue to work on the remaining features in the input file(s).

Validation errors are printed to the console window. Often, error messages quickly become
lengthy and confusing. To keep the console output low, the user can choose to only report the
first validation error per top-level feature and to suppress all subsequent error messages.

Note: The XML validation in general does not require internet access since the CityGML
XML schemas are packaged with the Importer / Exporter. These internal copies of
the official XML schemas will be used to check CityGML XML content in input
files. The user cannot change this behavior. External XML schemas will only be

166 3D Geodatabase for CityGML 2018

considered in case of unknown XML content, which might require internet access.
Precisely, the following rules apply:

e If an XML element’s namespace is part of the official CityGML 2.0 or 1.0
standard, it will be validated against the internal copies of the official CityGML
2.0 or 1.0 schemas (no internet access needed).

e [f the element’s namespace is unknown, the element will be validated against the
schema pointed to by the xsi:schemaLocation value on the root element or the
element itself. This is necessary when, for instance, the input document contains
XML content from a CityGML Application Domain Extension (ADE). Note that
loading the schema might require internet access.

e [f the element’s namespace is unknown and the xsi:schemaLocation value
(provided either on the root element or the element itself) is empty, validation
will fail with a hint to the element and the missing schema document.

5.6.1.9 XSL Transformation

This preference is used to apply changes to the CityGML input data before it is imported into
the database using XSL transformations. Simply check the Apply XSLT stylesheets option and
point to an XSLT stylesheet in your local file system using the Browse button. The stylesheet
will be automatically considered by the import process to transform the CityGML data.

[3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

=|-CityGML Import XSL transformation
- Continuation
-~gmltid handling XSLT stylesheets
-Bounding box
- Address Anply
- Appearance
- Geometry Stylesheet Browse =5
-Indexes
- %ML validation

-Import log

~-Resources

+1-CityGML Export
+]-KML/COLLADA/gITF Export
+ -Database

+-General

Restore Default Apply

Ready Database disconnected

Figure 87: CityGML import preferences — XSL transformation.

By clicking the + and - buttons, more than one XSLT stylesheet can be fed to the importer.
The stylesheets are executed in the given order, with the output of a stylesheet being the input
for its direct successor. The Importer/Exporter is shipped with example XSLT stylesheets in
subfolders below templates/ XSLTransformations in the installation directory.

Note: To be able to handle arbitrarily large input files, the importer chunks every CityGML
input file into top-level features, which are then imported into the database. Each

3D Geodatabase for CityGML 2018 167

XSLT stylesheet will hence just work on individual top-level features but not on the
entire file.

Note: The output of each XSLT stylesheet must again be a valid CityGML structure.

Note: Only stylesheets written in the XSLT language version 1.0 are supported.

5.6.1.10 Import log

A CityGML import process not necessarily works on all CityGML features within the
provided input file(s). An obvious reason for this is that spatial or thematic filters that
naturally narrow down the set of imported features. Also, in case the import procedure aborts
early (either requested by the user or caused by severe import errors), not all input features
might have been processed. To understand which top-level features were actually loaded into
the database during an import session, the user can choose to let the Importer/Exporter create
an import log.

¥ 3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

[=-CityGML Import Import log
Continuation
gml:id handling Import log
Bounding b
A;l;':els:g ox Write imported topevel feature to log file
Appearance C:\Users\cnagel\3dcitydbimporter-exporterog'imported-features Browse
Geometry
Indexes
XML validation
XSL transformation
Resources

+-CityGML Export

[+-KML/COLLADA /gITF Export

[+-Database

[+-General

Restore Default Apply
Ready Database disconnected

Figure 88: CityGML import preferences — Import log.

Simply enable the checkbox on this settings dialog to activate import logs (disabled per
default). You additionally must provide a folder where the import log files will be created in.
Either type the folder name manually or use the Browse button to open a file selection dialog.
The application proposes to use a folder within your user’s home directory, but this proposal
can be overridden.

To easily relate import logs to different 3D City Database instances managed on the
Database tab, the Importer/Exporter creates one subfolder for each connection entry below
the folder provided in the settings dialog. The description text of the connection entry (cf.
chapter 5.2.1) is used as folder name. Within that subfolder, a separate log file is created for
every input file during an import to that 3D City Database connection. The filename includes
the date and time of the import session according to following pattern:

imported-features-yyyy MM dd-HH mm ss SSS.log

168 3D Geodatabase for CityGML 2018

The import log is a simple CSV file with one record (line) per imported top-level feature. The
following figure shows an example.

| imported_features-2015_01_15-23 18 59 414 txt - Editor E=AREa X

Datei Bearbeiten Format Ansicht ©

#3D City Database Importer/Exporter, version "3.0-b145"
#Imported top-level features from file: C:‘test.gml
#Database connection string: citydb@localhost:5432/test
#Timestamp: 2014,/10/21 23:18:59.414
FEATURE_TYPE,CITYOBJECT_ID,GMLID_IN_FILE
BUILDING,46759,GEE_TH_Default_GEB_2034
BUILDING,46760,GEB_TH_Default_GEB_124
BUILDING,46763,GEB_TH_Default_GEB_1519 |
BUILDING,46768,GEB_TH_Default_GEB_1137
BUILDING,46772,GEB_TH_Default_GEB_1153
BUILDING,46776,GEE_TH_Default_GEB_1229
BUILDING,46779,GEB_TH_Default_GEB_1755
BUILDING,46783,GEB_TH_Default_GEB_1261
BUILDING,46791,GEB_TH_Default_GEB_1017
BUILDING,46799,GEE_TH_Default_GEB_1291

BUILDING,46804 ,GEB_TH_Default_GEB_1145
BUILDING,46808,GEB_TH_Default_GEB_1479
BUILDING,46815,GEB_TH_Default_GEB_1319
BUILDING,46821,GEB_TH_Default_GEB_1471
BUILDING,46825,GEE_TH_Default_GEB_1041
BUILDING,46828,GEB_TH_Default_GEB_1117
BUILDING,46831,GEB_TH_Default_GEB_1551
#Import successfully finished.

Figure 89: Example import log.

The first four lines of the import log contain metadata about the version of the
Import/Exporter that was used for the import, the absolute path to the CityGML input file, the
database connection string, and the timestamp of the import. Each line starts with # character
in order to mark its content as metadata.

The first line below the metadata block provides a header for the fields of each record. The
field names are FEATURE TYPE, CITYOBJECT ID, and GML ID IN FILE. A single
comma separates the fields. The records follow the header line. The meaning of the fields is
as follows:

e FEATURE TYPE An uppercase string representing the type of the imported
CityGML feature.

e CITYOBJECT ID The value of the ID column (primary key) of the
CITYOBIJECT table where the feature was inserted.

e GML ID IN FILE The original gm1 : id value of the feature in the input

file (might differ in database due to import settings).

The last line of each import log is a footer that contains metadata about whether the import
was successfully finished or aborted.

5.6.1.11 Resources

Multithreading settings. The software architecture of the Importer/Exporter is based on
multithreading. Put simply, the different tasks of an import process are carried out by separate
threads. The decoupling of compute bound from I/O bound tasks and their parallel non-
blocking processing usually leads to an increase of the overall application performance. For
example, threads waiting for database response do not block threads parsing the input
document or processing the CityGML input features. In a multi-core environment, threads can
even be executed simultaneously on multiple CPUs or cores.

3D Geodatabase for CityGML 2018 169

[# 3D City Database Importer/Exporter - O Do
File Project View Help
Import Export KML/COLLADA/GITF Export Database Preferences
[=-CityGML Import Resources
-Continuation
~gml:id handing Multithreaded processing
+~Bounding box Minimal number of threads |2
--Address
--Appearance Maximal number of threads |8
- Geometry
- Indexes "
Batch processin
- ¥ML walidation D g
XS\ transformation Commit after |20 Top-lev o5
~Importlog 1000 aml:id ies
(- CityGML Export 1000 temporary information
[#-¥ML/COLLADA/gITF Expart
i-Database gml:id cache
&-General Geometry | 200000 Entries
a5 Page factor [%a]
10 Ti itions
Features | 200000
a5 Page factor [%a]
10 Table partitions
Texture image cache
Texture images | 200000 E
85 r [%]
10 Table partitions
Restore Default Apply
Ready Database disconnected

Figure 90: CityGML import preferences — Resources.

The Resource settings allow for controlling the minimum and maximum number of
concurrent threads during import [1]. Make sure to enter reasonable values depending on your
hardware configuration. By default, the maximum number is set to the number of available
CPUs/cores times two. Before starting the import process, the minimum number of threads is
created. Further threads up to the specified maximum number are only created if necessary.

Note: A higher number of threads does not necessarily result in a better performance. In
contrast, a too high number of active threads faces disadvantages such as thread life-
cycle overhead and resource thrashing. Also, note that each thread requires its own
physical connection to the database. Therefore, your database must be ready to
handle enough parallel physical connections. Ask you database administrator for
assistance.

Cache settings. The Importer/Exporter employs strategies for parsing CityGML datasets of
arbitrary file size and for resolving XLink references. A naive approach for XLink resolving
would read the entire CityGML dataset into main memory. However, CityGML datasets
quickly become too big to fit into main memory. For this reason, the import process follows a
two-phase strategy: In a first run, features are written to the database neglecting references to
remote objects. If a feature contains an XLink though, any context information about the
XLink is written to temporary database tables. This information comprises, for instance, the

170 3D Geodatabase for CityGML 2018

table name and primary key of the referencing feature/geometry instance as well as the
gml : id of the target object.

In addition, while parsing the document, the import process keeps track of every encountered
gml : id as well as the table name and primary key of the corresponding object in database. It
is important to record this information because a priori it cannot be predicted whether or not a
gml : id is referenced by an XLink from somewhere else in the document. In order to ensure
fast access, the information is cached in memory. If the maximum cache size is reached, the
cache is paged to temporary database tables to prevent memory overflows. In a second run,
the temporary tables containing the context information about XLinks are revisited and
queried. Since the entire CityGML document has been processed at this point in time, valid
references can be resolved and processed accordingly. With the help of the gm1:id cache,
the referenced objects can be quickly identified within the database.

The caching and paging behaviour for gml : 1d values can be influenced via the Resource
preferences [3]. The dialog lets a user enter the maximum number of gml : id values to be
held in main memory (default: 200,000 entries), the percentage of entries that will be written
to the database if the cache limit is reached (page factor, default: 85%), as well as the number
of parallel temporary tables used for paging (fable partitions, default: 10). The
Importer/Exporter employs different caches for gml: id values of geometries and features
[3]. Moreover, a third cache is used for handling texture atlases and offers similar settings [4].

Batch settings. In order to optimize database response times, multiple database statements are
submitted to the database in a single request (batch processing). This allows for an efficient
data processing on the database side. The user can influence the number of SQL statements in
one batch through the settings dialog [2]. The dialog differentiates between batch sizes for
CityGML features (default: 20) and gml:id caches respectively temporary XLink
information (default: 1000 each).

Note: All database operations within one batch are buffered in main memory before being
submitted to the database. Thus, the Importer/Exporter might run out of memory if
the batch size is too high. After a batch is submitted, the transaction is committed.

3D Geodatabase for CityGML 2018 171

5.6.2 CityGML export preferences

5.6.2.1 CityGML version
The CityGML version preference settings let you choose the target CityGML version
when exporting 3D city model content from the database to a CityGML dataset.

m 3D City Database Importer/Exporter - O X
File Project View Help
Import Export KML/COLLADA/gITF Export Datsbase Preferences
& -CityGML Impaort CityGML version
=|-CityGML Expart
Pl ' CityGML version of instance document
‘Bounding box
2.0.0 (OGC Encoding Standard
CityObjectGroup ® v (e A
‘Address () vl0.0o
-Appearance
NLinks
X5L transformation
‘Resources
- KML/COLLADA/gITF Export
+)-Database
+-General
Restore Default Apply
Ready Database disconnected

Figure 91: CityGML export preferences — CityGML version.

The default value is CityGML version 2.0.0, which is the current version of the OGC
CityGML Encoding Standard. In addition, also the preceding version 1.0.0 is still supported.

Note: CityGML 2.0.0 introduces new feature types such as bridges and tunnels that are not
available in CityGML 1.0.0. If the 3D City Database instance contains features of
these types, they will be neglected in an export to CityGML version 1.0.0 simply
because they cannot be encoded in this version.

5.6.2.2 Bounding box

When exporting the entire 3D city model content stored in the 3D City Database to a single
CityGML instance document, the resulting file easily becomes very large. Although the
Importer/Exporter supports writing files of arbitrary size (only limited by the file system of
the operating system), such files may be too big to be processed by other applications.
Furthermore, if the 3D city model is fully textured, then the number of texture files exported
into the same subfolder may become very high. This, in turn, may adversely affect the file
access time.

172 3D Geodatabase for CityGML 2018

[3D City Database Importer/Exporter - [m] X
File Project View Help

Import Export KML/COLLADA/ITF Export Database Preferences

[#-CityGML Import Bounding box
[=-CityGML Export
+-CityGML version == -
i bmup Select also features partly covered by bounding box
t-Address Only select features fully covered by bounding box
e ——

~Appearance
&-XLinks Tiing
XS transformation
“-Resources
[#-KML/COLLADA [gITF Export
[+-Database

- General Output directory and file name for tiles
Each tile is exported fo 3 subdirectory of the export directory.
v
v

Columns |1

Tile subdirectory tile
Subdirectory suffix | row / column

Filename suffix No suffix

Further tiling options
[Export tile information as generic attribute
MName |(TILE

Value |Xmin / Ymin / Xmax / Ymax

Restore Default Apply

Ready Database disconnected
Figure 92: CityGML export preferences — Bounding box.

The Importer/Exporter allows for applying a spatial bounding box filter to CityGML exports
which helps in tailoring the export to a geographic area of interest or in reducing the number
of exported features and thus of the resulting file size [1]. The bounding box is provided on
the Export tab of the operations window (cf. chapter 5.4) and is evaluated against the
ENVELOPE column of the CITYOBJECT table. Per default, top-level features whose
bounding box is inside or overlaps with the filter geometry are exported [1]. Alternatively, the
user can choose a more restrictive filter setting to only consider those features whose
bounding box is completely inside the filter geometry.

If, however, the area of interest is still comparatively large, the Importer/Exporter can
automatically tile the area specified by the bounding box filter [2]. Tiled exports are only
available with the bounding box filter being enabled on the Export tab (further filters can of
course additionally be used). To make use of the tiling feature, please check the Tile bounding
box option. Checking this option automatically disables the user dialog in [1].

When tiling is selected, the number of rows and columns of the (resulting gridded) export
must be specified. Space is distributed evenly among them so that all rows have the same
height and all columns the same width. To decide whether a feature has to be exported within
a specific tile, the center of its envelope has to be either inside or on the left or top border of
the tile.

During export, a subfolder below the main export folder specified on the Export tab (cf.
chapter 5.4) will be created for each tile. Each folder name consists of a prefix and a tile-
specific suffix [2]. The suffix may contain the row and column number of the tile exported or
a combination of the tile’s minimum / maximum coordinates. If a coordinate suffix is chosen,
the coordinates will be given in the reference system specified for the CityGML export (cf.

3D Geodatabase for CityGML 2018 173

chapter 5.4; default value is the internal SRS of the 3D City Database instance), even if the
coordinates of the bounding box filter are given in another user-defined SRS. This makes it
easy to relate objects to tiles since the coordinates of the objects contained in the tile are
exported in the same reference system. The filename of the CityGML instance document
created in each subfolder corresponds to the one defined on the Export tab. However, a tile-
specific suffix may be appended [2].

For further traceability, it is possible to attach a generic String attribute called 7/LE to each
exported CityGML feature, indicating which tile it belongs to. The options for identifying the
tile (the value of this generic attribute) are the same as for the tile directory suffix.

Note: If the entire 3D city model stored in the 3D City Database instance shall be exported
with the tiling feature enabled, a bounding box spanning the overall area of the
model has to be provided. This bounding box can be easily calculated on the
Database tab (cf. chapter 5.2.2).

Note: Using the center of an object’s envelope as criterion for a tiled export has a side-
effect when tiling is combined with the counter filter on the Export tab: the
number of objects being exported can no longer be exactly determined since the
calculation of the object's envelope center has to happen at a later point in time.
Therefore, the counter filter only sets a possible maximum number in this filter
combination. For instance, when setting from #1 to #500 on the counter filter, only
493 features may be exported in case the missing seven objects are discarded after
being queried due to their envelope center not being within the tile. This is a correct
behavior, so the Importer/Exporter will not report any errors.

5.6.2.3 CityObjectGroup

When exporting city object groups, also group members are written to the target CityGML
dataset (cf. chapter 5.4). Per default, group members are given by value (i.e., inline the group
feature) and only group members satistying the export filter settings are considered.

Ri 3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

T--CityGML Import CityObjectGroup
=-CityGML Export

¢ CityGML version Export of group members

--Bounding b
: —ounmlg o [] Exportall group members as xlink:href references
Filter setftings are mot 3opled

..Resources
T--KI‘t"IL,’COLLADMgI‘I‘F Export
+-Database
+-zeneral

Restore Default Apply
Ready Database disconnected

Figure 93: CityGML export preferences — CityObjectGroup.

174 3D Geodatabase for CityGML 2018

The default behavior can be changed using this preference dialog. When checking the option
Export all group members as xlink:href references, group members are instead given by
reference using GML’s XLink mechanism. This may increase the performance of the
CityGML export.

Note: When exporting group members by reference, then export filter settings are not
applied. Instead, an x/ink:href reference is created for each and every group member
even if it is not contained in the resulting CityGML dataset.

5.6.2.4 Address

Like the import of xAL address information (see chapter 5.6.1.4), the user can choose how
address information should be exported to a target CityGML dataset. The available options of
the Address export preferences are shown in the figure below.

h’.’, 3D City Database Importer/Exporter - O X

File Project View Help
Import Export KML/COLLADA/QITF Export Database Preferences

- CityGML Import Address

—J-CityGML Export

P -CityGML wersion

-Bounding box

CityObjectGroup
pog (O) Export original <xal:AddressDetails > XML fragment

-.ﬁppearance [use the other method as fallback

KLinks

-¥SL transformation

‘Resources

+]-KML/COLLADA/gITF Export

;--Datahase

+|-General

Generation of xAL address information
(®) Create xAL address from data values in the ADDRESS table

Restore Default Apply

Ready Database disconnected

Figure 94: CityGML export preferences — Address.

Address information is exported form the data values in the ADDRESS table of the 3D City
Database instance. As discussed in chapter 5.6.1.4, these values may however lack data
present in the original XAL fragment or they may even contain no data at all when the address
information differs too much from the supported xAL templates (cf. Figure 81). In such cases,
using the original <xal :AddressDetail> element stored in the XAL SOURCE column is
the only means to achieve a lossless reconstruction of the initial address data.

Since importing the original <xal:AddressDetail> fragment into XAL SOURCE does
not hinder the population of the remaining columns of the ADDRESS table (STREET,
HOUSE NUMBER, etc.), there are two possible ways to reconstruct the address contents when
exporting from the 3D City Database.

1) The default option is to build the XxAL address from the columns of the ADDRESS
table without considering the XAL SOURCE column. In this case, the XML encoding
of the xAL address follows the first template as shown Figure 81.

2) Optionally, the xAL fragment is taken “as is” from the XAL SOURCE column and
inserted literally into the target CityGML document. This way there will be no loss of
information and the address encoding will be identical to the original source datasets.

3D Geodatabase for CityGML 2018 175

Obviously, this option requires that the XAL SOURCE column has been populated
during import (chapter 5.6.1.4).

Both options are mutually exclusive, but one can be used as a fallback alternative to the other
if the first chosen renders no results.

5.6.2.5 Appearance

The Appearance export preferences are like the settings available for importing CityGML
(cf. chapter 5.6.1.5).

X

¥ 3D City Database Importer/Exporter - m}

File Project View Help

Import Export KML/COLLADA/GITF Export Database Preferences

[#-CityGML Import Appearance
[=)-CityGML Export
-~ CityGML version Export of appearances
+-Bounding box
Export appearances, do store texture files
L. CityObjectGroup ® Exortapp "
~-Address Overwrite existing texture files
[Appeara .
H m Generate unique texture filenames
¥Links u o

L..X5L transformation (O Export appearances, do not store texture files
“Resources (O Do not export appearances
[#-KML/COLLADA [gITF Export
[+-Database
[+-General

Qutput diectory for texture files
(O Absolute directory

(@ Subdirectory of export directory o

appearance

[Automatically place texture files in additional subfolders (number): |0

Restore Default Apply

Ready Database disconnected
Figure 95: CityGML export preferences — Appearance.

Per default, both appearance information and texture image files associated with the city
objects in the 3D City Database are exported to the target CityGML dataset [1]. Alternatively,
the user can choose to only export appearance information without writing texture images or
to even suppress any appearance information.

When exporting texture files, the two additional options Overwrite existing texture files and
Generate unique texture filenames influence the way in which texture files are written to the
file system [1].

1) Overwrite existing texture files
Texture files are stored in a separate folder of the file system. Before exporting a
texture image file into this folder, the Importer/Exporter can check whether a file of
the same filename already exists in this folder. In this case, the existing file will be
kept if this option is not enabled. Otherwise, and per default, there is no check and a
texture file of the same name will be overwritten (if it exists).

2) Generate unique texture filenames
Often filenames for texture images are automatically created from a naming scheme
involving some counter (e.g., a prefix “zex” followed by a number incremented by 1
for each new image). It thus can happen that two city objects within the same or

176 3D Geodatabase for CityGML 2018

different instance documents are assigned a texture image file of the same name but
with different content (e.g., if the texture files are distributed over several folders). In
the 3D City Database, texture images are stored in separate records and thus duplicate
filenames are not an issue. When exporting to CityGML however, two texture files of
the same name might be written to the same target folder, in which case one is
replaced with the other. This will obviously lead to false visualizations and issues in
workflows consuming the exported CityGML data. For this reason, checking this
option (default) will force the export process to generate unique filenames for each
texture file based on the primary key value of the TEX IMAGE table. Therefore, the
filename even keeps stable amongst several exports from the 3D City Database.

The location where to store the texture files can be defined by the user [2]. The default option
is to pick a folder below the export directory and thus relative to the target CityGML file. The
default folder name is “appearance”. Instead of a local path, also an absolute path can be
provided. In this case, the same folder will be used in subsequent exports from the 3D City
Database.

Especially when using Windows, placing a large number of files into the same folder might
lead to severe time lags when trying to access files in this folder or to write new files to this
folder. This might negatively affect the performance for large exports. For this reason, the
Importer/Exporter can automatically distribute the texture files in additional subfolders that
are automatically created. Simply check the option Automatically place texture files in
additional subfolders and provide the number of subfolders to be used.

5.6.2.6 XLinks

Both the 3D City Database and the Importer/Exporter are capable of handling XLinks. If the
CityGML input document that is imported into the 3D City Database contains XLink
references to features and/or geometries, then this information is kept in the database in order
to be able to reconstruct the XLinks upon database export. This is also the default behavior.

[3D City Database Importer/Exporter - m} X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

[#-CityGML Import XLinks
[=)-CityGML Export
- CityGML version Multiple export of feature elements

+-Bounding box
i ® i it |
. CityObiectGroup (® Use XLink reference to existing feature element

i--Address () Copy feature element {use UUID as new gml:id)
i~Appearance aml:id prefix (UUID_

XSL transformation Store original gml:id as external reference
\.-Resources

Fl-KML /COLLADA /gITF Export
&#-Database

[-General

Append original gml:id to new gml:id

Multiple export of geometry elements

(® Use XLink reference to existing geometry element
() Copy geometry element (use UUID as new gml:id) Q

aml:id prefix [UUID_

Append original gml:id to new gml:id

Restore Default Apply

Ready Database disconnected

Figure 96: CityGML export preferences — XLinks.

3D Geodatabase for CityGML 2018 177

Depending on the target application that consumes the exported CityGML dataset, this default
behavior may be disadvantageous, especially if the target application cannot follow and
resolve XLink references. In such cases, the XLinks preference settings let a user change the
default behavior so that the referenced objects are exported by value rather than by reference.
Put differently, instead of an XLink reference, a copy of the original feature or geometry is
placed into the CityGML dataset. This necessarily requires that the gml:id of the copy is
different from the gml:id of the original object because identical gml :id values are not
allowed in the same dataset. The Importer/Exporter takes care of this issue and creates new
gml : 1d values for the copies based on UUID values.

The user can define the behavior for exporting XLinks differently for features [1] and
geometries [2]. The settings allow to provide a prefix string that will be used when creating
new gml:id values (default: “UUID). In addition, the original gml:id may be
appended to the newly created one. Whereas these settings are available for both features and
geometries, the user can additionally choose to create a CityGML
<ExternalReference> element for features that carries the original gm1 : id value and
to attach this external reference as attribute to the copied feature.

5.6.2.7 XSL Transformation

As available for CityGML imports, you can apply XSLT transformations during the export
process to change the resulting CityGML output data. Simply check the Apply XSLT
stylesheets option and point to an XSLT stylesheet in your local file system using the Browse
button. The stylesheet will be automatically considered by the export process to transform the
CityGML data before it is written to a file.

Iﬂ! 3D City Database Importer/Exporter - m] X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

[#-CityGML Import XSL transformation

(- CityGML Export

i --CityGML version XSLT stylesheets
+--Bounding box -
+-CityObjectGroup A

. -Address

| -Appearance Stylesheet Browse +

. Xlinks

i “Resources

[+-KML/COLLADA fgITF Export

\i\ Database

- General

Restore Default Apply

Ready Database disconnected
Figure 97: CityGML export preferences — XSL transformation.

By clicking the + and - buttons, more than one XSLT stylesheet can be fed to the exporter.
The stylesheets are executed in the given order, with the output of a stylesheet being the input
for its direct successor. The Importer/Exporter is shipped with example XSLT stylesheets in
subfolders below templates/ XSLTransformations in the installation directory.

178 3D Geodatabase for CityGML 2018

Note: To be able to handle arbitrarily large exports, the export process reads single top-
level features from the database, which are then written to file. Each XSLT stylesheet
will hence just work on individual top-level features but not on the entire file.

Note: The output of each XSLT stylesheet must again be a valid CityGML structure.
Note: Only stylesheets written in the XSLT language version 1.0 are supported.

5.6.2.8 Resources

Just like with CityGML imports, the export process is implemented based on multithreaded
data processing in order to increase the overall application performance. Likewise, in order to
reconstruct XLinks during exports (cf. chapter 5.6.2.6), the export process also needs to keep
track of each and every gml :id of exported features and geometry objects. For fast access,
the gm1 : id values are kept in main memory and are only paged to temporary database tables
in case the predefined cache size limit is reached.

[# 3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

2 -CityGML Impart Resources
|- CityGML Export
"C'WG”L version Multithreaded processing
_ undu.ﬂg box Minimal number of threads |2
-CityObjectGroup
--Address Maximal number of threads |8
-~Appearance
inks)
ml:id cache
L transformation <
- Geometry | 200000 Entries
+-KML/COLLADA,gITF Export 85 Page factor [%]
+-Database
- General 10 Table partitions
Features | 200000 Entries
35 Page factor [3:]
10 Table partitions
Restore Default Apply
Ready Database disconnected

Figure 98: CityGML export preferences — Resources.

The Resource preferences allow for setting the number of concurrent threads to be used in
the export process and for defining the sizes and page factors of the gml:id caches for
features and geometries. The meaning of the values is identical to the Resource preferences
for CityGML imports. So please refer to chapter 5.6.1.11 for more details.

3D Geodatabase for CityGML 2018 179

5.6.3 KML/COLLADA/gITF export preferences

The preferences tab contains four subnodes — General, Rendering, Balloon, and
Altitude/Terrain — make customization of these exports possible. These settings will be
explained in the following sections in details.

5.6.3.1 General Preferences
Some common features of the exported files, especially those related to tiling options, can be
set under the preferences tab, node KML/COLLADA/gITF Export, subnode General.

File Project View Help
Import Export KML/COLLADA/ITF Export Database Preferences

- CityGML Import General
+-CityGML Export

=)-KML/COLLADA/gITF Export
Create gITF model; Path of the COLLADA2gITF tool:

.- Renderli;g contribs\collada 2gltF\COLLADA2GLTF-v2, 1. 3-windows-Release-x64\COLL Browse
Building
WaterBody [] Do not create COLLADA (.dae) files
LandUse :

Embed textures in gITF (.gltf) files
Vegetation u abaes Dot
Transportation (O Export gITF version 1.0
Relief (® Export gITF version 2.0
- CityFurniture
(=-GenericCityObject [] Exportin .kmz format
Surface and Solid -
L Pt and Curve: Show bounding box borders
CityObjectGroup Show tile borders
Bridge
Tunnel
. E-Balloon [Each CityObject in an own region
---Altitude/Terrain
+]-Database visible from |50.0
+-General

Tile side length for automatic tiling

view refresh mode |onRegion
view refresh time | 1.0
[write JSON file
of type JSONP
with callback method name

handle_3DCityDB_data

Restore Default

Database disconnected |

Figure 99: General settings for the KML/COLLADA/gITF export.

Create gITF model

In addition to COLLADA models, the Importer/Exporter can also create gITF models for
efficient loading and rendering of 3D contents on WebGL-enabled web browsers. If the
“Create gITF model” option is activated, the Importer/Exporter requires an open source tool
called COLLADA2gITF? to convert the exported COLLADA models to gITF models. The
COLLADA2gITF tool is available for Windows, Linux, and Mac OS X and has been installed
together with the Importer/Exporter and located in the subfolder contribs/colladalgltf of the
installation directory. Per default, the relative path (depending on the operating system in use)
of the COLLADAZ2gITF tool is proposed in the Path of the COLLADA2gITF tool text field
whose value will be used by the Importer/Exporter to run the target executable file. Thus, if
you want to use another version of the COLLADA2gITF tool, its absolute path has to be

3 https://github.com/KhronosGroup/COLLADA2GLTF/wiki

180 3D Geodatabase for CityGML 2018

manually specified using, for example, the Browse button to open a file selection dialog.
Starting with the Importer/Exporter version 4.0.0 however, version 2.1.0 or later of the
COLLADA2gITF tool is required in order to enable support for both gITF version 1.0 and
2.0. The pre-installed COLLADA2gITF binaries come already in version 2.1.3. It is also
possible to just export glTF models without COLLADA models by activating the Do not
create COLLADA (.dae) files checkbox.

When exporting a textured city object in gITF, its texture images can either be encoded in the
Base64 format and embedded into the gITF file, or saved as separate image files in the same
directory as the gITF file having references to them. This can be controlled by the setting
Embed textures in gITF (.gltf) files. In fact, both options have their pros and cons: the gITF
file without embedded texture images allows client applications to realize an incremental
loading effect which may give a better user experience, since the geometry contents and
texture images can be loaded and rendered consecutively. However, this will result in a large
amount of AJAX requests which might possibly impair the overall visualization performance
especially when a large number of city objects are loaded simultaneously. This issue can be
avoided by choosing the way of embedding the texture images into the gITF file. However,
loading of the geometries and textures of a city object must be performed within one AJAX
request that may slightly slow down the speed of the visualization of individual city object.

Note: The exported gITF file can be further converted to the so-called binary gITF file
which is a binary container for gITF models and allows for faster loading and
processing 3D objects. However, this conversion process is currently not yet
supported by the KML/COLLADA/gITF Exporter and therefore needs to be carried
out later wusing third party tools which can be found on the
https://github.com/KhronosGroup/gITF website.

Export in kmz format

Determines in which format single files and tiled exports should be written: kmz when
selected, kml when not. Whatever format is chosen, the main file (so called master file,
pointing to all others) will always be a kml file, all other files will comply with this setting.

Tests have shown shorter loading times (in Google Earth) for the kml format (as opposed to
kmz) when loading from the local hard disk. The Earth Browser's stability also seems to
improve when using the uncompressed format. On the other hand, when loading files from a
server kmz reduces the amount of requests considerably, thus increasing performance. Kmz is
also recommended for a better overview since kml exports may lead to a large number of
directories and files.

The Export in kmz format and Create gITF model options are mutually exclusive. A warning
message will be displayed when the user trys to choose the both.

Show bounding box borders

When exporting a region of interest via the bounding box option in the
KML/COLLADA/gITF Export tab, this checkbox specifies whether the borders of the whole
bounding box will be shown or not. The frame of the bounding box is four times thicker than
the borders of any single tile in a tiled export.

https://github.com/KhronosGroup/glTF

3D Geodatabase for CityGML 2018 181

Show tile borders
Specifies whether the borders of the single tiles in a tiled export will be shown or not.

Tile side length for automatic tiling

Applies only to automatically tiled exports and sets the approximate square size of the tiles.
Since the Bounding Box settings in the KML/COLLADA/gITF Export tab are the determining
factor for the area to be exported and have priority over this setting, the resulting tiles may not
be perfectly square or have exactly the side length fed into this field.

Each CityObject in an own region

The visibility of the objects exported can be further fine-tuned by this option. While the
visibility settings on the main KML/COLLADA/gITF Export tab apply to the whole area (no
tiling) or to each tile (automatic, manual) being exported, this checkbox allows to individually
define a KML <Region> for every single city object. The limits of the object’s region are
those of the object’s CityGML Envelope.

Note: This setting only takes effect when if the export KML/KMZ files are opened with
Google Earth (Pro). The Cesium-based 3D web client will silently ignore this setting.

Following the KML Specification [Wilson 2008], each KML <Region> is defined inside a
KML <NetworkLink> and has an associated KML<Link> pointing to a file. This implies
when this option is chosen a subfolder is created for each object exported, identified by the
object’s gmlld. The object’s subfolder will contain any KML/COLLADA/gITF files needed
for the visualization of the object in the Earth browser. This folder structure (which can
contain a large number of subfolders) is required for the KML <Region> visibility
mechanism to work.

When active, the parameters affecting the visibility of the object’s KML <Region> can be
set through the following related fields.

The field visible from determines from which size on screen the object’s KML <Region>
becomes visible, regardless of the visibility value of the containing tile, if any. Since this
value is the same for every single object and they have all different envelope sizes a good
average value should be chosen.

The field view refresh mode specifies how the KML <Link> corresponding to the KML
<Region> is refreshed when the geographic view changes. May be one of the following:

e never - ignore changes in the geographic view.

e onRequest - refresh the content of the KML <Region> only when the user explicitly
requests it.

e onStop - refresh the content of the KML <Region> n seconds after movement stops,
where 7 is specified in the field view refresh time.

e onRegion - refresh the content of the KML <Region> when it becomes active.

182 3D Geodatabase for CityGML 2018

As stated above, the field view refresh time specifies how many seconds after movement stops
the content of the KML <Region> must be refreshed. This field is only active and its value
is only applied when view refresh mode is onStop.

Write JSON file

After exporting some cityobjects in KML/COLLADA/gITF you may need to include them
into websites or somehow embed them into HTML. When working with tiled exports
referring to a specific object inside the KML/COLLADA/gITF files can become a hard task if
the contents are loaded dynamically into the page. It is impossible to tell beforehand which
tile contains which object. This problem can be solved by using a JSON file that is
automatically generated when this checkbox is selected.

In the resulting JSON file each exported object is listed, identified by its gmlld acting as a key
and some additional information is provided: the envelope coordinates in CRS WGS84 and
the tile, identified by row and column, the object belongs to. For untiled exports the tile’s row
and column values are constantly 0.

This JSON file has the same name as the so-called master file and is located in the same
folder. Its contents can be used for indexed search of any object in the whole
KML/COLLADA/gITF export.

JSON file example:

{
"BLDG_0003000b0013felf": {
"envelope": [13.411962, 52.51966, 13.41277, 52.520091],
"tile": [1, 1]},

"BLDG_00030009007£8007": {

"envelope": [13.406815, 52.51559, 13.40714, 52.51578],

"tile": [0, O]}

}

The JSON file can automatically be turned into JSONP (JSON with padding) by means of
adding a function call around the JSON contents. JSONP provides a method to request data
from a server in a different domain, something typically forbidden by web browsers since it is
considered a cross-site-scripting attack (XSS). Thanks to this minimal addition, the JSON file
contents can be more easily embedded into webpages or interpreted by web kits without
breaking any rules. The function call name to be added to the original JSON contents is
arbitrary and must only be entered in the callback method name field.

Note: Another solution for overcoming the restriction on making cross-domain requests is
to make use of the Cross-Origin Resource Sharing (CORS) mechanism by enabling
the web server to include additional HTTP headers in the response that allows web
browsers to access the requested data. When working with the 3DCityDB-Web-Map-
Client, it is required that the web server storing the KML/COLLADA/gITF datasets
must be CORS-enabled. In this case, there is no need anymore to use this JSONP
solution and the option of #ype JSONP should be deactivated.

3D Geodatabase for CityGML 2018

5.6.3.2 Rendering Preferences

Most aspects regarding the look of the KML/COLLADA/gITF exports when visualized in
virtual globes like Google Earth and Cesium can be customized under the preferences tab,
node KML/COLLADA/gITF Export, subnode Rendering. Each of the top-level feature
categories has its own Rendering settings. For the sake of clarity the most complex Rendering
settings for Buildings will be explained here as an example. Settings for all other top-level
features are either identical or simpler. An exceptional case is GenricCityObject which can be
exported into point or line geometries, and the corresponding settings will be explained at the

end of this section.

File Project View Help

[1mport | Export | KML/COLLADA/QITF Export | Database | Preferences |

- CityGML Import
) CityGML Export
=I-KML/COLLADA /gITF Export
 General

F} Rendering

~WaterBody
LandUse
Vegetation
Transportation
Relief
CityFurniture
- GenericCityObject
| L.Surface and Solid
. “-Point and Curve
CityObjectGroup
Bridge

" Turnel

¢; Balloon

- Lo Altitude Terrain

+|-Database

#-General

Building

Footprint and extruded display options
Alpha-value (0-255)

Fill color Line color _

V| Highlight when enMouseOver
Highlighted fill color Highlighted line color
LODO geometry property selection [footprint - |

Geometry display options
Alpha-value (0-255)

wall fill color wal line color [R
S ot i [

| Highlight when enMouseOver
Highlighted fill color Highlighted line color
Surface distance (0-10m) (0.75

COLLADA/gITF display options
'] Ignore surface orientation (<double_sided > 1< /double_sided>)

|¥] Generate surface normals

| Crop texture images

V] Generate texture atlases with algorithm | BASIC
[¥] Texture atlas sizes must be powers of 2

V| Scale texture images by (0.0-1.0) 0.4

These color settings are only used for objects without Appearance elements
Alpha-value (0-255) 2552

wall fill color Roof fill color _

1

) Highlight when enMouseOver (Just for Google Earth)
Highlighted fill color Highlighted line color

Surface distance (0-10m) (0.75

Restore | [Defaut | [Apply |

Database disconnected

Figure 100: Rendering settings for the KML/COLLADA/gITF Building export.

184 3D Geodatabase for CityGML 2018

All settings in this menu are grouped according to the display form they relate to.

Footprint and extruded display options

In this section the fill and line colors can be selected. Additionally, it can be chosen whether
the displayed objects should be highlighted when being run over with the mouse or not.
Highlighting colors can only be set when the highlighting option is enabled. The alpha value
affects the transparency of all colors equally: 0 results in transparent (invisible) colors, 255 in
completely opaque ones. A click on any color box opens a color choice dialog.

As defined in the CityGML specification [Groger et al. 2012] CityGML version 2.0.0 allows
LoDO representation (footprint and roofprint representations) for buildings and building parts.
If LoDO in the Level of Export setting on the main KML/COLLADA/gITF Export tab is
selected, there are three options available for LoD0 geometry export:

e footprint: the footprint geometries of the buildings or building parts will be exported
e roofprint. the roofprint geometries of the buildings or building parts will be exported

e roofprint, if none then footprint. footprint geometries will be exported if none of the
roofprint geometries are found.

Geometry display options

This parameter section distinguishes between roof and wall surfaces and allows the user to
color them independently. The alpha value affects the transparency of all roof and wall
surface colors in the same manner as in the footprint and extruded cases: 0 results in
transparent (invisible) colors, 255 in completely opaque ones. A click on any color box opens
a color choice dialog.

As previously stated: when not explicitly modeled, thematic surfaces will be inferred for
LoD1 or LoD2 based exports following a trivial logic (surfaces touching the ground —that is,
having a lowest z-coordinate- will be considered wall surfaces, all other will be considered
roof surfaces), in LoD3 or LoD4 based exports surfaces not thematically modeled will be
colored as wall surfaces.

The highlighting effect when running with the mouse over the exported objects can also be
switched on and off. Since the highlighting mechanism relies internally on a switch of the
alpha values on the highlighting surfaces, the alpha value set in this section does not apply to
the highlighted style of geometry exports, only to their normal style. For a detailed
explanation of the highlighting mechanism see the following section.

COLLADA/gITF display options

These parameters control the export of COLLADA and gITF models. The first option
addresses the fact that sometimes objects may contain wrongly oriented surfaces (points
ordered clockwise instead of counter-clockwise) as a result of errors in some previous data
gathering or conversion process. When rendered, wrongly oriented surfaces will only be
textured on the inside and become transparent when viewed from the outside. Ignore surface
orientation informs the viewer to disable back-face culling and render all polygons even if
some are technically pointing away from the camera.

3D Geodatabase for CityGML 2018 185

Note: This will result in lowered rendering performance. Correcting the surface orientation
data is the recommended solution. This option only provides a quick fix for
visualization purposes.

The activation of the option Generate surface normal allows calculating the surface normals
for the exported object surfaces that can be illuminated with a shading effect in 3D scenes and
therefore provides a better visual representation of the 3D object which has a constant color
throughout its surfaces. If this option is not activated, this 3D object will be rendered as a
solid geometry without any visual distinction of its boundary surfaces (cf. Figure 101).
However, when exporting textured 3D models, the shading effect is not relevant, since the
texture information can already provide a sophisticated visual effect.

Note: Starting with version 4.0.0, the Importer/Exporter activates the option Generate
surface normal by default for all (top-level) features if such information is available.

Figure 101: Comparison of the different visual effects of the same 3D model with (the left figure) and without
(the right figure) surface normals

Surface textures can be stored in an image file, or grouped into large canvases containing all
images clustered together so-called texture atlases, which can significantly increase the
storage efficiency and loading speed of 3D models. However, in some CityGML datasets, it
might occur that a very large texture atlas image is shared by multiple surface geometries
belonging to many different city objects. In this case, every exported COLLADA/gITF model
representing a city object will receive a complete copy of the texture atlas image in which
only a small portion of it is actually used. This will result in extreme performance issues when
loading and rendering such COLLADA/gITF models in Earth browsers. In order to avoid this,
the option Crop texture images shall be activated which allows cropping the large texture
atlas image into a number of small texture images, each of which could be very small in size
and should correspond to only one surface geometry of the city object.

186 3D Geodatabase for CityGML 2018

With the option Generate texture atlases with algorithm, grouping images in an atlas or not
and the algorithm selected for the texture atlas construction (differing in generation speed and
canvas efficiency) can be set here. Depending on the algorithm and size of the original
textures, an object can have one or more atlases, but atlases are not shared between separate
objects.

The texture atlas algorithms address the problem of two-dimensional image packing, also
known as 'knapsack problem’ in different ways (see [Coffman et al. 1980]):

e BASIC: recursively divides the texture atlas into empty and filled regions (see
http://www.blackpawn.com/texts/lightmaps/default.html). The first item is placed in
the top left corner. The remaining empty region is split into two rectangles along the
sides of the item. The next item is inserted into one of the free rectangles and the
remaining empty space is split again. Doing this in a recursive way builds a binary tree
representing the texture atlas. When adding an item, there is no information of the
sizes of the items that are going to be packed after this one. This keeps the algorithm
simple and fast. The items may be rotated when being inserted into the texture atlas.

e TPIM: touching perimeter (see [Lodi et al. 1999] and [Lodi et al. 2002]). Sorts images
according to non-increasing area and orients them horizontally. One item is packed at
a time. The first item packed is always placed in the bottom-left corner. Each
following item is packed with its lower edge touching either the bottom of the atlas or
the top edge of another item, and with its left edge touching either the left edge of the
atlas or the right edge of another item. The choice of the packing position is done by
evaluating a score, defined as the percentage of the item perimeter which touches the
atlas borders and other items already packed. For each new item, the score is evaluated
twice, for the two item orientations, and the highest value is selected.

e TPIM w/o image rotation: touching perimeter without rotation. Same as TPIM, but
not allowing for rotation of the original images when packing. Score is evaluated only
once since only one orientation is possible.

From the algorithms, BASIC is the fastest (shortest generation time) and produces good
results, whereas TPIM is the most efficient (highest used area/total atlas size ratio).

Scaling texture images is another means of reducing file size and increasing loading speed. A
scale factor of 0.2 to 0.5 often still offers a fairly good image quality while it has a major
positive effect on these both issues. Default value is 1.0 (no scaling). This setting is
independent from the atlas setting and both can be combined together. It is possible to
generate atlases and then scale them to a smaller size for yet shorter loading times in Earth
browsers.

In the next parameter section, the fill color of the roof and wall surfaces can be set by clicking
on the corresponding color box to open the color selection dialog. The alpha value that affect
the transparency of all surface colors can also be selected from a range of 0 (completely
transparent) to 255 (completely opaque).

3D Geodatabase for CityGML 2018 187

Note: This setting only takes effect if none of the appearance themes (as defined in the
CityGML specification [Groger et al. 2012]) is selected or available in the currently
connected 3DCityDB instance.

Buildings can be put together in groups into a single model/placemark. This can also speed up
loading, however it can lead to conflicts with the digital terrain model (DTM) of the Earth
browser, since buildings grouped together have coordinates relative to the first building on the
group (taken as the origin), not to the Earth browser's DTM. Only the first building of the
group is guaranteed to be correctly placed and grounded in the Earth browser. If the objects
being grouped are too far apart this can result in buildings hovering over or sinking into the
ground or cracks appearing between buildings that should go smoothly together.

Up to Google Earth 7, no highlighting of model placemarks loaded from a location other than
Google Earth's own servers is supported natively (glowing blue on mouse over). Therefore, a
highlighting mechanism of its own was implemented in the KML/COLLADA/gITF exporter:
highlighting is achieved by displaying a somewhat "exploded" version of the city object being
highlighted around the original object itself. "Exploded" means all surfaces belonging to the
object are moved outwards, displaced by a certain distance orthogonally to the original
surface. This "exploded" highlighting surface is always present, but not always visible: when
the mouse is not placed on any building (or rather, on the highlighting surface surrounding it
closely) this "exploded" highlighting surface has a normal style with an alpha value of 1,
invisible to the human eye. When the mouse is place on it, the style changes to highlighted,
with an alpha value of 140 (hard-coded), becoming instantly visible, creating this model
placemark highlighted feel. The displacement distance for the exploded highlighting surfaces
can be set here. Default value is 0.75m.

Figure 102: Object exported in the COLLADA display form being highlighted on mouseOver

188 3D Geodatabase for CityGML 2018

This highlighting mechanism only works in Google Earth and has an important side effect:
the model's polygons will be loaded and displayed twice (once for the representation itself,
once for the highlighting), having a negative impact in the viewing performance of the Earth
browser. The more complex the models are, the higher the impact is. This becomes
particularly noticeable for models exported from a LoD3 basis upwards. The highlighting and
grouping options are mutually exclusive.

GenericCityObject

As previously stated: in addition to the standard support for surface and solid geometry
exports, other geometry types like point and line for the feature class GenricCityObject can
also be exported in KML format. The related rendering node contains two further
independent subnodes (“Surface and Solid” and “Point and Curve) that allows for
customizing the export of different geometry types individually. As the subnode “Surface and
Solid” has similar settings illustrated in the previous section, only the settings within the
subnode “Point and Curve” will be explained in the following paragraphs.

3D Geodatabase for CityGML 2018

189

File Project View Help

| mport | Export | kiMLjCOLLADA/GITF Export | Database | Preferences

[#-CityGML Import

[#-CityGML Export

[=)-KML/COLLADA gITF Expart
General

E1-Rendering

--Building

----- WaterBody

--LandUse

----- Vegetation

----- Transportation

--Relief

- CityFurniture

[=l-GenericCityObject

--CityObjectGroup
--Bridge

----- Tunnel
[+}-Balloon

- Altitude fTerrain
H-Database

H-General

Point and Curve

Point rendering options
Altitude Mode
:damp to ground
@ Cross
Thickness
Color
Highlight when onMouseCver
Highlighted thickness 6

Highlighted color

15

Length of Side
Fill color
Highlight when onMouseCver

Highlighted fill color

Curve rendering options

Altitude Mode

:damp to ground

Thickness

Color

Highlight when onMouseQwer
Highlighted thickness =

Highlighted color

Restore] ’ Default] ’ Apply]

Figure 103: Rendering settings for point and curve geometry exports for GenericCityObject.

Database disconnected

The field Altitude mode specifies how the Z-coordinates (altitude) of the exported point
geometries are interpreted by the earth browser. Possible value may be one of the following

options:

the vertical reference system (EGM96 geoid in KML).

absolute: the altitude is interpreted as an absolute height value in meters according to

relative: the altitude is interpreted as a value in meters above the terrain. The absolute
height value can be determined by adding the attitude to the elevation of the point.

clamp to ground: the altitude will be ignored and the point geometry will be always
clamp to the ground regardless of whether the terrain layer is activated or not.

190

3D Geodatabase for CityGML 2018

Three setting options are available which allow user to choose a more appropriate display
form for point geometry on the 3D map:

Cross: The point geometry can be spatially represented by using a cross-line in the
form like “X” with the length size of around 2 meters (hard-encoded). Changing the
thickness and color settings will affect the width of the cross-line geometry in pixels
and the display color respectively. The mouseOver highlighting effect is also
supported and can be switched on and off by the user. When highlighting is enabled,
further settings can be made for the thickness and color properties of the highlighting
geometry.

(e

v '1_..:_[(.' 2

Figure 104: An exported point geometry object displayed as a cross-line.

Icon: An alternative way for displaying point geometry in the earth browser is to use
the KML’s native point placemark that can be represented with an icon in a user-
defined color. The size of the icon can be determined with the help of the Scale
option, where the default value is 1.0 (no scaling) which can give a fairly good
perception.

3D Geodatabase for CityGML 2018 191

Figure 105: An exported point geometry object displayed as an icon.

e Cube: Another possibility of representing the point geometry is to use a small solid
particle whose central point should be identical to the target point. Similar to the
options (Cross and Icon) described above, settings options for the size, color, and
highlighting effect can also be adjusted to achieve an optimal visual effect.

Figure 106: An exported point geometry object displayed as a small cube.

The rendering settings for the export of curve geometry objects can be configured in a similar
manner as those of point geometry with the display form “Cross”.

Note: When displaying curve geometry objects in Google Earth, the altitude modes like
absolute and relative may result in the curves intersecting with or hovering over the earth
ground. If the user wants to keep the curve geometry objects always being draped on the earth
ground, the altitude mode clamp to ground shall be chosen.

192 3D Geodatabase for CityGML 2018

5.6.3.3 Information Balloon Preferences

KML offers the possibility of enriching its placemark elements with information bubbles, so-
called balloons, which pop up when the placemark is clicked on. This is supported by the
Importer/Exporter regardless of the display form in which the objects is exported.

Note: When exporting in the COLLADA display form it is recommended to enable the
"highlighting on mouseOver" option, since model placemarks not coming from
Google Earth servers are not directly clickable, but only through the sidebar.
Highlighting geometries are, on the contrary, directly clickable wherever they are
loaded from.

Note: If you want to use the 3DCityDB-Web-Map-Client (see chapter 0 for more details) to
visualize the exported datasets (KML/gITF models), the options (the both
checkboxes shown in Figure 107) for creating information balloons shall be
deactivated, since the 3DCityDB-Web-Map-Client does not provide support for
showing information balloons. In stead, it utilizes the online spreadsheet (Google
Fusion Table) to query and display attribute information of the respective objects.

Balloon preferences can be set independently for each CityGML top-level feature type. That
means every object can have its own individual template file (so that for instance, WaterBody
balloons display a different background image as Vegetation balloons), and it is perfectly
possible to have information bubbles for some object types while some others have none. For
GenericCityObject, the point and line geometry object can also has its own individual balloon
settings. The following example is set around Building balloons but it applies exactly the
same for all feature classes.

File Project View Help

[mport | Export | KML/COLLADA/GITF Export | Database | Preferences |

(- CityGML Import Building
- CityGML Export
1-KML/COLLADA/GITF Export
~General

[#-Rendering

[=}-Balloan

Placemarks must include <description> (balloon)

Balloon content source
) generic attribute "Balloon_Content™

----- WaterBody

--LandUse -
Browse
----- W Egetatign

""" Transportation ™) selected file only when no generic attribute available
-Relief

- CityFurniture
-GenericCityObject Export balloon contents into a separate file for each object

+.5urface and Solid (must allow access to local files in Google Earth)
“.Point and Curve
- CityObjectGroup
--Bridge
----- Tunnel
--Altitude fTerrain
t-Database
H-General

Restore] [Default] [Apply]

Ready Database disconnected

Figure 107: Building Balloon settings.

3D Geodatabase for CityGML 2018 193

The contents of the balloon can be taken from a generic attribute called Balloon Content
associated individually to each city object in the 3DCityDB. They can also be uniform for all
objects in an export by using an external HTML file as a template, or a combination of both:
individually and uniformly set, the Balloon Content attribute (individually) having priority
over the external HTML template file (uniform). A few Balloon HTML template files can be
found after software installation in the subfolder templates/balloons of the installation
directory.

The balloons can be included in the doc.kml file generated at export, or they can be put into
individual files (one for each object) written together into a "balloon" directory. This makes
later adaption work easier if some post-processing (manual or not) is required. When balloon
contents are put into a separate file for each exported object, access to local files and personal
data must be granted in Google Earth (Tools = Options = General) for the balloons to show.

The balloon contents do not need to be static. They can contain references to the data
belonging to the city object they relate to. These references will be dynamically resolved (i.e.:
the actual value for the current object will be put in their place) at export time in a way similar
to how Active Server Pages (ASP) [Microsoft, 2015] work. Placeholders embedded in the
HTML template, beginning with <3DC1ityDB> and ending with </3DCityDB> tags, will
be replaced in the resulting balloon with the dynamically determined value(s). The HTML
balloon templates can also include JavaScript code.

For all concerns, including dynamic content generation, it makes no difference whether the
template is taken from the Balloon Content generic attribute or from an external file.

Balloon template format. As previously stated, a balloon template consists of ordinary
HTML, which may or may not contain JavaScript code and <3DCityDB> placeholders for
object-specific content. These placeholders follow several elementary rules.

Rules for simple expressions
e Expressions begin with <3DC1ityDB> and end with </3DCityDB>. Expressions are
not case-sensitive.

e Expressions are coded in the form "TABLE/[AGGREGATION FUNCTION]
COLUMN [CONDITION]". Aggregation function and condition are optional. When
present they must be written in square brackets (they belong to the syntax). These
expressions represent an alternative coding of a SQL select statement: SELECT

[AGGREGATION FUNCTION] COLUMN FROM TABLE [WHERE
condition]. Tables refer to the underlying 3DCityDB table structure (see chapter
2.3.2 for details).

e FEach expression will only return those entries relevant to the city object being
currently exported. That means an implicit condition clause somewhat like
"TABLE.CITYOBJECT ID = CITYOBJECT.ID" is always considered and does
not need to be explicitly written.

194

3D Geodatabase for CityGML 2018

Results will be interpreted and printed in HTML as lists separated by commas. Lists
with only one element are the most likely, but not exclusively possible, outcome.
When only interested in the first result of a list the aggregation function FIRST
should be used. Other possible aggregation functions are LAST, MAX, MIN, AVG, SUM
and COUNT.

Conditions can be defined by a simple number (meaning which element from the
result list must be taken) or a column name (that must exist in underlying 3DCityDB
table structure) a comparison operator and a value. For instance: [2] or [NAME =
'abc'].

Invalid results will be silently discarded. Valid results will be delivered exactly as
stored in the 3DCityDB tables. Later changes on the returned results - like substring()
functions - can be achieved by using JavaScript.

All elements in the result list are always of the same type (the type of the
corresponding table column in the underlying 3DCityDB). If different result types
must be placed next to each other, then different <3DC1ityDB> expressions must be
placed next to each other.

Special keywords in simple expressions

The balloon template files have several additional placeholders for object-specific
content, called SPECIAL KEYWORDS. They refer to data that is not retrieved “as is”
in a single step from a table in the 3DCityDB but has to undergo some processing
steps (not achievable by simple JavaScript means) in order to calculate the final value
before being exported to the balloon. A typical processing step is the transformation of
some coordinate list into a CRS different from the one the 3DCityDB is originally set
in. The coordinates in the new CRS cannot be included in the balloon with their
original values as read from the database (which was the case with all other expression
values so far), but must be transformed prior to their addition to the balloon contents.

Expressions for special keywords are not case-sensitive. Their syntax is similar to
ordinary simple expressions, start and end are marked by <3DCityDB> and
</3DCityDB> tags, the table name must be SPECIAL KEYWORDS (a non-existing
table in the 3DCityDB), and the column name must be one of the following:

CENTROID WGS84 (coordinates of the object’s centroid in WGS84 in the following
order: longitude, latitude, altitude)

CENTROID WGS84 LAT (latitude of the object’s centroid in WGS84)

CENTROID WGS84 LON (longitude of the object’s centroid in WGS84)

BBOX WGS84 LAT MIN (minimum latitude value of the object’s envelope in
WGS84)

BBOX WGS84 LAT MAX (maximum latitude value of the object’s envelope in
WGS84)

BBOX WGS84 LON MIN (minimum longitude value of the object’s envelope in
WGS84)

3D Geodatabase for CityGML 2018 195

BBOX WGS84 LON MAX (maximum longitude value of the object’s envelope in
WGS84)

BBOX WGS84 HEIGHT MIN (minimum height value of the object’s envelope in
WGS84)

BBOX WGS84 HEIGHT MAX (maximum height value of the object’s envelope in
WGS84)

BBOX WGS84 LAT LON (all four latitude and longitude values of the object’s
envelope in WGS84)

BBOX WGS84 LON LAT (all four longitude and latitude values of the object’s
envelope in WGS84)

e No aggregation functions or conditions are allowed for SPECIAL KEYWORDS. If
present they will be interpreted as part of the keyword and therefore not recognized.

e The SPECIAL KEYWORDS list is also visible and available in its current state in the
updated version of the Spreadsheet Generator Plugin (see the following section). The
list can be extended in further Importer/Exporter releases.

Examples for simple expressions:

<3DCityDB>ADDRESS/STREET</3DCityDB>
returns the content of the STREET column on the ADDRESS table for this city object.

<3DCityDB>BUILDING/NAME</3DCityDB>
returns the content of the NAME column on the BUILDING table for this city object.

<3DCityDB>CITYOBJECT_GENERICATTRIB/ATTRNAME</3DCityDB>
returns the names of all existing generic attributes for this city object. The names will
be separated by commas.

<3DCityDB>CITYOBJECT GENERICATTRIB/REALVAL

[ATTRNAME = 'H Trauf Min']</3DCityDB>
returns the value (of the REALVAL column) of the generic attribute with attrname
H Trauf Min for this city object.

<3DCityDB>APPEARANCE/ [COUNT] THEME</3DCityDB>
returns the number of appearance themes for this city object.

<3DCityDB>APPEARANCE/THEME [0]</3DCityDB>
returns the first appearance for this city object.

<3DCityDB>SPECIAL_KEYWORDS/CENTROID_WGS84_LON</3DCityDB>
returns the longitude value of this city object’s centroid longitude in WGS84.

<3DCityDB> simple expressions can be used not only for generating text in the balloons,
but any valid HTML content, like clickable hyperlinks:

196 3D Geodatabase for CityGML 2018

<a hre f="<3DCityDB>EXTERNAL_REFERENCE/URI</ 3DCityDB>">
click here for more information
returns a hyperlink to the object's external reference,

or embedded images:

<img src= "<3DCityDB>CITYOBJECT GENERICATTRIB/URIVAL
[ATTRNAME='TIllustration']</3DCityDB>" width=400>

This last example produces, for instance, in the case of the Pergamon Museum in Berlin:

<img src="http://upload.wikimedia.org/wikipedia/commons/d/
dl/FrisocaltarPergamo.jpg" width=400>

BLDG_00030000001829f9

Pergamon Museum

Address:
Bodestr. 1
10178, Berlin

Image
22011 C

Figure 108: Dynamically generated balloon containing an embedded image (image taken from Wikimedia).

Simple expressions are sufficient for most use cases, when only a single value or a list of
values from a single column is needed. However, sometimes the user will need to access more
than one column at the same time with an unknown amount of results. For these situations
(listing of all generic attributes along with their values is one of them) iterative expressions

were conceived.

http://upload.wikimedia.org/wikipedia/commons/d/d1/FrisoaltarPergamo.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d1/FrisoaltarPergamo.jpg

3D Geodatabase for CityGML 2018 197

Rules for iterative expressions

Iterative expressions will adopt the form:
<3DCityDB>FOREACH

TABLE/COLUMN [, COLUMN] [, COLUMN] [...] [, COLUMN] [CONDITION]
</3DCityDB>
[...]
HTML and JavaScript code (column content will be referred to as %1, %2, etc. and
follow the columns order in the FOREACH line. %0 is reserved for displaying the
current row number)

[...]
<3DCityDB>END FOREACH</3DCityDB>

No aggregation functions are allowed for iterative expressions. The amount of
columns is free, but they must belong to the same table. Condition is optional. Implicit
condition (data must be related to the current city object) applies as for simple
expressions.

FOREACH means truly "for each". No skipping is possible. If skipping at display time
is needed it must be achieved by JavaScript means.

The generated HTML will have as many repetitions of the HTML code between the
FOREACH and END FOREACH tags as lines the query result has.

No inclusion of simple expressions or SPECIAL KEYWORDS between FOREACH and
END FOREACH tags is allowed.

No nesting of FOREACH statements is allowed.

Examples for iterative expressions:
Listing of generic attributes and their values:

<script type="text/javascript">
function ga value as tooltip(attrname, datatype, strval,
intval, realval)
{
document.write ("<span title=\"");
switch (datatype) {

case "1": document.write(strval);
break;

case "2": document.write(intval) ;
break;

case "3": document.write(realval);
break;

default: document.write ("unknown") ;

}s

198

3D Geodatabase for CityGML 2018

document.write ("\">" + attrname + "")

<3DCityDB>FOREACH

14

CITYOBJECT GENERICATTRIB/ATTRNAME,DATATYPE, STRVAL,

INTVAL, REALVAL</3DCityDB>
ga value as tooltip("%1", "%2",
<3DCityDB>END FOREACH</3DCityDB>

"%3"’ "%4"’

</script>

BLDG_0003000b006907e8

I —
Address:

Rochstr. 9

Berlin

Awvailable in: LoD2

Appearances: 1

Measured height: 78.05785 m

Existing generic attributes {(mouseOver for values): ANZ_LOC,
EIG_KL_PV, EIG_KL_ST, FOLIE, GE_LoD2_zOffset, GMDE,
H_First_Max, H_First_Min, HNR, H_Trauf_Max, H_Trauf_Min, Kachel,
KREIS, LAND, LFD, OAR, RBEZ, S5TR, TexVersion

External reference name: 0003000b0069078

’”
&

o
¢ #
f"
"I
i~

s

TN

‘__
LR Y WY
L N

~

\
N

AR

-, t\\“‘

.
MNARNN

VOO L Y
\\‘\‘\-\

AR RN
ARRRY
N,

AR R BLER LN
\\\\\~..-.,

N
~

N

Imag e G200
-

AR
.
\

"%5") ,.

Figure 109: Model placemark with dynamic balloon contents showing the list of generic attributes.

3D Geodatabase for CityGML 2018 199

5.6.3.4 Altitude/Terrain Preferences

In order to ensure a perfect display of the exported datasets in the Earth browser, some
adjustments on the z coordinate for the exported 3D objects may be necessary.

{4 2D City Database Importet] |

File Project |View| Help

| import | Expert | KML/COLLADA/GITF Export | Database | Preferences

[#-CityGML Import Altitude/ Terrain
- CityGML Export
J-KML/COLLADA/gITF Export
;—----General

[=-Rendering Altitude mode

-Building r
bsolute
----- WaterBody |Esoi

--LandUse
----- Vegetation Altitude offset
----- Transportation ™ Mo offset
-~ Relief]
- CityFurniture
[=-GenericCityObject @ Move each object to bottom height C
E—----Surface and Solid
“..Pgint and Curve
- CityObjectGroup Call Google's elevation APT when no data available
- Bridge
----- Tunnel
[#-Balloon
H-Database
H-General

Use original z-Coordinates without transformation

~1 Constant (in m)

71 Use generic attribute "GE_LoDn_zOffset™

Restore] l Default] [Apply]

Ready Database disconnected

Figure 110: Altitude/Terrain settings.

Use original z-Coordinates without transformation

Depending on the spatial database used, the transformation of the original coordinates to
WGS84 will include transformation of the z-coordinates (PostGIS >= 2.0 or Oracle >= 11g)
or not (Oracle 10g). To make sure only the planimetric (x,y) and not the z-coordinates are
transformed this checkbox must be selected. This is useful when the used terrain model is
different from Google Earth’s and the z-coordinates are known to fit perfectly in that terrain
model.

Another positive side-effect of this option is that GE LoDn zOffset attribute values
(explained in the following section) calculated for Oracle 10g keep being valid when imported
into PostGIS >= 2.0 or Oracle >= 11g. Otherwise, when switching database versions and not
making use of this option, GE LoDn_zOffset values must be recalculated again.

GE LoDn_zOffset attribute values calculated for Oracle 10g are consistent for all
KML/COLLADA/ITF exports from Oracle 10g. The same applies to PostGIS >= 2.0 or
Oracle >= 11g. Only cross-usage (calculation in one version, export from the other) creates
inconsistencies that can be solved by turning z-coordinate transformation off.

200 3D Geodatabase for CityGML 2018

This setting affects the resulting GE LoDn zOffset if used when a cityobject has none such
value yet and is exported in KML/COLLADA for the first time, so it is recommended to
remember its status (z-coordinate transformation on or off) for all future exports.

Altitude mode

Allows the user to choose between relative (to the ground), interpreting the altitude as a value
in meters above the terrain, or absolute, interpreting the altitude as an absolute height value in
meters according to the vertical reference system used by the Earth browser (e.g., Google
Earth uses the EGM96 geoid, whereas Cesium uses the WGS84 ellipsoid), or clamp to
ground, which allows the exported objects to be always clamped to ground.

This means, when relative altitude mode is chosen, the z-coordinates of the exports represent
the vertical distance from the digital terrain model (DTM) of the Earth browser, which should
be 0 for those points on the ground (the building's footprint) and higher for the rest (roof
surfaces, for instance). However, z-coordinate values of the city objects stored in a 3DCityDB
usually have values bigger than 0, so choosing this altitude mode will result most times in
exports hovering over the ground.

011 AeroWest
201pRigitalGlobe
il .GeoContent

La00gle
C

Figure 111: Possible export result with relative altitude mode.

When absolute altitude mode is chosen, the z-coordinates of the exports represent the vertical
distance from the vertical datum - the ellipsoid or geoid which most closely approximates the
Earth curvature, regardless of the DTM at that point. This implies, choosing this altitude mode
may result in buildings sinking into the ground wherever the DTM indicates there is a hill or
hovering over the ground wherever the DTM indicates a dent.

3D Geodatabase for CityGML 2018 201

When the clamp to ground altitude mode is chosen, the z-coordinate values of the exported
objects will be ignored and every surface geometry of the KML models will be forced to lie
on the surface of the ground.

For a proper grounding, the Altitude offset setting can additionally be used so that a positive
or negative offset value can be applied to all z-coordinates of the exports, moving the city
objects up and down along the z-axis until they match the ground.

Note: Both Altitude mode and Altitude offset settings will only take effect when the city
objects are exported in the Geometry or COLLADA/gITF display forms. When, for
example, the Footprint display form is selected, The KML/COLLADA/gITF-
Exporter will internally use the clamp to ground altitude mode to ensure that the
exported geometries will be always clamped to ground regardless of the altitude
mode chosen by the user. Likewise, when exporting in the Extruded display form,
the relative altitude model will be internally applied and the height value of the
respective city object will be used to represent the relative height above the ground.

Altitude offset

A value, positive or negative, can be added to the z coordinates of all geometries in one export
in order to place them higher or lower over the earth surface. This offset can be 0 for all
exported objects (no offset), it can be constant for all (constant), or it can have an individual
value for each object to ensure that the bottom of the object is placed on the earth surface.

The first option no offset implies that the z- coordinates of all geometries are kept unchanged
at export time if the option Use original z-Coordinates without transformation is selected.
The second option constant is particularly appropriate for exports of a single city object,
allowing some fine-tuning of its position along the z-axis.

When exporting regions - via bounding box settings -, the other two options, Move each
object to bottom height 0 and Use generic attribute "GE LoDn_zOffset", are recommended.

Once the option Move each object to bottom height 0 is selected, the elevation value of the
lowest point for every object will be calculated and its inversed value should exactly equal to
the zOffset value of the respective object. This zOffset value will be used for adjusting the z-
coordinates of the object to ensure that its lowest point has a height of 0 meter. This setting is
particularly advisable, since combined with the relative altitude mode the exported objects
can always be properly placed on the ground in Google Earth regardless of whether its terrain
layer is activated or not. However, if the absolute altitude is chosen, a proper grounding of the
objects requires that the terrain layer in Google Earth must be deactivated.

Note: Regardless of the chosen altitude mode, the Cesium-based 3DCityDB-Web-Map-
Client always interprets the altitude as an absolute height value in meters according to
the WGS84 ellipsoid reference system. Thus, the option Move each object to bottom
height 0 can only ensure a proper grounding of the objects on the Cesium Virtual
Globe when its WGS84 ellipsoid terrain model (default) is activated.

When choosing the absolute altitude model and displaying city objects on Google Earth with
enabled terrain layer, the option Use generic attribute "GE LoDn_zOffset"” shall be selected.

202 3D Geodatabase for CityGML 2018

Here the GE LoDn zOffset generic attribute value can be automatically calculated by the
Importer/Exporter if not available. This calculation uses data returned by Google's Elevation
API [Google Elevation API, 2015]. After completing the calculation, the results will be stored
in the CITYOBJECT GENERICATTRIB table of the 3DCityDB for future use.

Since city objects may have different geometries for different LoDs, the anchoring points and
their elevation values may also differ for each LoD. This explains the need for having
GE LoDI1 zOffset, GE _LoD2 zOffset, etc. generic attributes for one single object.

The algorithm used to calculate the individual zOffset for an object iterates over the points
with the lowest z-coordinate in the object, calling Google's elevation API in order to get their
elevation. The point with the lowest elevation value will be chosen for anchoring the object to
the ground. The zOffset value results from subtracting the point's z-coordinate from the
point's elevation value.

When calling Google's elevation API for calculating the zOffset of an object a message is
shown: "Getting zOffset from Google's elevation service for BLDG_0003000e008c4dc4".

Google's elevation API imposes strong usage restrictions: non-premium users can issue a
maximum of 2,500 requests per day. This limit may be reached fast when exporting areas
where no city objects have GE LoDn_zOffset values assigned. When the daily usage limit is
reached a warning message is shown: "Elevation service returned OVER _QUERY LIMIT".
The usage limit is bound to the caller's IP address. It is advisable to use several different
computers (or IP addresses) when filling the 3DCityDB with GE LoDn zOffset values (or
become a premium user).

A second usage restriction allows for no more than 10 requests per second. The Import/Export
tool takes care of not exceeding this limit by pausing between requests when required. That
will slow down KML/COLLADA/gITF exports when done for the first time. Subsequent
exports will be faster since the GE LoDn_zOffset attribute value is already in the 3DCityDB
and does not have to be calculated again.

Saving the building's height offset in the form of a generic attribute ensures this information
will be present in every export in CityGML format (and therefore at every re-import) and can
thus be transported across databases. Please note, that not the DTM height value of Google
Earth will be stored but the difference of the individual building’s minimum z value and the
value reported by the Google Elevation Service. Following this approach further usage
restrictions of the Google Elevation Service are avoided.

In some unusual cases, even after automatic calculation of the GE LoDn zOffset value the
object may still not be perfectly grounded to the Earth surface for a number of reasons; e.g.
wrong height data of the model, or low resolution of the DTM at that area. In those cases a
manual adjustment of the value in the 3DCityDB is needed. After the content of
GE _LoDn_zOffset has been fine-tuned to a proper value it should be persistently stored in the
database.

3D Geodatabase for CityGML 2018 203

-Google

Figure 112: Points sent to Google's Elevation API for calculation of the zOffset.

LGoeogle
C
—)

Figure 113: Export with absolute altitude mode and no offset.

204

3D Geodatabase for CityGML 2018

01i1eRigitalGlobe
1.GeoContent

. k_.t'u‘,}:ﬂi:

_— |

Figure 114: Export with absolute altitude mode and use of GE_LoDn_zOffset.

5.6.3.5 General setting recommendations

Depending on the quality and complexity of the 3DCityDB data, export results may vary
greatly in aesthetic and loading performance. Experimenting will be required in most cases
for a fine-tuning of the export parameters. However, some rules apply for almost all cases:

kmz format use is recommended when the files will be accessed over a network and
the selected display form is Footprint, Extruded, or Geometry. In case of glTF-export,
only kml format is allowed.

Visibility values for the different display forms should be increased in steps of around
one third of the tile side length.

Visibility from 0 pixels (always visible) should be avoided, especially for large or
complex exports, because otherwise the Earth browser will immediately load all data
at once since it all must be visible.

Tile side length (whether tiling is automatic or manual) should be chosen so that the
resulting tile files are smaller than 10MB. When single files are bigger than that
Google Earth gets unresponsive. For densely urbanized areas, where many placemarks
are crimped together a tile side length value between 50 and 100m should be used.

When not exporting in the COLLADA/gITF display form, files will seldom reach this
10MB size, but Earth browser will also become unresponsive if the file loaded
contains a lot of polygons, so do not use too large tiles for footprint, extruded or
geometry exports even if the resulting files are comparatively small.

Do not choose too small tile sizes, many of them may become visible at the same time
and render the tiling advantage useless.

3D Geodatabase for CityGML 2018 205

e Using texture atlas generation when producing COLLADA/gITF display form exports
always results in faster model loading times.

e From all texture atlas generating algorithms, BASIC is the fastest (shortest generation
time), TPIM the most efficient (highest used area/total atlas size ratio).

e Texture images can often be scaled down to 0.2 - 0.5 without noticeable quality loss.
This depends, of course, on the quality of the original textures.

e Highlighting puts the same polygons twice in the resulting export files, one for the
buildings themselves, one for their highlighting. This has a negative impact on the
viewing performance. The more complex the buildings are the worse the impact.
When highlighting is enabled for exports based on a CityGML LoD3 or higher Google
Earth may become quite slow.

e If you want to use the 3DCityDB-Web-Map-Client to visualize the exported datasets,
options for creating highlighting geometries should not be chosen, since the
highlighting functionality is already well-supported by the 3DCityDB-Web-Map-
Client which requires no extra highlighting geometries.

e The 3DCityDB-Web-Map-Client allows for on-the-fly activating and deactivating
shadow visualization of 3D objects exported in the gITF format. However, this
functionality is currently not available when viewing KML models exported in the
Footprint, Extruded, and Geometry display forms.

e Balloon generation is slightly more efficient when a single template file is applied for
all exported objects.

e When exporting in the Footprint or Extruded display forms, the altitude/terrain
settings will be silently ignored by the KML/COLLADA/gITF-Exporter which will
instead internally applies the appropriate altitude models to the exported objects to
ensure that they will be properly placed on the ground in Earth browsers. However,
when exporting in the Geometry or COLLADA/gITF display forms, the altitude/terrain
settings must be properly adapted regarding the Earth browsers to be used.

e In most cases, the combination of the relative altitude mode with the Move each object
to bottom height 0 altitude offset allows for a proper grounding and displaying of the
objects in Earth browsers. However, when using the Cesium-based 3DCityDB-Web-
Map-Client, its default WGS84 ellipsoid terrain model must be activated.

e When using the absolute z-coordinates and displaying the exported datasets together
with terrain layer in Google Earth, you need to choose the following combination of
settings: absolute altitude mode, generic attribute “GE LoDn_zOffset”, and call
Google's elevation API when no data is available.

e When the Google's elevation API daily quota limit is reached you can continue the
export on another computer, or you can change your IP address (or become a Google
premium user). Repetitive running of the KML/COLLADA/gITF export may be
required over several days until the error message "OVER QUERY LIMIT" no
longer appears.

206 3D Geodatabase for CityGML 2018

5.6.4 Management of user-defined coordinate reference systems
When setting up an instance of the 3D City Database, a coordinate reference system (CRS)
must be chosen for the entire database (cf. chapter 3.3). This CRS is used as default reference
system for all spatial objects that are created and stored in the database instance (expect
implicit geometries) as well as for building spatial indexes and performing spatial functions.

At many places, the Importer/Exporter allows for providing coordinate values associated with
a different CRS though, e.g. when defining spatial bounding box filters for CityGML imports
and exports and KML/COLLADA/gITF exports, or when defining a target CRS into which
coordinate values shall be converted during CityGML exports (see the documentation of the
corresponding operations). To add and manage additional reference systems, the
Importer/Exporter provides a corresponding dialog on the Preferences (Reference
systems subnode of the Database preferences node) tab as shown below.

| 3D City Database Importer/Exporter -] X
File Project View Help

Import Export KML/COLLADA/GITF Export Database Preferences

[#-CityGML Import Reference systems

[#]-CityGML Export

[£]-KML/COLLADA/gITF Export User-defined reference systems

[=-Database

Reference system | [Default] WGS 84 ~
-

[#-General
SRID 4326 Check

aml:srshame urn:ogc:def:crs:EPSG::4326|

Description [Default] WGS 84
Database name |nfa

SRS type nfa

Apply New Copy Delete

Importfexport of user-defined reference systems

Filename 0

Add Replace with Save

Restore Default Apply

Ready Database disconnected
Figure 115: Database preferences — Reference systems.

On top of the preferences page [1], a drop-down list allows for choosing a CRS for display
and editing from the list of user-defined CRSs. This list contains at minimum one predefined
entry called Same as in database which represents the internal CRS of the 3D City Database
instance. This entry will always show the SRID and CRS URN encoding of the currently
connected database instance. Since the internal CRS shall not be changed after database setup
using the Importer/Exporter, the fields of the Same as in database entry cannot be edited.

A new user-defined CRS can be added to this list after clicking the New button. Please
provide the database-internal SRID in the corresponding SRID input field of the user dialog
and enter the URN encoding of the CRS into the gml/:srsName input field (optional). This
field also provides a drop-down list of commonly used encoding schemes which can be used
as template (such as the OGC encoding scheme). A short, meaningful textual description of
the CRS must be provided in the Description field. This description is used as value for the

3D Geodatabase for CityGML 2018 207

drop-down on top of the dialog, but also for similar CRS drop-down lists on further tabs of
the Importer/Exporter. The new CRS is added to the list of user-defined CRSs upon clicking
the Apply button. The following screenshot provides an example.

| 3D City Database Importer/Exporter : citydb - O X
File Project View Help
Import Export KML/COLLADA/GITF Export Database Preferences
[#-CityGML Import Reference systems
[#)-CityGML Export
‘% KML/COLLADA /gITF Export User-defined reference systems
&-Database Reference system |DHDN / 3-degree Gauss-Kruger zone 2 f DHHNS2 ~
-
[#-General
SRID 31466 Check
gml:srshame urn:ogc:deficrs:EPSG:: 31466
Description DHDN / 3-degree Gauss-Kruger zone 2 f DHHNS2
Database name |DHDN [3-degree Gauss-Kruger zone 2
SRS type Projected
Apply New Copy Delete
Importfexport of user-defined reference systems
Filename
Browse
Add Replace with Save
Restore Default Apply
Ready PostgreSQL PostGIS database connected

Figure 116: Adding a new CRS to the list of user-defined CRSs.

The Copy button allows for adding a further CRS by copying and editing the information of
an already existing user-defined CRS. The currently selected CRS is deleted from the list by
clicking the Delete button. The Check button next to the SRID input field facilitates to verify
whether the provided SRID is supported by the currently connected 3D City Database
instance. After a successful check, the non-editable fields Database name and SRS type will
be filled with the corresponding information collected from the currently connected 3D City
Database instance. If the Importer/Exporter is not connected to a database instance, the Check
button is disabled.

The result of the SRID verification may vary between different 3D City Database instances
since 1) the list of predefined spatial reference systems differs between different database
systems and versions and 2) both Oracle and PostgreSQL/PostGIS support the definition of
user-defined spatial reference systems on the database side (please check the respective
database documentation for guidance).

Note: In order to add a user-defined CRS to the Importer/Exporter that is not supported by
the underlying Oracle or PostgreSQL/PostGIS database, you need to first register this
CRS in your database. As soon as the CRS is available from the database, it can be
added to the list of user-defined CRSs in the Importer/Exporter.

The list of user-defined CRSs is automatically stored in the config file of the
Importer/Exporter and loaded upon application start. It can additionally be exported into an
extra file (see [2] in Figure 115). This allows for easily sharing user-defined CRSs between
different installations of the Importer/Exporter. Please provide a valid filename in the

208 3D Geodatabase for CityGML 2018

corresponding input field Filename (use the Browse button to open a file selection dialog) and
click on Save. There are two more options for importing such an external list of CRSs: 1) the
CRSs listed in the external file can be added to the current list of CRSs (Add button) or 2) the
external list can be used to replace the current list (Replace with button).

The Importer/Exporter is shipped with a number of predefined CRSs organized in subfolders
below templates/CoordinateReferenceSystems in the installation folder. Each
CRS definition is stored in its own file and, thus, can be easily imported and added to the list
of user-defined CRSs. Note that the URN encoding of the predefined CRSs generally lacks a
height reference system. The height reference therefore must be added before using this CRS
as target reference system for CityGML exports (cf. chapter 5.4 for more details).

5.6.5 General preferences

In addition to the preference settings that influence the behavior of a particular import or
export operation (cf. previous sections), the General node on the Preferences tab offers
application-wide settings.

5.6.5.1 Cache

Both during CityGML imports at exports, the Importer/Exporter has to keep track of various
temporary information. For instance, when resolving XLinks, the gm1:id values as well as
additional information about the related features and geometries must be available. Since the
Importer/Exporter is designed to be able to process arbitrarily large CityGML input files,
keeping this information in main memory only is not a promising strategy. For this reason, the
information is written to temporary tables in the database as soon as user-defined memory
limits are reached.

| 3D City Database Importer/Exporter - O X
File Project View Help
Import Export KML/COLLADA/GITF Export Database Preferences
[#-CityGML Import Cache
[#]-CityGML Export
[£-KML/COLLADA/ITF Export Storage of temporary information during CityGML import/expart
[#-Database
[=-General O Ceaimims
P ache | (O Use local file system
- Import and export path C:\Users\nagel\AppDatalLocal {Temp3daitydb. tmp
t-Network proxies
+-Logging
“-Language selection
Restore Default Apply
Ready Database disconnected

Figure 117: General preferences — Cache.

Per default, temporary tables are created in the 3D City Database instance itself. The tables
are populated during the import and export operation and are automatically dropped after the
operation has finished. Alternatively, the user can choose to store the temporary information
in the local file system instead. An absolute path where to create the file-based storage has to
be provided. Either type the location manually into the input field or use the Browse button to
open a file selection dialog. A subfolder of the local temp folder of the operating system user
running the Importer/Exporter is proposed as default location (depends on the operating

3D Geodatabase for CityGML 2018 209

system in use). Like with temporary database tables, the file-based storage is automatically
removed after the operation has finished.

Some reasons for using a file-based storage are:

e The 3D City Database instance is kept clean from any additional (temporary) table.

e If the Importer/Exporter runs on a different machine than the 3D City Database
instance, sending temporary information over the network might be slow. In such
cases, using a local storage might help to increase performance.

5.6.5.2 Import and export path
This preference dialog allows for setting a default path for import and export operations.

[3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

- CityGML Import Import and export path
+- CityGML Export
J;r--mLfCOLLADA;"gI'I'F Export Path for file import
+-Database
=I-General
\..Cache (O Use standard import path

(® Use lastimport path

etwork proxies
;—----Logging
“-Language selection Path for file export

(® Use last export path
() Use standard export path

Restore Default Apply

Ready Database disconnected
Figure 118: General preferences — Import and export path.

Simply choose between the last used import/export path (default) or browse for a specific
folder in your local file system. The selected folder will then be used as default path in all
dialogs that require an input/output file.

5.6.5.3 Network proxies

Some of the functionalities offered by the Importer/Exporter require internet access. This
applies, for instance, to the XML validation when accessing XML Schema documents on the
web, to the map window for the graphical selection of bounding boxes (uses OpenStreetMap
data), or to the automated calculation of height offsets during KML/COLLADA/gITF exports
(based on the Google elevation service).

Most computers in corporate environments have no direct internet access but must use a
proxy server. The preference dialog shown below let you configure network proxies.

210 3D Geodatabase for CityGML 2018

[3D City Database Importer/Exporter — O X

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

--CityGML Import Network proxies
--CityGML Export
[-#ML/COLLADA (gITF Export

! Select & protocol to configure:
[+-Database

= General [IV/<b proxy (HTTP)
;—----Cache [Secure web proxy (HTTPS)
;—----Import and expart path |:| SOCKS proxy
-~Loaging [use selected proxy server for all protocols
‘L anguage selection
Web proxy (HTTF)
Server
Port 80

[Proxy server requires login credentials
Username
Password

Save password

Restore Default Apply

Ready Database disconnected

Figure 119: General preferences — Network proxies.

The Importer/Exporter supports Web (HTTP), Secure web (HTTPS) and SOCKS proxies.
Usually, configuring a Web proxy (HTTP) is enough for most tasks, like those mentioned
above. However, more sophisticated use cases, like uploading cloud documents via an
Importer/Exporter extension plugin (cf. chapter 6.2) may require Secure web proxy (HTTPS)
support. SOCKS proxy support should currently only be needed when the Importer/Exporter
and the database system running the 3D City Database reside in different networks.

Whenever one of the protocols to be handled by a proxy is selected in the choice list at the top
of the dialog, the corresponding settings must be provided in the fields below: Server, Port,
and if the proxy requires login credentials Username and Password. Default Port values for
each protocol are automatically filled in (HTTP: 80; HTTPS: 443; SOCKS: 1080) and only
need to be changed if required.

It is also possible to define one single proxy for all protocols by simply selecting the
corresponding checkbox under the protocol list. Just make sure the proxy server supports all
protocols and that they can all be routed through the given Port.

Proxies are only used if the checkbox next to the protocol type is enabled. Otherwise, the
proxy configuration will be stored but remains inactive. When the proxy for a given protocol
is enabled, every outgoing connection by the Importer/Exporter that uses the protocol will be
routed through this proxy.

In case the computer running the Importer/Exporter is directly connected to the internet no
proxies need to be configured.

5.6.5.4 Logging
The Importer/Exporter logs information about events such as activities or failures, for instance
during database imports and exports. Each log entry consists of a timestamp when the event

3D Geodatabase for CityGML 2018 211

occurred, a log level indicating the severity of the event and a human-readable message text.
Log messages are always printed to the console window and may additionally be forwarded to
a log file on your local computer. The Logging preference dialog is shown below.

Lﬁ 30 City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/GITF Export Database Preferences

[#-CityGML Import Logging
CityGML Export
[-KML/COLLADA/QITF Export Consale
Ed-Database Log level |INFO
E-General
+-Cache [] word wrapping
L.-Import and export path
MNetwork proxies Color scheme
(& ogoing | ERROR.
L.-Language selection WARN Foreground _
INFO [] Backaround

DEBUG

123 RN] This a g mes
[23:00:15 INFO] This a INFO log message.
[23:00:15 DEBUG] This a DEBUG log message.

Log file

[] Write log messages to log file
Log level |INFO

Use alternative path for log files

Browse

Restore Default Apply

Ready

Database disconnected

Figure 120: General preferences — Logging.

The following four log levels are distinguished (from highest to lowest severity):

e ERROR An error has occurred (usually an exception). This comprises internal
and unexpected failures. Moreover, invalid XML content of
CityGML instance documents is reported via this log level. Fatal
errors will cause the running operation to abort.

o WARN An unusual condition has been detected. The operation in progress

continues to work but the user should check the warning and take
appropriate actions.

e INFO An interesting piece of information about the current operation that
helps to give context to the log, often when processes are starting or
stopping.

e DEBUG Additional messages reporting the internal state of the application.

The log level for messages printed to the console window can be chosen from a drop-down
list in the Console dialog [1]. The log will include all events of the indicated severity as
well as events of greater severity (default: INFO). Word wrapping can be optionally enabled
for long message texts that otherwise exceed the width of the console window. In addition, the

color scheme for console log messages can be customized by assigning text colors to each log
level.

Note: The log output in the console window is truncated after 10,000 log messages in order
to prevent high main memory consumption.

212 3D Geodatabase for CityGML 2018

If log messages shall additionally be stored in a log file, simply activate the option Write
messages to log file. The log file is named log 3dcitydb impexp <date>.log per
default, where <date> is replaced with the current date at program startup. The
Importer/Exporter creates the log file if it does not exist. Otherwise, log messages are
appended to the existing log file. The user can choose a location where to store the log file by
enabling the option Use alternative path for log files and by providing a corresponding path
[2]. Either enter the path manually or click on Browse to open a file selection dialog. The log
level can be chosen independent from the console window through the corresponding drop-
down list [2] (default: INFO).

Note: Log files are per default stored in the home directory of the operating system user
running the Importer/Exporter. Precisely, you will find the log files in the subfolder
3dcitydb/importer-exporter-3.0/1og. However, the location of the
home directory differs for different operating systems. Using environment variables,
the location can be identified dynamically:

e SHOMEDRIVE$$HOMEPATH%\3dcitydb\importer-exporter-
3.0\1log (Windows 7 and higher)

e SHOME/3dcitydb/importer-exporter-3.0/1log (UNIX/Linux, Mac
OS families)

5.6.5.5 Language selection
The Importer/Exporter GUI has support for different languages. Use the Language
selection preference dialog shown below to pick your favourite language.

[3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

+-CityGML Impart Language selection
- CityGML Expart
T--KI‘HL,."COLLADAIQI‘I'F Export Select language for Graphical User Interface
+-Database
i Deutsch
=J-General L=

+-Cache (® English

- Import and export path

twork proxies
Restore Default Apply

Ready Database disconnected

Figure 121: General preferences — Language selection.

3D Geodatabase for CityGML 2018 213

5.7 Map window for bounding box selections

The Importer/Exporter GUI offers a 2D map window that allows the user to display the
overall bounding box calculated from the city model content stored in each 3D City Database
instance and to graphically select a bounding box filter for data imports and exports.

There are two ways to open the map windows:

1. Choose the entry View > Open map window from the menu bar at the top of the
application window.

File Project Help

Open map window I

Detach Console

Reset Default Perspective

2. Click the map button € on the bounding box dialog available on the Import,
Export, KML/COLLADA/glTF Export and Database tabs of the operations

window.
| Bounding Box
f'l Reference system .Same as in database -
Xmin Xmax
¥min Ymax

The 2D map is rendered in a separate application window shown below.

@) 3D City Database Importer/Exporter - Map window

® Hide usage hints
' Bounding Box [L : select bounding box

" Hold Alt key and left mouse button to select bounding bex
¥ Lookup address
Kalaallit Nunaat Click right mouse button to open popup menu
., Zoom infout
Use mouse wheel

i+, Zoom into select:
[show |[clear | " Hold Shift key and le

select area

Move map

Held left mouse button to map
Addi
@ S=i 4+ Center map and zoom in
Use popup me Ties B Double-dick left mouse button to center map

== Use popup menu for further actions
Click right mouse button to open popup menu

% 5]
@ Help

Click the link in the upper right corner
of the map for usage hints

[53.1204053, 6.6796875] Map data & ‘OpenStreetMap' (and) contributors, CC-BY-SA

Figure 122: 2D map window for bounding box selections.

214 3D Geodatabase for CityGML 2018

The map content is provided by the OpenStreetMap service and comes without usage limits.
Make sure your computer has internet access to load the map. This might require setting up
network proxies (see chapter 5.6.5.3). Please consult your network administrator.

The map offers default mouse controls for panning and zooming. For convenience, a
geocoding service is included in the map window [1]. Simply type in an address or a geo
location (given by geographic lat/lon coordinates separated by a comma) and click the Go
button. The map will automatically zoom to the first match. Further matches are available
from the drop-down list [1]. The geocoding service uses the free Google Geocoding API and
is therefore subject to Google’s terms of use. In general, it is limited to 2,500 requests per day
and IP address. To display the result of the geocoding query on Google Maps in your default
internet browser, simply click the Show in Google Maps button [5].

A list of usage hints is available at the right top of the map window [6]. Please click on the
Show usage hints link to display this list. The map controls are also described in the
following.

e Select bounding box: Move the mouse while pressing the ALT key and the left
mouse button to select a bounding box. The bounding box is displayed in a light
magenta color. Once the left mouse button is released, the coordinates of the
bounding box are automatically filled in the Bounding Box dialog on left of
the map [3]. If you have opened the map window from a bounding box filter
dialog, then clicking the Apply button on the upper right corner of the window [5]
closes the map window and carries the bounding box values to the filter dialog.
In addition, the values are copied to the clipboard.

e Lookup address: Right-click on the map to bring up a context menu for the geo
location at the mouse pointer. From the context menu, choose Lookup address
here. This will trigger a reverse geocoding query through the Google Geocoding
API. The resulting address will be displayed on the left of the window [4]. The

% icon denotes which location on the map is associated with the address,

whereas the ib icon shows where you clicked on the map (see Figure 123).

e Zoom in/out: Use the mouse wheel or the context menu (right-click).

e Zoom into selected area: Move the mouse while pressing the SHIFT key and the
left mouse button to select an area. The selected area is displayed in a light grey
color. Once the left mouse button is released, the map zooms into the selected
area. If the maximum zoom level is reached this action has no further effect.

e Move map: Keep the left mouse button pressed to move the map.

e (Center map and zoom in: Double click the left mouse button to center the map at
that position and to increase the current zoom level by one step.

3D Geodatabase for CityGML 2018 215

o Use popup menu for further actions: Right-click on the map to bring up a context
menu offering additional functions such as Zoom in, Zoom out, Center map here
and Lookup address here (see above). The Get map bounds function is equivalent
to selecting the visible map content as bounding box. Thus, the map will be

shown in light magenta and the map bounds are transferred to the Bounding
Box dialog on the left [3].

To close the map, simply click the Cancel button in the upper right corner [2].

& match(es) returned from geocoder (0,32 seconds)
i Bounding Box [PaulLoberiaus a5 Marie ElisabethLiders-Haus L
52.3259945 1, A
. 2, .
13.0387348 13.0389111 19 o b 2 I
52.3259304 7 0% g -
. .-, Paullobe-Alles L . R %”J'Hbauemmm e
[Show] [Clear] LI 3 =
ILiibeAlles, . — Paullbellee , . .ovvs ‘ & @
A i &‘@ k3
§ Address lookup O B =] g
Solidarriost Denkmal 5
Scheidemannstrabe 1 E] S \lgﬁd Reicf E % [
10557 Berlin - N : Petaguter =t
Germany @ B] s T ARD-Hauptstadtstudic
i Gymnasilm GTA
2 é. Reichstagsprasidentenpalais %
e ; Reichstagsgebiaude Friedrich-Ebert-Platz i
b/ Show in Google Maps g T H ?1
=3 % % Jakob-Kalser-Haus % o7 a5
= & H
© Help Zoom in 98 B B
Click the link in the upper right corner : 4 L 2 Zoom out L2 ‘|I o
of the map for usage hints lerstrate
P 9 ' i E a ., Center map here . e g
i a Scheldemannstralie | 3
3 ‘M’ Fegigy Ot map bounds akebKaiser Haus %
o s | Lookup address here | e
Pavillon RGO Lookup address here
eichstag o ey g =)
; S AT
ek v %% 2s EugenGutmannHaus
R~ RS |«)
L, AR '
1 . s .) -
Pov. ot Ao m
o =L
[52.5180163, 13.376509]

Figure 123: Address lookup in the map window.

The coordinates in the map window and of the selected bounding box are always given in
WGS 84 regardless of the coordinate reference system of the 3D City Database instance.

When opening the map window from a bounding box dialog that already contains coordinate
values (e.g., from a filter dialog on the Import, Export or KML/COLLADA/glTF
Export tabs or after having calculated the entire area of the database content on the
Database tab), the map window will automatically display this bounding box. If the
coordinate values of the provided bounding box are not in WGS 84, a transformation to WGS
84 is required. Since the Importer/Exporter uses functionality of the underlying spatial
database system for coordinate transformations, a connection to the database must have been

established beforehand. In case there is no active database connection, the following pop-up
window asks the user for permission to connect to the database.

216 3D Geodatabase for CityGML 2018

& Bounding box errm @

The bounding box cannot be shown in the map.
The associated spatial reference system is not WGS 84,

. Bounding Box
Xmin / Ymin 3507145.6412 f 5401975, 2604
Xmax [Ymax 3520086.4 / 5413276.87
Description Same as in database
SRID nfa

The coordinate values have to be transformed to WGS 84,

Mote: A connection to the database will be established.
The database has to support the given SRID.

| Transform | [skip J I Close map ‘

Figure 124: Asking for permission before connecting to a database for coordinate transformation.

The Apply button on the upper right corner of the map window [2] is a shortcut for copying
the coordinate values to the clipboard and pasting them in the bounding box fields of the
calling tab on the operations window. Furthermore, coordinate values can now be easily
copied from one tab to another by simply clicking on the copy button EJ in one of them, say
Import tab, with filled bounding box values, changing to another, say
KML/COLLADA/glTF Export tab and clicking on the E™ button there. Previously existing
values in the bounding box fields of the KML/COLLADA/glTF Export tab (if any) will be
overwritten.

5.8 Using the command line interface (CLI)

In addition to the graphical user interface, the Importer/Exporter also offers a command line
interface (CLI). The CLI allows a user to run the Importer/Exporter from the command line
(or a shell script) and to easily embed it in batch processing workflows and third-party
applications.

To use the CLI, you first need to start a shell environment offered by the operating system of
your choice. The general command to run the Importer/Exporter from a shell environment (or
a shell script) is shown below. If required, please replace the version number in the file name
with your current version.

java -jar lib/impexp-client-4.0.0.jar [-options]

This command consists of two parts. The first part executes the Java Virtual Machine (JVM)
through the java command. The -jar argument of the JVM is used to denote the path to
the Importer/Exporter JAR file impexp-client-4.0.0.7jar to be executed. After the
JAR filename, you must provide additional program arguments to trigger a specific operation
of the Importer/Exporter.

Note: The above command assumes that you have first changed directory to the directory
where the Importer/Exporter is installed. Otherwise, you must provide the full path to
the impexp-client-4.0.0.jar file.

3D Geodatabase for CityGML 2018 217

You may add any further JVM arguments to the above command that you think are required
in your environment. /¢ is recommended to at least start the JVM with a minimum amount of
main memory using the —Xms argument. For instance, use java -Xms 1g to use 1 GB of
your main memory for the Importer/Exporter.

To get a list of program arguments offered by the Importer/Exporter, use the ~help flag and
issue the following command:

java -jar lib/impexp-client-4.0.0.jar -help

This will produce an output like shown below.

B Eingabeaufforderung - [m} X

Microsoft Windows [Version 10.0.10586]
(c) 2015 Microsoft Corporation. Alle Rechte vorbehalten.

C:\3DCityDB-Importer-Exporter>java -jar lib\impexp-client-4.0.0.jar -help
Usage: java -jar lib/impexp-client-<version>.jar [-options]
(default: to execute gui version)
or Jjava -jar lib/impexp-client-<version>.jar -shell [-command] [-options]
(to execute cli version)

where options include:
-config fileName : config file containing project settings
-export fileName : export data to this file
(shell version only)
-help (-h) : print this help message and exit (Vorgabe: true)
-import fileName[s] : a ; separated list of directories and files to import,
wildcards allowed
(shell version only)
-kmlExport fileName : export KML/COLLADA/glTF data to this file
(shell version only)
-shell : to execute in a shell environment,
without graphical user interface (Vorgabe: false)
-testConnection : test whether a database connection can be established
(Vorgabe: false)
-validate fileName[s] : a ; separated list of directories and files to
validate, wildcards allowed
(shell version only)
-version (-v) : print product version and exit (Vorgabe: false)

Figure 125: Help text of the command line interface.

The available program arguments are:

-shell This argument is mandatory to start the shell version of the
Importer/Exporter. If this argument is not provided, then the
GUI version is launched per default.

-config Provides the path and filename of the config file to be used. If
this argument is omitted, the config file in the default path is
used instead. Using environment variables, the default path can
be identified dynamically (cf. chapter 5.1):

e SHOMEDRIVE$$HOMEPATHS\3dcitydb\
importer-exporter\config
(Windows 7 and higher)
e SHOME/3dcitydb/importer-
exporter/config (UNIX/Linux, Mac OS families)
-import Triggers a CityGML import process. Provide a list of one or
more input files separated by semicolons (;) in addition. The list
may also contain folders. A folder and all its nested subfolders

218

3D Geodatabase for CityGML 2018

are recursively scanned for CityGML input files.

-validate Triggers a XML Schema validation on the provided list of input

files (see import argument).

-export Triggers a CityGML export process. Provide the path and name

of the output file.

-kmlExport Triggers a KML/COLLADA/gITF export process. Provide the

path and name of the output file.

-testConnection Connects to the database using the connection details provided

in the config file and exits afterwards. Evaluate the exit code
(and optionally the log messages on the console) to check
whether the connection was established successfully.

The full range of preferences and settings affecting the different import and export operations
of the Importer/Exporter are not offered as separate program arguments. Instead, it is

assumed that the config file (either the default one or the one provided through the —config

argument) contains all the settings that should be used in a specific operation (e.g., the
database connection details, filter settings for imports and exports, etc.). The config file is
encoded as XML and hence can be edited by a user manually. However, the recommended
way to provide valid settings is as follows:

1.

Run the Importer/Exporter with the graphical user interface (GUI).

2. Make all your settings in the GUL

Note:

Save your settings to a local config file via the Project > Save Project
As... dialog from the main menu bar.
Feed this config file to the command line interface using the —~config argument.

You can also create a config file programmatically in Java. The JAR file impexp-
config-4.0.0.Jar in the installation directory of the Importer/Exporter
contains all the classes required for reading and writing a config file. Once you have
the JAR file on your classpath, use the class
org.citydb.config.ConfigUtil as starting point.

3D Geodatabase for CityGML 2018 219

6 Importer / Exporter plugins

6.1 Introduction to the plugin architecture

The Importer/Exporter offers a plugin architecture that supports the modular development and
deployment of additional functionalities for interacting with the 3D City Database or external
datasets. For instance, plugins may enable loading or extracting 3D city model content using
data formats other than CityGML or KML/COLLADA/gITF. Plugins are self-contained
extensions in that one plugin cannot extend the functionality of another plugin. Therefore,
plugins can be added separately to the Importer/Exporter without interdependencies.

A plugin may extend the GUI of the Importer/Exporter by providing its own user dialog that
will be rendered in a separate tab on the operations window. In addition, a plugin may add
new entries to the main menu bar and the preferences dialog. To remember the preference
settings at program startup, a plugin can choose to serialize the settings to the main config file
or a plugin-specific config file. Please refer to the plugin documentation of your vendor for
more information.

Plugin installation is simple. Just get the plugin from your vendor and put all plugin files into
the plugins subfolder of the Importer/Exporter installation directory. To keep multiple
plugins independent from each other, it is recommended to create a separate subfolder below
plugins for each plugin. When running the Importer/Exporter, the installed plugins are
automatically detected and loaded with the application.

The current version of the Importer/Exporter is shipped with two free and open-source plugins
that can be installed during the setup process (see chapter 3.2). The Spreadsheet Generator
Plugin allows for exporting attributes of city objects as spreadsheets with user-defined
formatting, either to a CSV or a Microsoft Excel file (see chapter 6.2). The ADE Manager
Plugin automatically transforms CityGML ADEs to relational schemas extending the
3DCityDB schema and un-/registers such ADE schemas with existing 3DCityDB instances.

You can also develop your own plugins. For this purpose, the Importer/Exporter comes with a
Plugin API that is available as separate JAR file impexp-plugin-api-4.0.0.Jjar.
Simply put the JAR file on your classpath to start plugin development. A comprehensive
Plugin API guide will be offered on the www.3dcitydb.org website soon. Moreover, the
source codes of the Spreadsheet Generator Plugin and ADE Manager Plugin can be used as
templates for your own developments.

http://www.3dcitydb.org/

220 3D Geodatabase for CityGML 2018

6.2 Spreadsheet Generator Plugin (SPSHG)

6.2.1 Definition

By using the SPSHG (Spreadsheet Generator) plugin, it is possible to export data from a 3D
City Database (3DCityDB) instance into a CSV or a Microsoft Excel file. Both types of files
can be opened using a spreadsheet application (like Microsoft Excel or Open Office Calc) as
well as uploaded to a web based online spreadsheet service (like Google Docs). All features
of spreadsheet programs, like calculation and graphing tools, are applicable to the exported
data from a 3D City Database instance.

6.2.2 Plugin installation

The SPSHG is an additional component which can be installed together with the 3DCityDB
Importer/Exporter tool. During the Installation of the Import/Export tool, the wizard will ask
you if you want to install Spreadsheet Generator Plugin like in the following figure:

Setup - 3D City =

Select Installation Packages [iepmea: |
Select which application components you want to install. Ll LD
CityGML
Step 5of 9 2

% Select the packs you want to install:
Q Note: Grayed packs are required.

; Core application files 68,69 MB
3D City Database 1,78 MB
Documentation 13,27 MB
3D Web Map Client 31,8 MB
e Sample CityGML and KML/COLLADA datasets 57,95 MB
El- [[] Plugins 13,22 MB
B [l Spreadsheet Generator Plugin 13,22 MB
“ [Plugin development API 2,22MB

Description
This plugin can export thematic data of the spatial objects into tables. Supported output formats are Microsoft Excel, CSV, and
Google Spreadsheets,

Total space Required: 186,7 MB
Available space: 172,04 GB

{Made with 1zPack - hitp://izpack.org’)

[@pevioss |[Bnea || @aut |

Figure 126: Installation wizard of the Import/Export tool

If you haven’t checked the “Spreadsheet Generator Plugin” box during the installation
process, it is also possible to install the SPSHG later. Following simple steps will guide you
through the install process:

e Download the SPSHG plugin zip file from the official website of the 3D City
Database at [www.3dcitydb.org].

e Open the folder that contains your locally installed instance of the
Importer/Exporter version 3.3.0 (the installation directory).

e Open the plugins subfolder. If it is not available, create a new subfolder and name it
“plugins”.

3D Geodatabase for CityGML 2018

221

new folder named

spreadsheet Generator

Extract the downloaded SPSHG plugin zip file in the plugins folder. As a result a

will be created. The

spreadsheet_Generator folder will contain all required files and subfolders.

following figure.

Run the Importer/Exporter. The SPSHG plugin tab should be visible like in the

File Project View Help

| 1mport | Export | KML/COLLADA/GITF Export] SPSHG

Database I Preferencesl

Columns

Load a template file or make a new one manually

Content Source

J

[New Edit]

Generate data for al
following feature dasses

o

Building, Land Use, Vegetation, Generic City Object

Versioning

Workspace

Bounding Box
[

xmin

Reference system

¥min

Qutput
@ C5VFile

Separator Character(s) [Comma]

~1 Microsoft Excel file (usx)

Timestamp (DD, MM. YY)

Same as in database

Xmax

Ymax

Browse

Database disconnected

Figure 127: The SPSHG plugin tab allowing for exporting from the 3DCityDB to a spreadsheet.

6.2.3 User Interface

6.2.3.1 Main Parameters

The SPSHG plugin GUI is divided into three main parts. The upper part, titled Columns,
refers to the columns of the output spreadsheet file. The Content Source in the middle section
refers to the rows of the output spreadsheet. Each output row will always contain the GMLID
of a city object and its corresponding selected values for each column. A list of the feature
classes of city objects (Top-level features) whose data will be exported to the spreadsheet, the
versioning information of the database and a geographic bounding box should be specified.

222 3D Geodatabase for CityGML 2018

The file path and the file format for the exported data must be specified in the lower part. All
input data fields of the SPSHG plugin tab will be now described in more detail.

6.2.3.2 Columns
First of all, the columns of your resulting spreadsheet should be defined. You can choose to
load a template file or manually create a new one:

Load a template file: type the template file’s path directly into the text field or click on the
Browse button to use an Open dialog for selecting the template file. The selected template file
can be edited by clicking on the Edit button.

OR[GO

File Project View Help

| Importl Exportl KML/COLLADA/gITF Export| SPSHG | Database | Preferences|

Columns

Load & template file or make a new one manually

Browse

Column's titte Column's content Comment

Would you like to save the template in a file?

Content Source

Generatedataforall o7 |Byilding, Land Use, Vegetation, Generic City Object
following feature classes

Versioning
Workspace Timestamp (DD.MM.YYY)

Bounding Box
E": Reference system _Same as in database

Xmin Xmax

Ymin ‘max

Output
@ CsVFile

Browse

Separator Character(s) |[Comma]

(©) Microsoft Excel file (xsx)

Database disconnected

Figure 128: The part for manually creating a new template will appear when clicking on the New button. This
part will also be shown when clicking on the Edit button after a template file is selected.

Create a new template: click on the New button to access the part for creating a template
(marked in Figure 128). To add a new column click on the Add button and fill all necessary
fields of the New Column dialog (cf. Figure 129). A column contains a ftitle, content and
comment. The comment field is optional. Each row in the exported data will begin with the

3D Geodatabase for CityGML 2018 223

GMLID of the corresponding city object. It will be followed by the adapted value of each
column for that city object (see next section for more information). Created columns will be
listed in the table. You can use the Remove, Edit, Up (A), and Down ('¥) buttons to modify
listed columns on the table and their order. By pressing the Save button, manually created (or
adapted) templates will be saved in a text file. Path will be specified by the Save dialog.

i New Column =

Column's title

Bridge_claass

Available data from database Column's content

=- || BRIDGE BRIDGE/CLASS|
- # BRIDGE_PARENT_ID
.. @ BRIDGE_ROOT_ID

CLASS_CODESPACE
FUNCTION
FUMCTION_CODESPACE
USAGE

USAGE_CODESPACE
YEAR_OF_CONSTRUCTION
YEAR_COF_DEMOLITION
I5_MOVABLE
LOD1_TERRAIM_INTERSECTIO
LODZ_TERRAIM_INTERSECTIO
LOD3_TERRAIN_INTERSECTIO
LOD4_TERRAIM_INTERSECTIO
LODZ_MULTI_CURVE
LOD3_MULTI_CURVE

1| 1]

=
=
=
=
=
=
_

Comment (Optional)

[Insert Column ” Cancel l

Figure 129: The New Column dialog. Fill the Column’s title, Column’s content fields and click on the Insert
Column button to add it to the list of columns. The Comment field is optional. When written to a template file its
content serves informational purposes only.

New Column dialog

By clicking on the Add button the New Column dialog will be shown (Figure 129). Using the
New Column dialog, it is possible to define a new column for the output spreadsheet. A
column may contain a title, content and comment fields. The title and content are mandatory.
During export time, the content of each column will be adapted for each city object. For each
specific column:

e The content may set to be a static value, e.g. “Munich”. As a result, the value of that
column in the exported spreadsheet will be equal to the specified static value (in this
example “Munich”) for all rows.

224

3D Geodatabase for CityGML 2018

The content of a column may be specified by an expression. The main part of an
expression refers to a column in a specific table of a 3D City Database. Each row
refers to one city object. Consequently, the value of the spreadsheet’s column will be
dynamically adapted for each row at export time. It means that the value of the
spreadsheet’s column for a specific row will be equal to the value of that expression
for the corresponding city object of that row. Expressions must follow specific rules.
They can be added simply by using the GUI or written by hand.

The content of a spreadsheet’s column may contain a combination of static values and
expressions.

Rules for Column’s Content field

Expressions are coded in the following form:
"TABLE/ [AGGREGATION FUNCTION] COLUMN [CONDITION]".

Aggregation function and condition are optional. Table refers to the underlying
3DCityDB table structure (see Chapter 2.3 for more details).

Expressions are not case-sensitive.

For each row of output, each expression will only return the value of those entries
relevant to the city object for that row. That means an implicit condition clause like
"TABLE.CITYOBJECT ID = CITYOBJECT.ID" is always considered and does not
need to be explicitly written.

In a case that more than one entry for the corresponding city object are available, a
comma separated list of values will be returned. When only interested in the first
result of a list the aggregation function FIRST should be used. Other possible
aggregation functions are LAST, MAX, MIN, AVG, SUMand COUNT.

Conditions can be defined by a simple number (meaning which element from the
result list must be taken) or a column name (that must exist in underlying 3DCityDB
table structure) a comparison operator and a value. For instance: [12] or [NAME =
'abc'].

Invalid results will be silently discarded

Multiline content is supported. Use " [EOL]" to start a new line in the same column.

How to use the New Column dialog

Title and content of each column should be specified. On the left hand side of the New
Column dialog, tables of the 3D City Database and their columns are displayed in a tree
structure. Adding an expression is simple. Select a column in a table from the left hand side
tree and click on the “>” button. In the case that aggregation functions are needed, select a
column from the left hand side tree and click on the f{x) button then chose one of the
aggregation functions. As a result of both cases a corresponding expression will be added into
the column’s content in the right hand side.

3D Geodatabase for CityGML 2018 225

A column’s content can be several lines long. Write “[EOL]” text in the column’s content
wherever a new line should be started. You can also press the EOL button to automatically
add “[EOL]” text to the content. During export time, the “[EOL]” text will be replaced by a
new line.

After filling all necessary fields click on the Insert Column button. A new column will be
created and added to the manually created template.

Examples for Column’s Content

ADDRESS/STREET

Returns the content of the STREET column on the ADDRESS table for each city
object. For instance:

Strafe des 17. Juni

However ADDRESS table might contain more than one row for some city objects. In
such a case a comma separated list of values will be returned. For instance:

Strafpe des 17. Juni, Strafle des 17. Juni, Strafse des 17. Juni, Strafle des 17. Juni
To avoid that use a proper aggregation function. For instance:

ADDRESS/[FIRST]STREET

Although the ADDRESS table may contain several entries for a city object, result of
the above expression will be equal to the street name of first found entry.

ADDRESS/[FIRST]STREET, ADDRESS/[FIRSTIHOUSE_NUMBER
[EOLJADDRESS/[FIRST]ZIP_CODE ADDRESS/[FIRST]CITY

Returns the full address of each city object in two lines. For instance:

Strafle des 17. Juni, 135
10623 Berlin

CITYOBJECT_GENERICATTRIB/ATTRNAME

Returns the names of all existing generic attributes for each city object. All names will
be separated by commas.

CITYOBJECT_GENERICATTRIB/REALVAL[ATTRNAME = 'SOLAR_SUM_INVEST']EUR

Returns the content of the REALVAL column of all existing generic attributes for
each city object whose ATTRNAME is equal to 'SOLAR _SUM _ INVEST'. The
number will be followed by “EUR”. For instance:

23000EUR
Rules for Columns’ Template file

Rules for the template file are simple. A template file contains a list of columns and their
description. It may be edited by hand or by saving a manually created template.

226 3D Geodatabase for CityGML 2018

e A template file is a plain-text file.

e Each row of a template file may describe a column or be a comment.
e Comment rows MUST start with the character “//”” ;

e A column should be specified in one of following forms:

o [Title]:[Content]

[Title] is the column’s title and [content] is the column’s content. In this
case, [Title] is specified by the user.

o [Content]

In this case, the column’s title is not specified by the user. The SPSHG plugin
will internally automatically generate a column’s title by means of the
column’s content

Example for Template File
Sample template file:

// This is a template file for the export of tabular data.

// Lines starting with // or ; are comments and will be ignored.
Street:ADDRESS/[FIRST]STREET
Houseno:ADDRESS/[FIRST][HOUSE_NUMBER
City:ADDRESS/[FIRST]CITY

Address:ADDRESS/[FIRST]STREET,
ADDRESS/[FIRSTIHOUSE_NUMBER[EOL]JADDRESS/[FIRST]CITY

// INVEST

Investment:CITYOBJECT GENERICATTRIB/REALVAL[ATTRNAME =
'SOLAR_SUM_INVEST'] EUR

Figure 130 shows a sample export result.

Sample_Template m

File Edit View Inset Format Data Tools Help All changes saved

e AL - s %o23-wpt: B e AR = S -y
Fx Stralte des 17. Juni, 135 Show all formulas

A B c D E F

1 GMLID Street Houseno City Address Investment -
2 StralRe des 17 Juni, 136 [

BLDG_0003000f0028da8a Stral3e des 17. Juni 136 Berlin Berlin 315700 EUR
3 Stralie des 17. Juni, 115

BLDG_000300000008f6df Strale des 17. Juni 115 Berlin Berlin 0 EUR
4 Strale des 17. Juni, 118

BLDG_0003000f00250727 StralRe des 17. Juni 118 Berlin Berlin 263550 EUR

Strale des 17. Juni, 124

BLDG_000300000008f309 StraRe des 17. Juni 124 Berlin Berlin 38850 EUR
6 StralRe des 17. Juni, 152

BLDG_0003000e00a0e27¢c StralBe des 17 Juni 152 Berlin Berlin 444500 EUR |=
7 Strale des 17. Juni, 144

BLDG_0003000f0025072f StralRe des 17. Juni 144 Berlin Berlin 493850 EUR
8 Hardenbergstr., 36

BLDG_0003000a001ce4b3 Hardenbergstr. 36 Berlin Berlin 374150 EUR
9 Stralle des 17 luni 1457

Figure 130: Example of exported data based on sample template presented above from a 3D City Database
instance.

3D Geodatabase for CityGML 2018 227

6.2.3.3 Content Source

In this GUI section, the feature class of city objects and their origin (versioning information
and geographic bounding box) should be specified.

Feature Classes

City objects of the selected feature class(es) will be exported. Click on the edit button
(marked by 1 in Figure 131) to insert or remove a feature class.

Versioning

Oracle's Workspace Manager enables storing of different versions of the database as named

workspaces. The export process will use the specified workspace.

If version management is disabled or the current state of the database should be exported, the
default workspace name LIVE must be entered and the timestamp field must remain empty.

Unfortunately, as PostgreSQL does not officially offer any equivalent facility like Workspace
Manager, the corresponding elements in the graphical user interface will be disabled
whenever the PostgreSQL/PostGIS database instance is connected.

Content Source

Generate data for all o1 [DuilAina Aintar D | and Use Relief Feature Tunnel

following feature dasses City Object 2

Versioning v Building

Workspace v Water Body estamp (DD, MM, YY)

Bounding Box v Land Use

@ @ E Re Vegetation base b
¥imin Transportation ey

- ¥ Relief Feature Vmax

City Furniture

Output Generic City Object

@ C5VFile City Object Group

¥ Tunnel Browse

Separator Character(s) g

Microsoft Excel file (xlsx)

Figure 131: Click on the edit button (marked by 1) to add or remove a CityGML feature class from the list of
features classes (marked by 2).

Bounding Box

Use the bounding box section to select an area of interest from which the selected features
contained should be exported. Insert lower left and upper right coordinates of the bounding
box or click on the map button to select the area from a map. Please refer to [Chapter 5.2.2]
for more details on the different options for specifying a bounding box.

6.2.3.4 Output

It is possible to export the data in a CSV or XLSX file on the local computer, or directly into
an online spreadsheet hosted in a cloud service.

228 3D Geodatabase for CityGML 2018

CSV/XLSX File

A CSV/XLSX file is supported by most spreadsheet applications. It can be easily imported
into a local spreadsheet processing program like Microsoft Excel and Open Office Calc or to a
web based online spreadsheet service like Google Docs.

Click on the CSV File or XLSX file radio button, and write an output file path or select an
output file by clicking on the Browse button. It is also possible to specify another separator
character(s) instead of comma (default) for CSV file. Write any arbitrary separator phrase or
click on the edit button (marked by 1 in Figure 132) to select it from a list.

Qutput
@ CSVFile
Browse
Separator Character(s) [Commal & 1

Microsoft Excel file {xlsx)

Export

Figure 132: Click on the CSV File radio button and write any output file path or click on the Browse button to
select an output file. Type the separator character (s) or click on the edit button (marked by 1) and select one
from a list.

Note: Starting from April 2015, the earlier versions of the SPSHG plugin are no longer able
to directly upload the exported data to the Google cloud service, since the Google
OAuth 1.0 API on which the SPSHG plugin relies has been deprecated and is not
supported by Google any more. Therefore, starting from version 3.3.0 of the
3DCityDB, the functionality “Directly into the Cloud” has been removed from the
SPSHG plugin, and you need to to manually upload the generated CSV/XLSX files
to the cloud.

Example: Uploading XLSX file to Google Fusion Table

Here is a step-by-step guide for uploading a XLSX file to the Google Fusion Tables which a
cloud-based web application that allows for storing, showing, and sharing large data tables.

[J Open a web browser (you can use, for example, Google Chrome or Mozilla Firefox, but
we recommend not to use Microsoft Internet Explorer) and type the following address into
the address bar.

https://www.google.com/fusiontables/data?dsrcid=implicit

When you go to this page, you will be asked to log in by using your Google account.

[l Enter your Email address and the password of your Google account into the corresponding
input fields

https://www.google.com/fusiontables/data?dsrcid=implicit

3D Geodatabase for CityGML 2018 229

After logging in, an Import new table dialog window will be displayed like in the screenshot
below:

Import new table

L;.I From this comptiter | Datei auswahlen | Berlin_Bu...utes xIsx
[You can upload spreads heets, delimited text files (.csv, tsv, or txt), and
| Google Spreadsheets Keyhole Markup Language files (.kml) Learn more

b Create empty table

Or search public data tables

New to Fusion Tables? Canced P—— m

Take a peek! Play with a data set or try a tutorial.

'] Click the Choose File button to open a file selection window

[] Navigate to the system path of your created Excel file and select it. The following
screenshot show an example Excel file.

H ©- 5
START EINFUGEN SHTENLAYOUT FORMELN DATEN UBERPRUFEN ANSICHT Team 1 Zhihang Yao ~

LT Calibri -l - E== % Standard - %Bedingtel’ormatierung' E‘“Einfdgen - Z - ’;‘P'
c f__D B - FKU- A0 ===HKH- - 9% [JasTabeleformatieren~ #7 Loschen ~ [~ dfi -

" ggen ~ fe A - &= = -] GZel\enformat\fw\agen' EI Format ~ ¢ -
Zwischenablage & Schriftart [F] Ausrichtung [F] Zahl [F] Formatvorlagen Zellen Bearbeiten -~
AL v Jx || amup A

| A B C D E F -
1 |GMLID Building_Height Building_Height_Unit Street_Name House_Number Denkmal_Art
2 BLDG_00030009003f3fa8 12,6454 urn:ogc:defiuom:UCUM:m Bernauer Str. 86
3 BLDG_000300000020b7dc 6,75036 urn:ogc:defiuom:UCUM:m Lortzingstr. 32
4 BLDG_00030009006dad12 19,09051 urn:ogc:defiuom:UCUM:m Jasmunder Str. 1
5 BLDG_00030009003f3f7a 15,91154 urn:ogc:defiuom:UCUM:m Brunnenstr. 142
6 BLDG_000300039007ef023 17,6925 urn:ogc:defiuom:UCUM:m Wolgaster Str. 11
7 |BLDG_00030000001ectda 15,21935 urn:ogc:defiuom:UCUM::m Stralsunder Str. 344
3 BLDG_0003000a00295b39 22,43517 urn:ogc:def:uom:UCUM:m Brunnenstr. 122
9 BLDG_00030003007eefde 16,05035 urn:ogc:defiuom:UCUM:m Swineminder Str. 27
10 BLDG_0003000000204e5d 24,84635 urn:ogc:defiuom:UCUM:m Stralsunder Str. 61
11 BLDG_0003000e00579887 22,86551 urn:ogc:defiuom:UCUM:m Usedomer Str. (]
12 BLDG_0003000f004136e9 13,26942 urn:ogc:defiuom:UCUM:m Usedomer Str. 11
13 BLDG_0003000a00368137 24,74132 urn:ogc:defiuom:UCUM:m Strelitzer Str. 12 Gesamtanlage
14 BLDG_00030009007eefbl 5,17681 urn:ogc:defiuom:UCUM::m Brunnenstr. "119
15 BLDG_0003000a002be2da 21,30485 urn:ogc:defiuom:UCUM::m Bernauer Str. N

[l After selecting the Excel file, click the Next button to continue

230 3D Geodatabase for CityGML 2018

The contents of the selected table is displayed in the dialog window (see the screenshot
below)

Import new table

Celumn names are in row 1 -
1 GMLID Buildi... Buildi... Street... House... Denk...
2 BLDG_00... 12.6454 urn:oge:d... Bemnauer 86
Str.
3 BLDG_00... 6.75036 urn:oge:d... Lortzingstr. 32
4 BLDG_00... 19.09051 urnzoge:d... Jasmunder 1
Str.
BLDG_00... 15.91154 urn:oge:d... Brunnenstr. 142
BLDG_00... 17.6925 urn:oge:d... Wolgaster 1"
Str.
7 BLDG_00... 15.21935 urn:oge:d... Stralsunder 34A
Str.
8 BLDG_00... 2243517 urn:oge:d... Brunnenstr. 122
9 BLDG_00... 16.05035 urnzoge:d... Swinem... 27
Str. -
Rows before the header row will be ignored.

New to Fusion Tables? Cancel « Back m

Take a peek! Play with a data set or try a tutorial.

] Briefly check the table contents again and then click the NVext button

[In the following dialog window (see the screenshot below), enter a table name (for example
“Berlin_Buildings Attributes”) into the input field Table name and click the Finish button

Import new table

Table name Berlin_Buildings_Attributes

Allow export v 2
Attribute data to

Attribution page link

Description

For example, what would you like to remember about this table in a year?

New to Fusion Tables? Cancel « Back

Take a peek! Play with a data set or trv a tutorial.

3D Geodatabase for CityGML 2018 231

Now, your Excel file has been successfully uploaded to the Google Cloud Service and a
Google Fusion Table instance has been created (see the screenshot below).

Berlin_Buildings_Attributes

Edited at 13:56

File Edit Toocls Help

= Rows 1~

m No filters applied

M 4 1-100 of 954 (»

GMLID Building_Height Building_Height_Unit Street_Name House_Number Denkmal_Art
BLDG_00030009003f3fa8 12.6454 um:ege:def:uom:UCUM::m Bemauer Str. 86
BLDG_000300000020b7dc 6.75036 umn:ogc:def:uom:UCUM::m Lortzingstr 32
BLDG_00030005006dad12 19.09051 um:oge:def:uom:UCUM::m Jasmunder Str. 1
BLDG_00030009003f3f7a 15.91154 um:ege:def:uom:UCUM::m Brunnenstr. 142
BLDG_00030005007ef023 17.6925 um:oge:def:uom:UCUM::m Wolgaster Str. 1"
BLDG_00030000001ec6da 15.21935 um:oge:def:uom:UCUM::m Stralsunder Str. 34A
BLDG_0003000a00295k99 22.43517 um:oge:def:uom:UCUM::m Brunnenstr. 122
BLDG_00030009007eef%: 16.05035 urm:oge:def:uom:UCUM::m Swineminder Str. 27
BLDG_0003000000204e5d 24 84635 um:oge:defiuom:UCUM::m Stralsunder Str. 61
BLDG_0003000e00579887 22.86551 um:oge:def:uom:UCUM::m Usedomer Str. 6
BLDG_0003000f004136e5 13.26942 um:oge:def:uom:UCUM::m Usedomer Str. 1"
BLDG_0003000a00368137 24.74132 um:oge:def:uom:UCUM::m Strelitzer Str. 42 Gesamtanlage

o
Ef Cards 1

We would like to share our created online spreadsheet with other people. Here we need to
change the sharing settings of the Google Fusion Table by completing the following steps:

1 Choose the File = Share... from the menu bar at the top of the online spreadsheet window

Berlin_Buildings_Attributes

Edited at 13:56

File Edit Tools Help | = Rows1~ | HfCards 1

Share...

New table...

Open.. dling_Height Building_Height_Unit Street_Name House_Number Denkmal_Art
Rename... 12,6454 um:oge:def:uom:UCUM::m Bernauer Str. 86

Make 2 copy 6.75036 umn:ogc:def.uom:UCUM::m Lortzingstr. 32

About this table 19.09051 um:oge:def:uom:UCUM::m Jasmunder Str. 1

Geocode... 15.91154 um:oge:def:uom:UCUM::m Brunnenstr. 142

Merge. .. 17.6925 um:oge:defuom:UCUM:m Wolgaster Str 11

Find a table to merge with... 15.21935 um:oge:def-uom:UCUM::m Stralsunder Str 34A

Create view... 2243517 um:oge:defuom:UCUM:m Brunnenstr. 122

Import more rows... 16.05035 um:oge:def.uom:UCUM::m Swinemander Str. 27

Download... 2484635 um:oge:defuom:UCUM:m Stralsunder Str. 61
BLDG_0003000e00579887 22.86551 um:ogc:def:uem:UCUM::m Usedomer Str. 6
BLDG_0003000f004136e% 13.26942 um:oge:def:uom:UCUM::m Usedomer Str. 1
BLDG_0003000a00368137 2474132 um:oge:def:uom:UCUM:m Strelitzer Str. 42 Gesamtanlage

In the Sharing settings window, click on Change... button (see the screenshot below)

232 3D Geodatabase for CityGML 2018

Sharing settings

Link to share (only accessible by collaborators)

https:/fwww.google.com/fusiontables/DataSourc e?docid=1tFuuEc 3HJGewzy CT2hY 1-

Share link via M @ n ,

Wheo has access

@ Private — Only you can access Change...

. Zhihang Yao (you)

a2 ; b) Is the owner
yaozhihang1986@googlemail.com
Invite people:
Enter names or email addresses # Can edit ~

Owner settings Learn more
Prevent editors from changing access and adding new people

[In the Link sharing window (see the figure below), choose the second radio button On —
Anyone with the link

Link sharing

@ On - Public on the web

Anyone on the Internet can find and access this. Mo sign-in required.

On - Anycne with the link
Anyone who has the link can access. Mo sign-in required.

[]
e

Off — Specific people

Shared with specific people.

[L]

Access: Anyone (no sign-in required) Can view

3D Geodatabase for CityGML 2018 233

[Click the Save button to save the settings and close the share settings window

Now, the spreadsheet is being shared and can be accessed by anybody who has its URL that
can be easily obtained from the address bar of the web browser (marked in the screenshot
below). With this URL and the first column (GMLID) in the table, the attribute information
stored in the spreadsheet are able to be queried and displayed on the 3DCityDB-Web-Map-
Client when a city object is clicked on (see chapter O for more details).

% Berlin_Buildings Attribute X

€« C' #f |2 hitps://www.google.com/fusiontables/data?docid=1tFuuEc3HIGewzyCT2h¥1-8131nP1W _FXUnvpHwCL#rows:id=1
I goog y _|

Berlin_Buildings_Attributes

Edited at 13:58

File Edit Tools Help | =Rows1~ | HfCards 1

ﬂ No filters applied

Mo 4 1-100 of 954 Pk

GMLID Building_Height Building_Height_Unit Street_Name House_Number Denkmal_Art
BLDG_00030009003f3fal 126454 um:oge:defiuom:UCUM::m Bemauer Str. 36
BLDG_000300000020b7dc 6.75036 umn:oge:def:uom:UCUM::m Lorzingstr 32
BLDG_00030009006dad12 19.09051 urn:oge def:uom:UCUM:m Jasmunder Str 1
BLDG_00030009003f3f7a 156.91154 um:ogc defiuom:UCUM:m Brunnenstr. 142
BLDG_00030005007ef023 17.6525 umn:oge:defiuom:UCUM:m Wolgaster Str. n
BLDG_00030000001ec6da 15.21935 urn:ogc :def:uom:UCUM::m Stralsunder Str. 344
BLDG_0003000200295b%% 2243517 umn:oge:def:uom:UCUM:m Brunnenstr. 122
BLDG_00030009007eef9%: 16.05035 urn:oge :def:uom:UCUM::m Swinemunder Str. 27
BLDG_0003000000204e5d 24 84635 umn:oge def-uom:UCUM::m Stralsunder Str. 61
BLDG_0003000e00579887 2286551 umn:ogc def:uom:UCUM::m Usedemer Str. 6
BLDG_0003000f004136e5% 13.26942 um:oge defuom:UCUM:m Usedomer Str. n

BLDG_0003000a00368137 2474132 umn:oge:def:uom:UCUM:m Strelitzer Str. 42 Gesamtanlage

234 3D Geodatabase for CityGML 2018

6.3 ADE Manager Plugin

6.3.1 Definition

The ADE Manager is a plugin for the 3D City Database Importer/Exporter and allows to
dynamically extend a 3D City Database (3DCityDB) instance to facilitate the storage and
management of CityGML Application Domain Extensions (ADE). It is implemented based on
the Open Source Attributed Graph Grammar (AGG)* transformation engine for realizing the
automatic transformation from an XML application schema (XSD) to a compact relational
database schema (including tables, indexes, and constraints etc.) for a given CityGML ADE.
In addition, an XML-based schema mapping file can also be automatically generated which
contains the relevant meta-information about the derived database schema as well as the
explicit mapping relationships between the source and target schemas and allows developers
to implement applications for managing and processing the ADE data contents stored in a
3DCityDB instance.

6.3.2 Plugin installation

Like with the Spreadsheet Generator Plugin, the ADE manager plugin can also be optionally
installed together with the 3DCityDB Import/Export tool. During the Installation of the
Import/Export tool, the wizard will ask you if you want to install the ADE Manager Plugin
(cf. the following figure):

Select Installation Packages [Eemmea: |
Select which application components you want to install, CEmEmE
CityGML

Step 5of 9

8 select the packs you want to instal:
Q MNote: Grayed packs are required.

; Core application files 81,79 ME
i [/] 30 City Database 1,64 MB
Documentation 456,82 MB

3D Web Map Client 33,95 MB
Sample CityGML and KML/COLLADA datasets 57,95 MB
= [=] Plugins 10,53 MB
[] Spreadsheet Generator Flugin 13,51 MB
[™ ADE Manager Plugin 10,53 MB
Description
This plugin allows for managing CityGML ADEs for the 3D City Database.
Total space required: 232,67 MB
Available space: 336,43 GB

{Made with [zPack - hitp://izpack.org/}

-Q‘-,ZI Previous @ Quit

Figure 133: GUI wizard for prompting the installation of ADE Manager Plugin

4 http://www.user.tu-berlin.de/o.runge/agg/

http://www.user.tu-berlin.de/o.runge/agg/

3D Geodatabase for CityGML 2018 235

If the users haven’t checked the “4ADE Manager Plugin” box during the installation process, it
is also possible to install the plugin later. The installation steps are very similar to those
operation steps for installing the Spreadsheet Generator Plugin. For more details, please refer
to the section 6.2.2. Once the Import/Export tool and ADE Manager Plugin have been
successfully installed, the user interface of the ADE Manager Plugin should look like the
figure below:

q

File Project View Help

Import Export KML/COLLADA/QITF Export] ADE Manager §Database Preferences

ADEID MName Description Version DB_Prefix Creation_Date

Input for ADE Registry

Browse
Fetch ADEs Register ADE Remove selected ADE Generate Delete-Script Generate Envelope-Script
Transformation
¥ML Schema (X50)
Browse
Read XML Schema
Mame {maximal 1000 characters)
Mamespace
Description {(maximal 4000 characters)
Version (maximal 50 characters)
DE_Prefix (maximal 4 characters)
InitialObjectdassld (minimal value: 10000)
50
Qutput
Browse

Transform

Figure 134: User interface of the ADE Manager Plugin

236 3D Geodatabase for CityGML 2018

6.3.3 User Interface

6.3.3.1 ADE Registration

The user interface of the ADE Manager Plugin is composed of two parts. The first part is
mainly used for registering CityGML ADEs into a 3DCityDB database instance. During the
ADE registration process, new ADE-specific database objects such as feature tables, foreign
key contstraints, sequences, simple and spatial indexes are added to the existing 3DCityDB
database schema. Also, the metatdata tables (cf. chapter 2.3.3.1) are populated with the meta-
information about the registered ADE. To run the ADE registration process, the input files
required by the ADE Manager Plugin must be strictly organized according to the following
folder structure.

w [resources
v [3dcitydb
v [oracle
[, CREATE_ADE_DB.sq|
[DROP_ADE_DB.sq
v &% postgreS0OL
[CREATE_ADE_DB.sq|
[, DROP_ADE_DB.sq
v [schema-mapping

¥4 schema-mapping.xml

Figure 135: Specific folder structure of the input files required by ADE Manager plugin for ADE registration

The input folder must comprise at least two mandatory subfolders namely 3dcitydb and
schema-mapping. The first subfolder 3dcitydb further contains two subfolders oracle and
postgresql, which contain the SQL definition file CREATE ADE DB.sql. This file can be
excuted by the ADE Manager Plugin for creating the 3DCityDB-compliant ADE database
schema according to the database type (Oracle or PostgreSQL) being used. The SQL file
DROP _ADE DB.sql contains the DDL-statements for removing the corresponding ADE
database schema. These DDL-statements are imported into the metadata table ADE during the
ADE registration process and hence are persistently stored at the database side. When
unregistering an ADE, the DDL-statements will be read from the table ADE and excuted by
the ADE Manager Plugin.

The second subfolder schema-mapping shall contain an XML-formatted file which holds the
relevant meta-information (e.g. name, description, XML namespace, and value range of
object class id etc.) about an ADE as well as the explicit mapping information between the
XML application schema and relational database schema. This schema-mapping file is not
only used for the ADE registration purpose but also required for the Importer/Exporter and
WES tools to control the query and transaction of ADE datasets. The Importer/Exporter also
uses a schema-mapping file for mapping the elements of the CityGML XML schemas to
tables and columns of the 3DCityDB core schema. This mapping file, its XML Schema

3D Geodatabase for CityGML 2018 237

definition as well as a Java API for reading and writing a valid schema-mapping files can be
found in the Github repository”.

Example: Registration of a Test ADE

The TestADE is an artificial CityGML ADE which is intended to be used for testing and
demonstrating how to use the citygml4j and 3DCityDB software APIs to implement
3DCityDB-compilant applications for working with the real-world ADEs. The TestADE has
been designed to reflect the most typical modelling structures offered by the CityGML ADE
mechanism such as subtyping or property injection. Moreover, the contained feature and data
types have been copied (and simplified) from existing CityGML ADEs such as the Energy
ADE and the UtilityNetwork ADE. A central repository containing the TestADE’s UML data
model, XML schema definition file, database schema, schema-mapping file as well as the
Java classes for reading and writing ADE datasets is hosted in the 3DCityDB’s Github
website®.

The input SQL and schema-mapping files for ADE registration are located under the relative
path “extension-test-ade/test-ade-citydb/resources” of the TestADE’s Github repository. After
opening the ADE Manager Plugin, the users can click on the Browse button to open a file
chooser dialog for providing the local path of the input folder. After connecting to the target
3DCityDB instance, the ADE registration process can be started by clicking on the Register
ADE button.

Import Export KML/COLLADA/gITF Export ADE Manager Database Preferences

ADEID MName Description Version DBE_Prefix Creation_Date

Input for ADE Registry

E:'\Repository\3DCityDB\extension-test-ade\test-adecitydb\resources Browse

Fetch ADEs Register ADE Remove selected ADE Generate Delete-Script Generate Envelope-Script

Figure 136: Dialog panel for registering CityGML ADEs

While performing the ADE registration process, the ADE database schema will be firstly
created, and the metadata information will be written to the 3DCityDB metadata tables
subsequently. In addition, the database stored functions and procedures e.g. DELETE script
and ENVELOPE script will also be newly generated. After the ADE has been successfully

5 https://github.com/3dcitydb/importer-exporter/tree/master/impexp-
core/src/main/java/org/citydb/database/schema
https://github.com/3dcitydb/importer-exporter/tree/master/impexp-
core/src/main/resources/org/citydb/database/schema

¢ https://github.com/3dcitydb/extension-test-ade

https://github.com/3dcitydb/importer-exporter/tree/master/impexp-core/src/main/java/org/citydb/database/schema
https://github.com/3dcitydb/importer-exporter/tree/master/impexp-core/src/main/java/org/citydb/database/schema
https://github.com/3dcitydb/importer-exporter/tree/master/impexp-core/src/main/resources/org/citydb/database/schema
https://github.com/3dcitydb/importer-exporter/tree/master/impexp-core/src/main/resources/org/citydb/database/schema
https://github.com/3dcitydb/extension-test-ade

238 3D Geodatabase for CityGML 2018

registered, a list of all ADEs registered in the 3DCityDB instance along with their relevant
meta-information is shown on the ADE information panel (cf. the following figure).

File Project View Help

Import Export KML/COLLADA/gITF Export ADE Manager Database Preferences

ADEID Mame Description Version DE_Prefix Creation_Date
06b4f55820d9dacd2992... ITestADE ITest ACE 1.0 test 2013-09-03 13:15:53

Input for ADE Registry

E:\Repository\30CityDE \extension-test-ade \test-ade-citydbresources Browse

Fetch ADEs Register ADE Remove selected ADE Generate Delete-Script Generate Envelope-Script

Figure 137: GUI panel for displaying the relevant meta-information of all the registered ADEs

The users may also use a database client application like pgAdmin (PostgreSQL) and
SQLDeveloper (Oracle) to check whether the ADE database schema has been correctly
created. All new tables should be prefixed with the characters “test ” and the new delete and
envelope functions/procedures should have the prefix “del test > and “env test ”
respectively.

(|

F-[-5 solitary_vegetat_object
- surface_data

+- [surface geometry

- test_building

i test_buildingu_to_address
i[5 test_buildingunit

i[9 test_energyperformancecer
- [test_fadiities

r--[F5 test_industrialbuilding
F-[55 test_industrialbuildingpa
H--[F5 test_industrialbuildingro

i [test_other_to_thema_surfa
+- [test otherconstruction
i[5 tex_image

[textureparam

=1

=1...I1---[F1--- I 1-- - 1 -1 3 - T T

(ru |

Figure 138: Exploration of the newly created ADE tables using pgAdmin

When connecting to another 3DCityDB instance, the users may click on the Fetch ADEs
button to update the contents in the meta-information panel and thus to check which ADEs
have already been registered into the target database. The Generate Delete-Script and
Generate Envelope-Script buttons allow to generate the respective database stored
functions/procedures again and display them in a popup dialog window. It is possible to
install the script directly by clicking on the the /nstall button or save it to a SQL file. This
gives the developers the possibility to modify the script functions and to install them via the
database client applications e.g. pgAdmin and SQLDeveloper.

3D Geodatabase for CityGML 2018 239

-- Mutomatically generated database script (Creation Date: 2018-05-03 13:47:42 A
—— FUNCTICN citydb.cleanup appearances{only global INTEGER DEFRULT 1) RETURNS
—— FUNCTICN citydb.cleanup schema () RETURNS SETOF wvoid
—— FUNCTICN citydb.cleanup table(tab name TEXT) RETURNS SETOF INIEGER
—— FUNCTION citydb.del address{int[], ecaller INTEGER DEFAULT 0] RETURNS SETOF
== FUNCTICN citydb.del addressi(pid int) RETURNS integer
—— FUNCTICN citydb.del appearance (int[], caller INTEGER DEFAULT 0) RETURNS SET
—— FUNCTICN citydb.del_ appearance (pid int) RETURNS integer
—— FUNCTICN citydb.del breakline relief{int[], caller INIEZER DEFRULT 0) RETUR
—— FUNCTICN citydb.del breakline relief(pid int) RETURNS integer
—— FUNCTICN citydb.del bridge{int[], caller INTEZER DEFRULT 0) RETURNS SETOF i
—_ TTTETTT TR me e erddle mlm T T s famd =l S e TITTTTORS 5wt mwim e v
£ >
Install

Save Scipt

Browse

Save Script

Figure 139: Dialog window for showing and installing newly generated database stored functions/procedures

6.3.3.2 ADE Transformation

The second part of the ADE Manager Plugin offers the functionality to read an ADE’s XML
application schema definition file and automatically generate the database schema and XML
schema-mapping files according to the specific folder structure required for the ADE
registration. However, a notable issue is that some relevant meta-information about an ADE
are usually missing in its XML schema, since they cannot be encoded using the native syntax
of the XML schema and will be lost while deriving the XML schema from its ADE’s UML
model (e.g. when using a transformation tool like ‘ShapeChange’’). Moreover, some certain
kinds of meta-information can even not be represented in the UML model. A good model-
driven solution for solving this issue is to extend the UML model by adding a few specific
taggedValues (cf. the table below) which can be automatically translated and encoded into the
<xs:annotation> elements in XML schema.

1. Top-level feature classes

taggedValue topLevel (true | false)
Description This taggedValue allows for determining whether an ADE feature class is top-
level or not
Example <element name="IndustrialBuilding"
Of usin substitutionGroup="bldg:_AbstractBuilding"
g . type="TestADE:IndustrialBuildingType">
<xs:annotation> <annotations
in XML-Schema <appinfo>

<taggedValue xmlns="http://www.interactive-
instruments.de/ShapeChange/AppInfo” tag="topLevel">true</taggedValue>
</appinfo>
</annotation>
</element>

7

https://shapechange.net/

https://shapechange.net/

240 3D Geodatabase for CityGML 2018

2. Muliplicity of ADE Hook Properties

taggedValue minOccurs und maxOccurs (Integer value | ,,unbounded")

Description The combiniation of the two taggedValues allows for determining the
multiplicity information of each ADE hook property. In UML model, this
multiplicity information can be explicitly specified but it is lost in the XML
schema, because every ADE hook property is hard-encoded with a multiplicity of
[0..*] in the XML schema. Since the current version (2.5.1) of the ShapeChange
tool is still not able to read the multiplicity of the hook properties from the UML
model directly, the two taggedValues are hence required although they provide
the redundant multiplicity information in UML model

Example <element name="ownerName"

Of using substitutionGroup="bldg:_GenericApplicationPropertyOfAbstractBuilding"
. type="string">

<xs:annotation> <annotations

in XML-Schema <appinfo>

<taggedValue xmlns="http://www.1interactive-
instruments.de/ShapeChange/AppInfo"” tag="maxOccurs">1</taggedValue>
</appinfo>
</annotation>
</element>

3. Relationship type between classes

taggedValue relationType (association |aggregation | composition)

Description An enumeration attribute allowing to distinguish the three relationships
between two associated classes. This meta-information is also lost while
mapping UML -> XML schema, because the XML schema doesn’t support the
distinguishment between the three relation types. This taggedValue is also
redundant from the view of UML, but required when using ShapeChange

Example <element maxOccurs="unbounded"” minOccurs="0" name="boundedBy"
Of using type= degfBoundarySunfacePropertyType >
. <annotation>
Xs:annotation <appinfo>
in XML-Schema <taggedValue xmlns="http://www.interactive-

instruments.de/ShapeChange/AppInfo”
tag="relationType">composition</taggedvalue>
</appinfo>
</annotation>
</element>

The realization of the model transformation process is mainly based on the concept of “Graph
Transformation™ and implemented using the Open Source graph transformation engine AGG.
It comes with a graphical editor (a runnable jar file AggV2/Build.jar in the folder 1ib) that
allows users to define an arbitrary number of graph-structured transformation rules for
mapping complex object-oriented models onto a compact relational database models (cf. [Yao
& Kolbe 2017]). While developing the ADE Manager Plugin, around 50 mapping rules have
been designed, which can also be modified by developers for customizing the model
transformation behaviour. The workspace file containing the transformation rules is located
under “/src/main/resources/org/citydb/plugins/ade_manager/graph/Working Graph.ggx” and
can be opened using the AGG editor. Using the predefined mapping rules we were able to
correctly transform all well-known CityGML ADEs like the Energy ADE, Noise ADE,
UtilityNetwork ADE, Dynamizer ADE, IMGeo3D and further custom ADEs to compact
relational schemas. In the future, for some ADEs we may publish complete ADE packages on
the 3DCityDB github pages as Open Source. Some will be commercially available from the
3DCityDB development partners.

3D Geodatabase for CityGML 2018 241

G = B [T 6] R %M alilc] %l R[5 (a2 =l
e (m el g 2[R R w]ie | (Bl RN+ =] miEl= sl e o] e B

(GraGras (= : | .. 4| Map-ComplexType-To-Table of EdGraphO Schema
? EdGraphOfMappingSchema Z '_ ;
%, * [Em]MappingModel E : H
? MappingGraph
o [0]CreateObjectClassTable i
- [0]Map-ComplexType-To-Table S £ _—
o [0]Map-Inheritance-To-OneTable | i

@ 4 1:ComplexType / 1:ComplexType [|pataTabls

[[0]Map-Inheritance-To-OneTable| | : 4 |name=xreplace('Abstract’,
2 Nk E 3
B Ik i N\

| Node Types
3| O AbstractAttri)
() AbstractDataColumn

() AbstractGeometryPro...
O BrepGeometryProperty
[CodeListProperty

O CodelistType

O Column

O ComplexAltribute

[ComplexType

mapsTo

o [0]Create-Inline-Datalype

) ComplexTypeProperly
[0]Map-InlineDatatype O Counter
o [0]Clone-SimpleAttribute-for-Inlin M NataTahla -
o [0]ConvertTimePeriodPropertyTy, - - -
o [0]ConvertMeasurListPropertyTy| m m m

o [1]Create-ObjectClassID-for Mer,
o [1]Create ObjectClassID-for Mer,
o [1]Create-ObjectClassID-for-Mer,
o [1]Map-Inheritance-To-Join

o [2]Map-M:N_Association_agg_c

[[2]Map-M:N_Association_no_agg
o [21Map-M:N_Association-Self

o [2]Map-1:N_Association

o [2]Map-1:N_Association-Self

Edge Types
— baseType
belongsTo
clone

— comporises
—— contains
extends
inlineType
— joinFrom
— joinTo

o [2]Map-1:N_Association-With_Sh mapsTo

o [2]Map-1:N_Association.With_For| reverseProperty

o [2]Map-1:1_Association — targetColumn
—— targetTable

o [2]Map-1:1_Association-Self

[[2]Map-1:1_Association-With-Sh;

o [3ICreate SurfaceGeometryTable

o [3ICreatelmplicitGeometryTable
[3]Map-implicitGeometryProperty
[3IMap-ImplicitGeometryProperty

[31Map-ImplicitGeometryProperty
LT raam

— targetType
—— treeHierarchy

Figure 140: AGG graph editor for defining model transformation rules for the ADE Manager Plugin

Example: Transformation of the TestADE

The XML schema definition file of the TestADE is located under the path “test-ade-
citygmldj\src\main\resources\org\citygml\ade\test\schema\CityGML-TestADE.xsd”. It can be
selected or entered using a file chooser dialog window by clicking on the Browse button in the
input panel (cf. [1] in Figure 141). After entering the path of the XML schema and clicking on
the button Read XML Schema, the XML schema file will be read and parsed. All namespaces
(except the GML and CityGML namespaces) included in the the XML schema file will be
listed on the left panel [2]. The namespace “http.//www.citygml.org/ade/TestADE/1.0” of the
target ADE shall be selected and its background will be highlighted with blue color. In the
next step, some additional relevant meta-information for the ADE must be specified in the
panel (see [3] in Figure 141) and will be written into the output schema-mapping file. More
details about the meaning of the individual metadata attribute are described in the section
2.3.3.1. In the last step, the path for the output files should be specified and the Transform
button can be clicked to start the transformation process.

The entire transformation process should take just a few seconds, since the TestADE has a
rather simple structure with only 10 classes and data types. The output files are exactly
organized according to the specific folder structure described in the section 6.3.3.1. A full
example of the output files is located under the path “test-ade-citydb\resources” which can be
directly used as the input folder for performing the ADE registration into a 3DCityDB
instance.

242 3D Geodatabase for CityGML 2018

Transformation

XML Schema (XSD)

E:\Repository\3DCityDE\extension-test-ade \test-ade-citygmidi \src\main resources\org \dtygml\ade \test \schema\CityGML-TestADE. xsd Browse

Read XML Schema a

Mame (maximal 1000 characters)

| TestADE

MNamespace
http:/fwww. citygml.org/ade,TestADES1.0

Description (maximal 4000 characters)

An ADE for Test

Version (maximal 50 characters)
1.0

DB_Prefix (maximal 4 characters)

test

InitialObjectdassId {minimal value: 10000)

10000

Transform Q

Figure 141: GUI panel for transforming XML schema to 3DCityDB database schema and schema-mapping file

Output

Browse

6.3.4 Workflow of extending the Import/Export Tool

Once an ADE has been successfully registered into an 3DCityDB instance, the Import/Export
tool must be manually extended to support the import and export of the ADE datasets. The
Import/Export tool provides a specific Java API that allows developers to implement the
ADE-specific Import/Export-extensions based on a simple plugin mechnism. An example of
how to implement such Java extensions for the TestADE can be found in the Github
repository. In the following, a brief guide about operating the Import/Export tool with ADE
extensions is presented.

e Create a folder named “ade-extensions” in the installation directory of the Import/Export
tool, if the folder does not exist.

e Download the latest version of the TestADE’s Java extension, database schema, and
schema-mapping file from the Github website: https://github.com/3dcitydb/extension-test-

ade/releases

e Unpack the zip file to a folder e.g. named “extension-test-ade” which shall contain three
subfolders 3dcitydb, lib, and schema-mapping.

o Copy the extension-test-ade folder into the ade-extension folder. The folder structure
should look like below.

https://github.com/3dcitydb/extension-test-ade/releases
https://github.com/3dcitydb/extension-test-ade/releases

3D Geodatabase for CityGML 2018

243

3DCityDE-Importer-Exporter-4.0

3dcitydb

3d-web-map-client

ade-extensions
extension-test-ade
3dcitydb
lib

schema-rmapping

bin
contribs
lib
license
manual
plugins
samples

ternplates

Figure 142: Folder structure of the Import/Export tool with ADE extensions

Start the Import/Export tool. The JAR files in the extension-test-ade/lib folder along with
the schema-mapping file in the extension-test-ade/schema-mapping will be automatically
loaded by the Import/Export tool.

Connect to an empty 3DCityDB instance. This database could be named as “TestADE”
and its coordinate reference system can be defined with SRID = 31468

Open the tab panel Database = Database operations 2 ADEs to check whether the
ADE-extensions for Import/Export tool is successfully installed.

The screenshot below shows that the Import/Export tool is now enabled for supporting the
TestADE, while the connected 3DCityDB instance is still not. Therefore, the next step is to
use the ADE Manager plugin to complete the ADE registration and database schema creation.

244 3D Geodatabase for CityGML 2018

Import Export KML/COLLADA/GITF Export ADE Manager SPSHG Database preferences Cansole
[11: 2 INFQ] Connecting to database profile "TestRDE" .
Connection | TestADE - [11: 2 INFO] Database connection established.
[11:22:02 INFQ] 3D City Database: 4.0.0
Connection details [11: 2 INFQ] DBMS: PostgreSQL S.6.6
Description | TestADE Apply [11: 2 INFQ] Connection: postgres@localhost:5432/TestRIE
[11: 2 INFC] Schema: citydb
Username |postgres MNew [11: 2 INFO] SRID: 31468 (Projected)
[11: 2 INFC] SRS: DHDMN / 3-degree Fauss—-Eruger zone 4
Password |esssss
Copy [11: 2 INFO] gml:srsName: urn:ogc:def:crs:EPSG::314€8
Save password [11: 2 INFO] Versioning: Not supported
Delete
Type Postgre5QL/PostGIS -
Server localhost Port |5432

Database |TestADE

Schema dtydb i Fetch schemas
Disconnect Info

Database operations

Warkspace |Use default warkspace Timestamp (DD.MM.YYY)

Database report Bounding box Indexes Reference system ADEs

Name Version Database Importer Exporter
TestADE 10 X | v |

Info

Figure 143: User interface for checking the status of ADE support of database and Import/Export tool
e Activate the ADE Manager Plugin and follow the operation steps described in the section
6.3.3.1.

e Reconnect the TestADE database again. The ADE status panel should be updated like the
figure below.

Import Export KML/COLLADA/GITF Export ADE Manager SPSHG Database preferences Console
[12:05:32 INFO] Disconnected from database.
Connection | TestADE - INFO] Connecting to database profile 'TestRDE'.
INFO] Database connection established.
Connection details INFC] 3D City Database: 4.0.0
Description | TestADE Apply INFC] DBMS: PostgreSQL 3.6.6
INFO] Connection: postgres@localhost:5432/TestRDE
Username | postgres New INFO] Schema: citydb
INFCO] SRID: 314€8 (Projected)
Password |essess
Copy INFO] SRS: DHDN / 3-degree Gauss-Eruger zone 4
Save password INFC] gml:srsName: urn:ogco:def:crs:EPSE::31468
Delete INFQO] Versioning: Not supported
Type PostgreSQL/PostGIS ~ INFO] CityGML ADE: TestADE 1.0
Server localhost Port (5432
Datsbase |TestADE
Schema dtydb w Fetch schemas
Disconnect Infa
Database operations
Workspace |Use default workspace Timestamp (DD.MM. YY)
Database report Bounding box Indexes Reference system ADEs
MName Version Database Importer [Exporter
TestADE L0 v | v |
Info

Figure 144: Status indicating the full support of database and Import/Export tool

To test the Import/Export function, open the Import panel and the select the ADE datasets
which are located under the path “resources\datasets\”

3D Geodatabase for CityGML 2018 245

It is possible to use the filter options of the CityGML import panel to import a subset of the
ADE datasets. For example, if the the Feature classes filter is used (cf. the figure below),
only TestADE feature objects will be imported.

File Project View Help

Import Export KML/COLLADA/gITF Export ADE Manager SPSHG Database Preferences

E:'Repasitory'30CityDB\test-ade resources\datasets\TestLod 20therConstructions. gml Browse
E:'Repository'3DCityDEB\test-ade resources\datasets{TestLod4IndustrialBuildings. gml

Remove

Versioning

Workspace |Use default workspace

Q) gmb:id

choose

O] Complex Filter
] gml:name

choose

] cdityObjectMember [appearanceMember [featureMember
from # to #
[] Bounding Box
@ B E'l' Reference system | Same as in database
xmin xmax
Ymin Ymax
Feature Classes

=[] cityObject

i [] Bridge

- [Building

[CityFurniture

- [cityObjectGroup
- [Generics

- [] LandUse

- [relief

+ [] Transportation
- [Tunnel

] vegetation
-] WaterBody

oo |

Import Just validate

Figure 145: Import of ADE dataset using Feature Class filter

A summary of the ADE import process is printed in the console window like the following
screenshot:

246 3D Geodatabase for CityGML 2018

[12:20:40 INFO] Resolwving ¥XLink references.
[12:20:40 INFD] Cleaning temporary cache.
[12:20:40 INFD] Actiwvating spatial indexes. ..
[12:20:40 INFO] Actiwvating normal indexes. ..

[12

[}

41 INFO] Imported city objects:

[12:20:41 INFO] test:BuildingUnit: 227€

[12:20:41 INFO] test:DHWFacilities: 227&

[12:20:41 INFDO] test:IndustrialBuilding: 1

[12:20:41 INFD] test:IndustrialBuildingPart: 1

[12:20:41 INFO] test:IndustrialBuildingRoofSurface: 4855

[12:20:41 INFO] test:0therConstruction: 250

[12:20:41 INFO] Processed geometry objects: 4555¢
[12:20:41 INFD] Total import time: 05 s.

[12:20:41 INFD] Database import successfully finished.

Figure 146: Console window displaying the summary of the ADE import process

e Activate the Database panel and activate the Database report subpanel.

e C(Click on the Generate database report button to generate a statistic of the data contents
stored in the ADE tables.

Import Export KML/COLLADA/QITF Export ADE Manager SPSHG Database preferences Consale
$CITYOBJECTGROUP 0
#EXTERNAL REFERENCE 0
Connection |TestADE w $CE RALIEAIION o
T s #CENERIC CITYORBJECT]
Description | TestADE Apply ERID_COVERAGE . °
#GROUP_TO CITYOBJECT 0
Username | postgres New #IMPLICIT GECMETRY a
#LAND_USE 0
Rascneadigy = e e Copy $MBSSCOINT RELIEF)
Save password #ODENING o
Delete $0PENING TO THEM SURFACE o
Type PostoreSQL/PostGIS w #PLANT COVER i}
Server localhost Port |5432 SRASTER_RELLEF D
#RELIEF_COMPONENT 0
Database | TestADE $RELIZF FEAT TO REL COMD o
#RELIEF FEATURE]
Schema dtydb ~ Fetch schemas $RO0M - o
#SOLITARY VEGETAT OBJECT 0
Disconnect Info #SURFACE DATR i
SURFACE GEQMETRY 2E475
TEST BUILDING 2
Database operations TEST BUTLDINGU TO_ADDRESS o
Workspace |Use default workspace Timestamp (DD.MM. YY) TEST_BUILDINGUNIT 227¢
TEST ENERGYPERFORMANCECER 4552
Database report Bounding box Indexes Reference system ADEs TEST_FACILITIES 2276
TEST_INDUSTRIALBUILDING 1
Generate database report TEST_INDUSTRIALEUILDINGEAZ 1
TEST INDUSTRIALBUILDINGRO 4853
TEST OTHER_TO THEMR SURFR 4355
TEST OTHERCONSTRUCTION 230
#TEX IMAGE 0
#TEXTUREDPARAM 0
#THEMATIC SURFACE 4255
sty morroo o

Figure 147: Console window showing a statistic of the ADE tables

The operation steps for performing ADE export are very similar to those for the ADE import.

e Activate the Export panel and configure the filter options e.g. activate the Feature class
filter and choose the “TestADE”

3D Geodatabase for CityGML 2018 247

e Click on the Export button to start the export process. The export configuration and a
summary of the ADE export process is shown in the figure below:

ile Project View Help

Import Export KML/COLLADA/QITF Export ADE Manager SPSHG Database Preferences Console
[12:42:32 INFQ] Initializing database export...

[13:48:33 INFQ] Spatial indexes are enabled.

E:\Test\data_out{TestADE\data.gml Browse .
[13:48:3% INFO] Normal indewes are enabled.
(SR N [13:48:33 INFO] Created texture files subfolder 'appeara]
choose rr—— — - > — -
(13:48:33 INFO] Found 251 top-level feature(s) matching
@ ComplxFiter :i:::i ig;z] Eleaning temporazy cache.
:48:37] Exported city objects:
[gminame [13:43:37 INFO] test:BuildingUnit:
choose (13:48:37 INFO] test:DHWFacilities: 227
[13:48:37 INFO] test:IndustrialBuilding: 1
[cityCbjectMember [appearanceMember / featureMember [13:42:37 INFO] test:IndustrizlBuildingPart: 1
from = to = [13:48:37 INFO] test:IndustrialBuildingRoofSurface: 4553
(13:48:37 INFO] test:OtherConstruction: 290
[Bounding Box [13:43:37 INFO] Processed gecmetry objects: 4533
@B R [E— [13:48:37 INFO] Total export time: 04 s.
[13:48:37 INFO] Database export successfully finished.
Xmin Xmax
Ymin Ymax

Feature Classes

=[] cityObject
- [Bridae
[Building
- [CityFurniture
- [cityObjectGroup
- [Generics
[JLandUse
- [Relief
- [Transportation
- [Tunnel
[] vegetation
[waterBody

] =sta0c |

Export

Ready Postgre5QL/PostGIS database connected

Figure 148: Console window showing a summary of ADE export

248 3D Geodatabase for CityGML 2018

3D Geodatabase for CityGML 2018 249

7 Web Feature Service

The OGC Web Feature Service Interface Standard (WFS) provides a standardized and open
interface for requesting geographic features across the web using platform-independent calls.
Rather than sharing geographic information at the file level, for example, the WFS offers
direct fine-grained access to geographic information at the feature and feature property level.
Web feature services allow clients to only retrieve or modify the data they are seeking, rather
than retrieving a file that contains the data they are seeking and possibly much more.

The 3D City Database offers a Web Feature Service interface allowing web-based access to
the 3D city objects stored in the database. WFS clients can directly connect to this interface
and retrieve 3D content for a wide variety of purposes. Thus, users of the 3D City Database
are no longer limited to using the Importer/Exporter tool for data retrieval. The WFS interface
is platform-independent and database-independent, and therefore can be easily used to build
CityGML-aware applications.

The 3D City Database WFS interface is implemented against the latest version 2.0 of the
OGC Web Feature Service standard (OGC Doc. No. 09-025r2) and hence is compliant with
ISO 19142:2010. Previous versions of the WFS standard are not supported though. The
implementation currently satisfies the Simple WFS conformance class. The development of
the WES is led by the company virtualcitySYSTEMS GmbH, Berlin, which offers an extended
version of the WFS with additional functionalities that go beyond the Simple WF'S class (e.g.,
thematic and spatial filter capabilities and transaction support). This additional functionality
may be fed back to the open source project in future releases.

The 3D City Database Web Feature Service is free software under the
Apache License, Version 2.0. See the LICENSE. txt file shipped with the
software for more details. For a copy of the Apache License, Version 2.0, please visit

APACHE

http://www.apache.org/licenses/.

7.1 System requirements

The 3D City Database WEFS is implemented as Java web application based on the Java
Servlet technology. It therefore must be run in a Java servlet container on a web server. The
following minimum software requirements have to be met:

e Java servlet container supporting the Java Servlet 3.1 / 3.0 (or higher)
specification
e Java 8 Runtime Environment (Java 7 or earlier versions are not supported)

The WFS implementation has been successfully deployed and tested on Apache Tomcat 9
(http://tomcat.apache.org/). This is also the recommended servlet container. Apache Tomcat 8
and 7 are also supported, whereas any previous version of the Apache Tomcat server will not

work.

Note: Neither Java nor a servlet container are part of the WFS distribution package and
therefore must be properly installed and configured before deploying the WFS.

http://www.apache.org/licenses/
http://tomcat.apache.org/

250 3D Geodatabase for CityGML 2018

Please refer to the documentation of your favorite servlet container for more
information.

Hardware requirements for the web server running the WFS depend on the intended use and
number of concurrent accesses. There are no minimum requirements to be met, so make sure
your system setup meets your needs. Also note that the WFS does not provide its own
security layer (e.g., to limit access to specific networks or users). So, it is your responsibility
to take any reasonable physical, technical and administrative measures to secure the WFS
service and the access to the 3D City Database.

WES clients connecting to the WFS interface of the 3D City Database must support the OGC
WES standard version 2.0. Moreover, they should be capable of consuming 3D data encoded
in CityGML, which is the default data format delivered by the WFS server.

7.2 Installation

The 3D City Database WFS is shipped as a Java WAR (web archive) file. Please download
the WFS distribution package from http://www.3dcitydb.org/. Besides the WAR file, the
distribution package also contains Java libraries that render mandatory dependencies for the
WES service and that must be installed as shared libraries in your servlet container.

Note: Alternatively, you may build your own WAR file from the source code provided on
GitHub (https://github.com/3dcitydb/web-feature-service). This requires that you are
experienced in building Java web applications from source using Gradle. No further
documentation is provided here.

Please follow the following installation steps:

Step 1: Install and properly configure your Java servlet container

Please refer to the documentation of your servlet container for hints on installation and
configuration. Make sure that the servlet container uses Java 8 (or higher) for running web
applications.

Step 2: Install the mandatory JAR libraries in your servlet container

The WEFS service requires mandatory JAR libraries to be available in the servlet container.
This mainly comprises JDBC libraries for connecting to the database system running the 3D
City Database instance. The libraries are shipped with the distribution package. The list of
libraries will look like this:

e 0jdbc8-12.2.0.1.7jar (Oracle JDBC driver)
e postgresqgl-42.2.4.7jar (PostgreSQL JDBC driver)
e postgis-jdbc-2.2.1.7Jar (PostGIS JDBC extension)

The libraries must be installed as shared libs or common libs (terminology may differ) in your
servlet container. For Apache Tomcat 7 (or higher), this simply means placing the JAR files
into the 1ib folder of the Tomcat installation directory. Afterwards, you need to restart
Tomcat. Please refer to the documentation of your servlet container for more information.

http://www.3dcitydb.org/
https://github.com/3dcitydb/web-feature-service

3D Geodatabase for CityGML 2018 251

Step 3: Deploy the WFS WAR file on your servlet container

If your servlet container is correctly set up and configured, simply deploy the WAR file to
install the WFS web service. Again, the way to deploy a WAR file varies for different servlet
containers. For Apache Tomcat servers, copy the WAR file into the webapps folder, which,
per default, is in the installation directory of the Apache Tomcat server. This will
automatically deploy the application. Alternatively, use the web-based Tomcat manager
application to deploy WAR files on the server. The manager application is included in a
default installation. For more information on deploying WAR files on Tomcat or different
servlet containers, please refer to the corresponding documentation material.

Note: If you use the automatic deployment feature of Tomcat as described above, the name
of the WAR file will be used as context path in the URL for accessing the
application. For example, if the WFS WAR file is named citydb-wfs.war, then
the context path of the WES service will be
http://[host] [:port]/citydb-wfs/. To pick a different context path,
simply rename the WAR file or change Tomcat’s default behavior.

Step 4: Configure your servlet container (optional)
Make sure that your servlet container has enough memory assigned (heap space ~ 1GB or
more).

Note: You may, for instance, use the Java command-line option —Xms for this purpose.

Step 5: Configure the WFS service

The WFS must be configured to meet your needs. For instance, this includes providing
connection details for the 3D City Database instance and the definition of the feature types
that shall be served through the interface. These settings must be manually edited in the
configuration file config.xml of the service. A graphical user dialog will be developed for
a future release. Please check the next chapter for how to configure the WFS.

Note: Changes to the config.xml file typically require a reload or restart of the WFS
web application (a restart of the servlet container itself is, of course, not required).
Please check to documentation of your favorite servlet container for how to do so. In
case of Apache Tomcat, you can simply use the manager application to reload web
applications.

Step 6: Install ADE extensions (optional)

As a last step, you may install additional CityGML ADE extensions for the WFS. This step is
optional and requires a compiled and ready-to-use ADE extension package. Simply copy the
contents of the ADE extension package to the WEB-INF/ade-extensions directory of
your deployed WFS application. The WER-INF directory is typically located in the
application folder, which is generally named after the WAR file and itself is a subfolder of the
webapps folder in the Tomcat installation directory (see Figure 149).

Note: The CityGML ADE must also be registered in the 3DCityDB instance to which your
WES service shall connect.

252 3D Geodatabase for CityGML 2018

7.3 Configuring the Web Feature Service

After deploying but before using the WFS service, you need to edit the config.xml file to
make the service run properly. The config.xml file is in the WEB-INF directory of the
WEFS web application. The WEB-INF is a subfolder of the application folder, which is
generally named after the WAR file and itself is a subfolder of the webapps folder in the
Tomcat installation directory. This may be different if you use another servlet container.

For example, assume that the WFS web application was deployed under the context name
citydb-wfs. Then the location of the WEB-INF folder and the config.xml file in a
default Apache Tomcat installation is shown below.

v | apache-tomcat-9.0.5 * Name
bin ade-extensions
conf classes
lib lib
logs mimetypes
temp schemas

I _ config.xml I

v I webapps I

= wfslog
v citydb-wfs

META-INF

| wes-ne |

wfsclient

Figure 149: Location of the WEB-INF folder and the config.xml file.

Open the config.xml file with a text or XML editor of your choice and manually edit the
settings. An XML Schema for validating the contents of the config.xml file is provided as
file config.xsd in the subfolder schemas. After every edit to the config.xml file,
make sure that the config.xml file validates against this schema before reloading the
WFS web application. Otherwise, the application might refuse to load, or unexpected
behavior may occur.

In the config.xml file, the WFS settings are organized into the main XML elements
<capabilities>, <featureTypes>, <operations>, <postProcessing>,
<database>, <server>, <uidCache>, <constraints>, and <logging>. The
discussion of the settings follows this organization in the subsequent clauses.

7.3.1 Database settings

The database settings define the conmnection parameters for connecting to the 3D City
Database instance the WFS service should give access to. The contents of the <database>
element are shown below.

<database>
<connection

3D Geodatabase for CityGML 2018 253

"o
"100"
ng
non
"GO
"30000"
"60000">
<description/>
<type>PostGIS</type>
<server/>
<port>5432</port>
<sid/>
<schema/>
<user/>
<password/>
</connection>
</database>

Listing 1: Database settings in the WFS config. xml file.

Provide the #ype of the database (Oracle or PostGIS), the server name (network name or IP
address) and port number (default: 1521 for Oracle; 5432 for PostgreSQL) of the database
server, the sid (when using Oracle, enter the database SID or service name; for PostgreSQL
enter the database name), and the user and password of the database user. You can
copy&paste these settings from the config file of the Importer/Exporter. Use the optional
schema element if you want to connect to a schema other than the default schema. The
description is optional and can be left empty.

In addition to these minimum settings, the <connection> element takes optional attributes
that let you configure the use of physical connections to the database server. This is especially
important for production servers and if more than one WFS service connects to the same
database server (in this case, you should also carefully configure the database itself). The
attributes together with their meaning are described in the following table.

Attribute Description
(int) the initial number of physical connections that are created

S when the database connection is established (default: 10).
(int) The maximum number of active connections to the
maxActive database that can be allocated at the same time (default: 100).

NOTE — make sure your database is configured to handle this
number of parallel active connections.

(int) The maximum number of connections that should be kept
active at all times (default: 50). Idle connections are checked
maxIdle periodically (if enabled) and connections that have been idle
for longer than minEvictableIdleTimeMillis will be
released. (also see testWhileIdle)

(int) The minimum number of established connections that
should be kept active at all times (default: 0). The connection
pool can shrink below this number if validation queries fail.
(also see testWhileIdle)

(int) The maximum number of milliseconds that the service will
maxWait wait (when there are no available connections) for a
connection before throwing an exception (default: 30000, i.e.

minIdle

254

3D Geodatabase for CityGML 2018

30 seconds).

testOnBorrow

(boolean) The indication of whether connections will be
validated before being used by the service. If the connections
fails to validate, it will be dropped, and the service will attempt
to borrow another (default: false). NOTE - for a true value to
have any effect, the validationQuery parameter must be set
to a non-null string. In order to have a more efficient
validation, see validationInterval.

testOnReturn

(boolean) The indication of whether connections will be

validated before being returned to the internal connection pool
(default: false). NOTE - for a true value to have any effect, the
validationQuery parameter must be set to a non-null string.

testWhilelIdle

(boolean) The indication of whether connections will be
validated by the idle connections evictor (if any). If a
connections fails to validate, it will be dropped (default: false).
NOTE - for a true value to have any effect, the
validationQuery parameter must be set to a non-null string.

validationQuery

(String) The SQL query that will be used to validate
connections. If specified, this query does not have to return
any data (default: null). Example values are “select 1 from
dual” (Oracle) or “select 1” (PostgreSQL).

validationClassName

(String) The name of a class which implements the
org.apache.tomcat.jdbc.pool.Validator interface and
provides a no-arg constructor (may be implicit). If specified,
the class will be used to instead of any validation query to
validate connections (default: null). NOTE — for a non-null
value to have any effect, the class has to be implemented by
you as part of the source code of the WFS service. Use with
care.

timeBetweenEvictionRunsMillis

(int) The number of milliseconds to sleep between runs of the
idle connection validation/cleaner. This value should not be
set under 1 second. It dictates how often we check for idle,
abandoned connections, and how often we validate idle
connections (default: 30000, i.e. 30 seconds).

minEvictableIdleTimeMillis

(int) The minimum amount of time a connection may be idle
before it is eligible for eviction (default: 60000, i.e. 60
seconds).

removeAbandoned

(boolean) Flag to remove abandoned connections if they
exceed the removeAbandonedTimout. If set to true a
connection is considered abandoned and eligible for removal
if it has been in use longer than the
removeAbandonedTimeout See also logAbandoned (default:
false).

removeAbandonedTimeout

(int) Timeout in seconds before an abandoned (in use)
connection can be removed (default: 60, i.e. 60 seconds). The
value should be set to the longest running query.

logAbandoned

(boolean) Flag to log stack traces for application code which
abandoned a connection. NOTE - this adds overhead for
every connection borrow (default: false).

connectionProperties

(String) The connection properties that will be sent to the
JDBC driver when establishing new connections. Format of
the string must be [propertyName=property;]* NOTE - The
"user" and "password" properties will be passed explicitly, so
they do not need to be included here (default: null).

(String) A custom query to be run when a connection is first

1n1t5QL created (default: null).
(long) To avoid excess validation, only run validation at most
validationInterval at this frequency - time in milliseconds. If a connection is due

for validation, but has been validated previously within this

3D Geodatabase for CityGML 2018 255

interval, it will not be validated again (default: 30000, i.e. 30
seconds).

(boolean) Register the internal connection pool with JMX or
not (default: true).

(boolean) Set to true if connection requests should be treated
fairly in a true FIFO fashion (default: true)

(int) Connections that have been abandoned (timed out) will
not get closed and reported up unless the number of
connections in use are above the percentage defined by
abandonWhenPercentageFull abandonWhenPercentageFull. The value should be between
0-100 (default: 0, which implies that connections are eligible
for closure as soon as removeAbandonedTimeout has been
reached).

(long) Time in milliseconds to keep connections alive. When a
connection is returned to the internal pool, it will be checked
whether now - time-when-connected > maxAge has been

jmxEnabled

fairQueue

maxAge reached, and if so, the connection is closed (default: 0, which
implies that connections will be left open and no age check
will be done).

suspectTimeout (int) Timeout value in seconds (default: 0).

Table 35: Optional database connection settings.

7.3.2 Capabilities settings

The capabilities settings define the contents of the capabilities document that is returned by
the WFS service upon a GetCapabilities request. The capabilities document is
generated dynamically from the contents of the config.xml file at request time.

Only optional service metadata must be explicitly specified in the config.xml file using
the <owsMetadata> child element of <capabilities> (see the example listing below).
All other sections of the capabilities document are populated automatically from the
config.xml file. For example, the set of feature types advertised in the
<wfs:FeatureTypeList> section 1is derived from the content of the
<featureTypes> element (cf. chapter 7.3.3).

Note that the metadata is copied to the capabilities document “as is”. Thus, the WFS
implementation neither performs a consistency check nor validates the provided metadata.

<capabilities>
<owsMetadata>
<ows:Serviceldentification>
<ows:Title>3D City Database Web Feature Service</ows:Title>
<ows:ServiceType>WFS</ows:ServiceType>
<ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>
</ows:Serviceldentification>
<ows:ServiceProvider>
<ows:ProviderName/>
<ows:ServiceContact/>
</ows:ServiceProvider>
</owsMetadata>
</capabilities>

Listing 2: Service metadata settings in the WFS config.xml file.

256 3D Geodatabase for CityGML 2018

Service metadata comprises, for example, information about the service itself that might be
useful in machine-to-machine communication or for display to a human. Such information is
announced through the <ows:ServiceIdentifikation> child element. In contrast, the
child element <ows : ServiceProvider> contains information about the service provider
such as contact information. Please refer to the OGC Web Services Common Specification
(OGC 06-121r3:2009) to get an overview of the supported metadata fields that may be
included in the capabilities document and therefore can be specified in <owsMetadata>.

Note: Service metadata is optional and therefore does not have to be included in the
config.xml file. Simply provide no content for the <capabilities> element
or omit it completely. In both cases, the capabilities document will nevertheless be
generated dynamically.

Note: The 3DCityDB WEFS implementation supports both versions 2.0.0 and 2.0.2 of the
WES specification. A list of <ows:ServiceTypeVersion> elements is used to
denote which versions are offered to clients. The default config.xml only uses
version 2.0.0 because many WEFS clients still have issues with correctly handling
version 2.0.2.

7.3.3 Feature type settings

With the feature type settings, you can control which feature types can be queried from the 3D
City Database and are served through the WFS interface. Every feature type that shall be
advertised to a client must be explicitly listed in the config.xml file.

An example of the corresponding <featureTypes> XML element is shown below. In this
example, CityGML Building and Road objects are available from the WFS service. In
addition, a third feature type IndustrialBuilding coming from a CityGML ADE is advertised.

<featureTypes>
<featureType>
<name>Building</name>
<ows:WGS84BoundingBox>
<ows:LowerCorner>-180 -90</ows:LowerCorner>
<ows:UpperCorner>180 90</ows:UpperCorner>
</ows:WGS84BoundingBox>
</featureType>
<featureType>
<name>Road</name>
<ows:WGS84BoundingBox>
<ows:LowerCorner>-180 -90</ows:LowerCorner>
<ows:UpperCorner>180 90</ows:UpperCorner>
</ows:WGS84BoundingBox>
</featureType>
<adeFeatureType>
<name "http://www.citygml.org/ade/TestADE/1.0">IndustrialBuilding</name>
<ows:WGS84BoundingBox>
<ows:LowerCorner>-180 -90</ows:LowerCorner>
<ows:UpperCorner>180 90</ows:UpperCorner>
</ows:WGS84BoundingBox>

3D Geodatabase for CityGML 2018 257

</adeFeatureType>

<version "true'">2.0</version>
<version>1.0</version>
</featureTypes>

Listing 3: Advertised feature types in the WFS config.xml file.

The <featureTypes> element contains one <featureType> node per feature type to
be advertised. The feature type is specified through the mandatory name property, which can
only take values from a fixed list that enumerates the names of the CityGML top-level
features (cf. config.xsd schema file). In addition, the geographic region covered by all
instances of this feature type in the 3D City Database can optionally be announced as
bounding box (lower left and upper right corner). The coordinate values must be given in
WGS 84.

Note: The bounding box is not automatically checked against or computed from the
database, but rather copied to the WFS capabilities document “as is”.

Feature types coming from a CityGML ADE are advertised using the <adeFeatureType>
element. In contrast to CityGML feature types, the name property must additionally contain
the globally unique XML namespace URI of the CityGML ADE, and the type name is not
restricted to a fixed enumeration. Note that a corresponding ADE extension must be installed
for the WEFS service, and that the ADE extension must add support for the advertised ADE
feature type. Otherwise, the ADE feature type is ignored. If you do not have ADE extensions,
then simply skip the <adeFeatureType> element.

Besides the list of advertised feature types, also the CityGML version to be used for encoding
features in a response to a client’s request has to be specified. Use the <version> element
for this purpose, which takes either 2.0 (for CityGML 2.0) or 1.0 (for CityGML 1.0) as
value. If both versions shall be supported, simply use two <version> elements. However,
in this case, you should define the default version to be used by the WFS by setting the
isDefault attribute to true on one of the elements (otherwise, CityGML 2.0 will be the
default).

7.3.4 Operations settings

The operations settings are used to define the operation-specific behavior of the WFS.

<operations>
<requestEncoding>
<method>KVP+XML</method>
<useXMLValidation>true</useXMLValidation>
</requestEncoding>
<useCityDBADE>false</useCityDBADE>

<GetFeature>
<outputFormats>
<outputFormat "application/gml+xml; version=3.1"/>
<outputFormat "application/json"/>

</outputFormats>

258 3D Geodatabase for CityGML 2018

</GetFeature>
</operations>

Listing 4: Operations settings in the WFS config.xml file.

The <requestEncoding> element determines whether the WFS shall support XML-
encoded and/or KVP-encoded requests. The desired method is chosen using the <method>
child element that accepts the values “KVP”, “XML” and “KVP+XML” (default: KVP+XML).
When setting the <useXMLValidation> child element to true, all XML encoded
operation requests sent to the WFS are first validated against the WFS and CityGML XML
schemas. Requests that violate the schemas are not processed but instead a corresponding
error message is sent back to the client. Although XML validation might take some
milliseconds, it is highly recommended to always set this option to true to avoid unexpected
failures due to XML issues.

With this version of the WFS interface, the only operation that can be further configured is the
<GetFeature> operation. You can choose the available output formats that can be used in
encoding the response to the client. The value “application/gml+xml; version=3.1" is the
default and basically means that the response to a GetFeature operation will be purely XML-
encoded (using CityGML as encoding format with the version specified in the feature type
settings, cf. chapter 7.3.3). In addition, the WFS can advertise the output format
“application/json”. In this case, the response is delivered in CityJSON format.® CityJSON is a
JSON-based encoding of a subset of the CityGML data model. The 3DCityDB WFS supports
version 0.6 of CityJSON. Note that the format is still under development.

Note: The WEFS can only advertise the different output formats in the capabilities
document. It is up to the client though to choose one of these output formats when
requesting feature data from the WFS.

7.3.5 Postprocessing settings
The postprocessing settings allow for specifying XSLT transformations that are applied on
the CityGML data of a WFS response before sending the response to the client.

<postProcessing>
<xslTransformation "true">
<stylesheet>AdV-coordinates-formatter.xsl</stylesheet>
</xs|Transformation>
</postProcessing>

Listing 5: Postprocessing settings in the WFS config.xml file.

To enable transformations, set the isEnabled attribute on the <xslTransformation>
child element to true. In addition, provide one or more <stylesheet> elements
enumerating the XSLT stylesheets that shall be applied in the transformation. The stylesheets
are supposed to be stored in the xs1t-stylesheets subfolder of the WEB-INF folder of
your WFS application. Thus, any relative path provided as <stylesheet> will be resolved

8 http://www.cityjson.org

3D Geodatabase for CityGML 2018 259

against WEB-INF/xslt-stylesheets/. You may alternatively provide an absolute path
pointing to another location in your local file system. However, note that the WFS web
application must have appropriate access rights to this location.

If you provide more than one XSLT stylesheet, then the stylesheets are executed in the given
sequence of the <stylesheet> elements, with the output of a stylesheet being the input for
its direct successor.

Note: To be able to handle arbitrarily large exports, the WFS process reads single top-level
features from the database, which are then written to the response stream. Each
XSLT stylesheet will hence just work on individual top-level features but not on the
entire response.

Note: The output of each XSLT stylesheet must again be a valid CityGML structure.

Note: Only stylesheets written in the XSLT language version 1.0 are supported.

7.3.6 Server settings
Server-specific settings are available through the <server> element in the config.xml
file.

<server>
<externalServiceURL>http://yourserver.org/citydb-wfs</externalServiceURL>
<maxParallelRequests>30</maxParallelRequests>
<waitTimeout>60</waitTimeout>
<enableCORS>true</enableCORS>

</server>

Listing 6: Server settings in the WFS config.xml file.

The external service URL of the WFS can be denoted using the <externalServiceURL>
element. The URL should include the protocol (typically http or https), the server name and
the full context path where the service is available for clients. Also announce the port on
which the service listens if it is not equal to the default port associated with the given
protocol.

Note: The service URL is not configured through <externalServiceURL>. It rather
follows from your servlet container settings and network access settings (e.g., if your
servlet container is behind a reverse proxy). The <externalServiceURL> value
is only used in the capabilities document and thus announced to a client. Most clients
rely on the service URL in the capabilities document and will send requests to this
URL. So, make sure that the WES is available at the <externalServiceURL>
provided in the config.xml.

The <maxParallelRequests> value defines how many requests will be handled by the
WES service at the same time (default: 30). If the number of parallel requests exceeds the
given limit, then new requests are blocked until active requests have been fully processed and
the total number of active requests has fallen below the limit.

260 3D Geodatabase for CityGML 2018

Note: Every WFS can only open a maximum number of physical connections to the
database system running the 3D City Database instance. This upper limit is set
through the maxActive attribute on the <connection> element (cf. chapter
7.3.1). Since every request may use more than one connection, make sure that the
total number of parallel requests is below the maximum number of physical
connections.

In case an incoming request is blocked because the maximum number of parallel requests has
been reached, the <waitTimeout> option lets you specify the maximum time in seconds
the WFS service waits for a free request slot before sending an error message to the client
(default: 60 seconds).

The flag <enableCORS> (default: true) allows for enabling Cross-Origin Resource Sharing
(CORS). Usually, the Same-Origin-Policy (SOP) forbids a client to send Cross-Origin
requests. If CORS is enabled, the WFS server sends the HTTP header Access-Control-
Allow-Origin with the value * in the response.

7.3.7 Cache settings

When exporting data, the WFS must keep track of various temporary information. For
instance, when resolving XLinks, the gm1 : 1d values as well as additional information about
the related features and geometries must be available. This information is kept in main
memory for performance. However, when memory limits are reached, the cache is written to
temporary tables in the database.

Per default, temporary tables are created in the 3D City Database instance itself. The tables
are populated during the export operation and are automatically dropped after the operation
has finished. Alternatively, the cache settings available through the <uidCache> element let
a user choose to store the temporary information in the local file system instead.

<uidCache>
<mode>local</mode>
</uidCache>

Listing 7: Cache settings in the WFS config.xml file.

The <mode> property allows for switching between database cache (default) and local
cache. Some reasons for using a local, file-based storage are:

e The 3D City Database instance is kept clean from any additional (temporary) table.

e If the Importer/Exporter runs on a different machine than the 3D City Database
instance, sending temporary information over the network might be slow. In such
cases, using a local storage might help to increase performance.

7.3.8 Constraints settings
The <constraints> element of the config.xml allows for defining constraints on
dedicated WFS operations.

3D Geodatabase for CityGML 2018 261

<constraints>
<countDefault>10</countDefault>
<stripGeometry>false</stripGeometry>
<lodFilter "and" "depth" "2">
<lod>2</lod>
<lod>3</lod>
</lodFilter>
</constraints>

Listing 8: Security settings in the WFS config.xml file.

The <countDefault> constraint restricts the number of city objects to be returned by the
WES to the user-defined value, even if the request is satisfied by more city objects in the 3D
City Database. The default behavior is to return all city objects matching a request. If a
maximum count limit is defined, then this limit is automatically advertised in the server’s
capabilities document using the CountDefault constraint.

When setting <stripGeometry> to true (default: false), the WFS will remove all spatial
properties from a city object before returning the city object to the client. Thus, the client will
not receive any geometry values.

The <lodFilter> constraint defines a server-side filter on the LoD representations of the
city objects. When using this constraint, city objects in a response document will only contain
those LoD levels that are enumerated using one or more <lod> child elements of
<lodFilter>. Further LoD representations of a city object, if any, are automatically
removed. If a city object satisfies a query but does not have a geometry representation in at
least one of the specified LoD levels, it will be skipped from the response document and thus
not returned to the client.

The default behavior of the LoD filter can be adapted using attributes on the <lodFilter>
element. The mode attribute defines whether a city object must have a spatial representation in
all (“and”) or just one (“or”) of the provided LoD levels. If setting searchMode to “depth”,
then you can use the additional searchDepth attribute to specify how many levels of nested
city objects shall be considered when searching for matching LoD representations. If
searchMode is set to “all”, then all nested city objects will be considered.

Note: The constraint settings in config.xml do not replace a real security layer on user,
database or network level. So, it is your responsibility to take any reasonable
physical, technical and administrative measures to secure the WFS service and the
access to the 3D City Database.

7.3.9 Logging settings

The WEFS service logs messages and errors that occur during operations to a dedicated log
file. Entries in the log file are associated with a timestamp, the severity of the event and the IP
address of the client (if available). Per default, the log is stored in the file WEB-
INF/wfs.log within the application folder of the WFS web application.

262 3D Geodatabase for CityGML 2018

The <logging> element in the config.xml file is used to adapt these default settings.
The attribute logLevel on the <file> child element lets you change the severity level for log
messages to debug, info, warn, or error (default: info). Additionally, you can provide an
alternative absolute path and filename where to store the log messages.

Note: A web application typically has limited access to the file system for security reasons.
Thus, make sure that the log file is accessible for the WFS web application. Check
the documentation of your servlet container for details.

If you want log messages to be additionally printed to the console, then simply include the
<console> child element as well. The <console> element also provides a loglevel
attribute to define the severity level.

<logging>
<console "info"/>
<file "info">
<fileName>path/to/your/wfs.log</fileName>
</file>
</logging>

Listing 9: Logging settings in the WFS config.xml file.

Note: Log messages are continuously written to the same log file. The WFS application
does not include any mechanism to truncate or rotate the log file in case the file size
grows over a certain limit. So make sure you configure log rotation on your server.

7.4 Using the Web Feature Service

The Web Feature Service is implemented against version 2.0 of the OGC Web Feature
Service Interface Standard. Previous versions are not supported any more, and clients must
make sure to use this version of the interface when sending requests to the WFS service.

The following chapters provide a documentation of the functionality offered by the 3D City
Database Web Feature Service. They do not provide a general overview or description of the
OGC Web Feature Service Interface Standard itself. If you need more general information
about WFS, please refer to the WFS specification document instead (OGC Doc. No. 09-
0251r2).

7.4.1 Basic functionality

7.4.1.1 WFS operations

The OGC WFS 2.0 interface defines eleven operations that can be invoked by a client. A
WES server is not required to offer all operations to conform to the standard but may support
a subset only. For this purpose, the WFS standard defines conformance classes named Simple
WES, Basic WFS, Transactional WFS and Locking WFS that grow in the number of
mandatory operations. The current version of the 3D City Database Web Feature Service
implements the Simple WFS conformance class. Thus, it is fully OGC conformant but lacks
operations from other conformance classes. It is planned to incrementally increase the
functionality of the WFS in future releases.

3D Geodatabase for CityGML 2018 263

The following table lists all WFS 2.0 operations and marks those supported by the 3D City
Database WFS.

Operation Description Supported
The GetCapabilities operation generates a service
GetCapabilities metadata document describing the WFS service X

provided by a server.

The DescribeFeatureType operation returns a
DescribeFeatureType |schema description of the CityGML feature types X
offered by the WFS instance.

The ListStoredQueries operation lists the stored
queries available at the server.

The DescribeStoredQueries operation provides
DescribeStoredQuery | detailed metadata about each stored query expression X
that the server offers.

The GetFeature operation returns a selection of
GetFeature CityGML features from the 3D City Database using a X
query expression.

The GetPropertyValue operation allows the value of a
feature property or part of the value of a complex

ListStoredQueries

GetPropertyValue feature property to be retrieved from the 3D City =
Database for a set of features identified using a query
expression.

The LockFeature operation is used to expose a long-

LockFeature term feature locking mechanism to ensure consistency =

in data manipulation operations (e.g., update or delete).

The GetFeatureWithLock operation is functionally
similar to the GetFeature operation except that in

GetFeaturewithLock response to a GetFeatureWithLock operation, the i
WEFES shall also lock the features in the result set.
A stored query may be created using the

AR LR CreateStoredQuery operation.)
The DropStoredQuery operation allows previously

BLCT LA created stored queries to be dropped from the system.
The Transaction operation is used to describe data

T . transformation operations (i.e., insert, update, replace,

ransaction -

delete) to be applied to CityGML feature instances
under the control of the web feature service.

Table 36: Overview of supported WFES 2.0 operations.

7.4.1.2 Service URL

The service URL or service endpoint is the location where the 3D City Database WFS can be
accessed by a client application over a local network or the internet. This URL is typically
composed as follows:

http[s]://[host] [:port]/[context path]/wfs

The actual URL depends on the servlet container and your network configuration. Please ask
your network administrator for the protocol (typically http or https), the host name and
the port of the server. The context path is typically added to the URL by the servlet container.
Please refer to the documentation of your servlet container for more information. The last
component wfs of the URL identifies the service and makes sure that requests are routed to
the WEFS service implementation.

264 3D Geodatabase for CityGML 2018

Note: For Apache Tomcat, the name of the WFS WAR file will be used as context path in
the service URL. For example, if the WAR file is named citydb-wfs.war, then
the service URL will be http[s]://[host] [:port]/citydb-wfs/wfs. To
pick a different context path, simply rename the WAR file or change Tomcat’s
default behavior.

7.4.1.3 Service bindings

A service binding refers to the communication protocol that shall be used for exchanging
request and response messages between a WFES server and a client. The WFS 2.0 interface
standard defines HTTP GET, HTTP POST and SOAP over HTTP POST as possible service
bindings for WFS 2.0 implementations.

The 3D City Database WFS implements both the HTTP POST and the HTTP GET
conformance class. Therefore, a client can choose to send a request either XML-encoded
using the HTTP method POST (using text/xml as content type) or KVP-encoded (key-
value-pair) using the HTTP method GET. Note that the XML content of POST messages sent
to the server must be well-formed and valid with respect to the WFS 2.0 XML Schema.’

The following table summarizes the operations and the supported service binding as offered
by the 3D City Database WFS.

Operation Service Binding

GetCapabilities XML over HTTP POST and KVP over HTTP GET
DescribeFeatureType |XML over HTTP POST and KVP over HTTP GET
ListStoredQueries XML over HTTP POST and KVP over HTTP GET

DescribeStoredQuery | XML over HTTP POST and KVP over HTTP GET
Table 37: Service bindings for the supported WES 2.0 operations.

7.4.1.4 CityGML feature types
The 3D City Database WFS supports all CityGML top-level feature types, and corresponding
feature instances will be sent to the client upon request. If you just want to advertise a subset

of the CityGML feature types, you can restrict the feature types in the config.xml settings
(cf. chapter 7.3.3). In addition to the predefined CityGML feature types, the WFS can also
support feature types defined in a CityGML ADE. This requires a corresponding ADE
extension to be installed for the WFS and to be registered with the 3DCityDB instance.

Note: Appearance properties of CityGML features such as textures or color information are
currently not supported by the WFS implementation and thus will not be included in
a response document.

The supported CityGML feature types together with their official XML namespaces
(CityGML version 2.0 and 1.0) are listed in the table below.

Operation Service Binding

http://www.opengis.net/citygml/building/2.0
http://www.opengis.net/citygml/building/1.0

Building

% http://schemas.opengis.net/wfs/2.0/wfs.xsd

3D Geodatabase for CityGML 2018 265

http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

http://www.opengis.net/citygml/transportation/2.0

TransportationComplex

Road http://www.opengis.net/citygml/transportation/1.0
Track http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
Square http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
Railwa http://www.opengis.net/citygml/transportation/2.0
y http://www.opengis.net/citygml/transportation/1.0
. . http://www.opengis.net/citygml/cityfurniture/2.0
CityFurniture http://www.opengis.net/citygml/cityfurniture/1.0
LandUse http://www.opengis.net/citygml/landuse/2.0
http://www.opengis.net/citygml/landuse/1.0
http://www.opengis.net/citygml/waterbody/2.0
LR e http://www.opengis.net/citygml/waterbody/1.0
PlantCover http://www.opengis.net/citygml/vegetation/2.0

http://www.opengis.net/citygml/vegetation/1.0

http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/1.0

http://www.opengis.net/citygml/relief/2.0

SolitaryVegetationObject

ReliefFeature http://www.opengis.net/citygml/relief/1.0

R . http://www.opengis.net/citygml/generics/2.0
LGSR ILh e http://www.opengis.net/citygml/generics/1.0
CityobjectGroup http://www.opengis.net/citygml/cityobjectgroup/2.0

http://www.opengis.net/citygml/cityobjectgroup/1.0

Table 38: Supported CityGML top-level feature types together with their XML namespace.

7.4.1.5 Exception reports

If the WFS encounters an error while parsing or processing a request, an XML document
indicating that error is generated and sent to the client as exception response. Please refer to
the WES 2.0 specification for the structure and syntax of the exception response.

7.4.2 GetCapabilities operation

The GetCapabilities operation generates an XML-encoded service metadata document
describing the WFS service provided by a server. The capabilities document contains relevant
technical and non-technical information about the service and its provider. Its content mainly
depends on the configuration of the WFS in the config.xml settings file (if created
dynamically).

The following XML snippet shows an XML encoding of a GetCapabilities operation.

<?xml version="1.0" encoding="UTF-8"?>

<wfs:GetCapabilities "WFS" xmlins:wfs="http://www.opengis.net/wfs/2.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
"http://www.opengis.net/wfs/2.0

http://schemas.opengis.net/wfs/2.0/wfs.xsd" />

Listing 10: Example GetCapabilities operation.

The declaration of the WFS XML namespace http://www.opengis.net/wfs/2.0 is
mandatory to be able to validate the request against the official WFS XML Schema definition.

266 3D Geodatabase for CityGML 2018

The reference to the schema location using the xsi:schemaLocation attribute is
however optional. It is recommended though if the XML encoding of the request is created
manually by the user (and not automatically by a client software) to ensure schema validity.
Per default, the WFS service will reject invalid requests (see chapter 7.3.4).

The following table shows the XML attributes that can be used in the GetCapabilities
request and are supported by the WFS implementation.

XML attribute 0/ M, Default value Description
. , The service attribute indicates the
Service b WS (hE) service type. The value “WFS” is fixed.

20 = optional, M = mandatory

Listing 11: Supported XML attributes of a GetCapabilities operation.

As alternative to XML encoding, the GetCapabilities operation may also be invoked
through a KVP-encoded HTTP GET request.

http([s]://[host] [:port]/[context path]/wfs?
SERVICE=WFS&

REQUEST=GetCapabilitiesé&
ACCEPTVERSIONS=2.0.0,2.0.2

The SERVICE parameter is also mandatory for the KVP-encoded request. In addition, the
ACCEPTVERSIONS parameter can be used for version number negotiation with the WFS
server (cf. OGC Document No. 06-121r3:2009, chapter 7.3.2).

7.4.3 DescribeFeatureType operation

The DescribeFeatureType operation returns an XML Schema description of the
CityGML feature types advertised by the 3D City Database WFS instance. Which feature
types are offered by the WFS is controlled through the config.xml settings file (cf. chapter
7.4.1.4). The XML Schema defines the structure and content of the features (thematic and
spatial attributes, nested features, etc.) as well as the way how features are encoded in
responses to GetFeature requests.

The following example shows a valid DescribeFeatureType operation requesting the
XML Schema definition of the CityGML 1.0 Building feature type.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:DescribeFeatureType "WFS" "2.0.0"
xmlins:wfs="http://www.opengis.net/wfs/2.0"
xmlns:bldg="http://www.opengis.net/citygml/building/1.0">
<wfs:TypeName>bldg:Building</wfs:TypeName>
</wfs:DescribeFeatureType>

Listing 12: Example DescribeFeatureType operation.

3D Geodatabase for CityGML 2018 267

The DescribeFeatureType operations takes the following XML attributes.

XML attribute 0/ M, Default value Description

The service attribute indicates the
service type. The value “WFS” is fixed.
The version of the WFS Interface
version M 2.0.x Standard to be used in the
communication.

Controls the format of the schema
description. Currently, the default value

service M WES (fixed)

application/gml+xml;

outputFormat (0] version=3.1 is the only option and results in a
' CityGML / GML 3.1.1 application
schema.
The handle parameter allows a client to
h associate a mnemonic name with the
andle (0]

request that will be used in exception
reports.

20 = optional, M = mandatory

Listing 13: Supported XML attributes of a DescribeFeatureType operation.

The <wfs:TypeName> child element of the DescribeFeatureType operation
identifies the feature type for which the XML Schema description is requested. Be careful to
use the correct spelling of the feature type name (as specified by the CityGML standard) and
to associate the name with the correct CityGML XML namespace. The <wfs: TypeName>
element may occur multiple times to request schema definitions of several feature types in a
single DescribeFeatureType operation. If the <wfs:TypeName> element is omitted,
then the CityGML base schema is returned by the WFS.

The DescribeFeatureType operation can alternatively be invoked through HTTP GET
with key-value pairs.

http[s]://[host] [:port]/[context path]/wfs?
SERVICE=WFEFS&

VERSION=2.0.2&

REQUEST=DescribeFeatureType&
TYPENAME=tran:Road

The following KVP parameters are supported.

KVP parameter 0/ M, Default value Description
SERVICE M WFS (fixed) see above
VERSION M 2.0.x see above
Used to specify namespaces and their
NAMESPACES (0] prefixes. The format shall be

xmins(prefix,escaped_url).
A comma-separated list of feature types
to describe.

application/gml+xml; |see above
version=3.1

TYPENAME M

OUTPUTFORMAT (0]

20 = optional, M = mandatory

Listing 14: Supported KVP parameters of a DescribeFeatureType operation.

268 3D Geodatabase for CityGML 2018

The TYPENAME attribute lists the feature types to describe. Like an XML-encoded request,
both the feature type names and the XML namespaces must be correct. XML namespaces and
their prefixes can be specified using the NAMESPACES attribute. However, the 3DCityDB
WES can correctly deal with the default CityGML prefixes. An additional definition via the
NAMESPACES attribute is therefore obsolet when using the default prefixes (see example
above).

7.4.4 ListStoredQueries operation

Since version 2.0 of the WFS standard, a WFS server is supposed to manage predefined and
parameterized feature query expressions (so called stored queries) that are stored by the
server and that can be repeatedly invoked by the client using different parameter values.
Stored queries hide the complexity of the underlying query expression from the client since
all the client needs to know is the unique identifier of the stored query as well as the names
and types of the parameters in order to invoke the operation.

The ListStoredQuery operation is meant to provide the list of stored queries that is
offered by the WFS server. The response document contains the unique identifier for each
stored query which can then be used in a subsequent DescribeStoredQuery operation to
receive the details of a specific stored query form the WFS server. The following listing
presents an example ListStoredQuery operation.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:ListStoredQueries "WFS" "2.0.0"
xmlns:wfs="http://www.opengis.net/wfs/2.0"/>

Listing 15: Example ListStoredQuery operation.

The ListStoredQuery operation may take the following XML attributes as parameters.

XML attribute 0/ M, Default value Description

The service attribute indicates the
service type. The value “WFS” is fixed.

The version of the WFS Interface
version M 2.0.x Standard to be used in the
communication.

The handle parameter allows a client to

associate a mnemonic name with the
(0] . :)
request that will be used in exception
reports.

service M WES (fixed)

handle

20 = optional, M = mandatory

Listing 16: Supported XML attributes of a ListStoredQuery operation.

The corresponding KVP-encoded request is shown below.

http[s]://[host] [:port]/[context path]/wfs?
SERVICE=WFS&

VERSION=2.0.0&

REQUEST=ListStoredQueries

3D Geodatabase for CityGML 2018 269

The following KVP parameters can be used when invoking the ListStoredQueries

operation.
KVP parameter 0/ M, Default value Description
SERVICE M WFS (fixed) see above
VERSION M 2.0.x see above
20 = optional, M = mandatory

Listing 17: Supported KVP parameters of a ListStoredQuery operation.

7.4.5 DescribeStoredQuery operation

The DescribeStoredQuery operation is used to provide the details of one or more stored
queries offered by the server. The following listing exemplifies a DescribeStoredQuery
request.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:DescribeStoredQueries "WFS" "2.0.0"
xmlins:wfs="http://www.opengis.net/wfs/2.0">
<wfs:StoredQueryld>http://www.opengis.net/def/query/OGC-
WFS/0/GetFeatureByld</wfs:StoredQueryld>
</wfs:DescribeStoredQueries>

Listing 18: Example DescribeStoredQuery operation.

The <wfs:StoredQueryId> child element provides the unique identifier of the stored
query (see ListStoredQuery operation, chapter 7.4.4). By providing more than on unique
identifier through multiple <wfs:StoredQueryId> elements, the descriptions of separate
stored queries can be requested in a single DescribeStoredQuery operation. If the
<wfs:StoredQueryId> element is omitted, a description of all stored queries available at
the WEFS server is returned to the client. The above request will produce a response similar to
the following listing.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<wfs:DescribeStoredQueriesResponse xmlns:fes="http://www.opengis.net/fes/2.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlIns:wfs="http://www.opengis.net/wfs/2.0">
<wfs:StoredQueryDescription id="http://www.opengis.net/def/query/OGC-
WFS/0/GetFeatureByld">

<wfs:Title "en">Get feature by identifier</wfs:Title>
<wfs:Abstract "en">Retrieves a feature by its gml:id.</wfs:Abstract>
<wfs:Parameter "id" "xs:string">

<wfs:Title "en">ldentifier</wfs:Title>

<wfs:Abstract "en">The gml:id of the feature to be retrieved.</wfs:Abstract>

</wfs:Parameter>
<wfs:QueryExpressionText

"urn:ogc:def:queryLanguage:0GC-

WEFS::WFS_QueryExpression" "false">
<wfs:Query "schema-element(core:_CityObject)">
<fes:Filter>

<fes:Resourceld "s{id}"/>
</fes:Filter>
</wfs:Query>
</wfs:QueryExpressionText>

270 3D Geodatabase for CityGML 2018

</wfs:StoredQueryDescription>
</wfs:DescribeStoredQueriesResponse>

Listing 19: Example response to a DescribeStoredQuery request.

Every WFS implementation must at minimum offer the GetFeatureById stored query
having the unique identifier http://www.opengis.net/def/query/OGC-WFS/0/GetFeatureByld
as shown above. This stored query takes a single parameter id of type xs:string and
returns zero or exactly one feature whose resource identifier matches the id value. For the 3D
City Database WFS, the id value is evaluated against the gml:1id of each feature in the
database to find a match.

The returnFeatureTypes attribute lists the feature types that may be returned by a
stored query. Note that this string is empty for the the GetFeatureById query.
Consequently, the query will return a feature instance of all advertised feature types if its
gml : 1d matches. The set of advertised feature types can be influenced in the config.xml
settings file. The DescribeStoredQuery operation allows the following XML attributes.

XML attribute 0/ M, Default value Description

The service attribute indicates the
service type. The value “WFS” is fixed.

The version of the WFS Interface
version M 2.0.x Standard to be used in the
communication.

The handle parameter allows a client to

associate a mnemonic name with the
(0] . : :
request that will be used in exception
reports.

service M WES (fixed)

handle

20 = optional, M = mandatory

Listing 20: Supported XML attributes of a DescribeStoredQuery operation.
A KVP-encoded DescribeStoredQueries request is shown below.

http([s]://[host] [:port]/[context path]/wfs?

SERVICE=WFS&

VERSION=2.0.2&

REQUEST=DescribeStoredQueriess&

STOREDQUERY ID=http%3A%2F%2Fwww.opengis.net$2Fdef%2Fquery%$2FOGC
-WEFS%2F0%2FGetFeatureById

The supported KVP parameters are listed in the following table.

KVP parameters 0/ M, Default value Description

SERVICE M WEFS (fixed) see above

VERSION M 2.0.x see above

SToReoQUERY 1D | O e e I
20 = optional, M = mandatory

Listing 21: Supported KVP parameters of a DescribeStoredQuery operation.

3D Geodatabase for CityGML 2018 271

7.4.6 GetFeature operation

The GetFeature operation lets a client query CityGML features from the 3D City
Database. The Simple WF'S conformance class only mandates WFS server implementations to
support GetFeature queries that use the predefined stored query GetFeatureById as
query expression and filter criteria. For this reason, the current version of the 3D City
Database WFS handles GetFeatureById queries but no ad-hoc queries. The
GetFeature support will be extended in future releases.

A valid GetFeature operation is shown below. The gm1 : 1d of the city object that shall be
returned by the WFS is passed as parameter to the Get FeatureById stored query.

<?xml version="1.0" encoding="UTF-8"?>

<wfs:GetFeature "WEFS" "2.0.0" xmlIns:wfs="http://www.opengis.net/wfs/2.0">
<wfs:StoredQuery id="http://www.opengis.net/def/query/OGC-WFS/0/GetFeatureByld">
<wfs:Parameter "id">ID_0815</wfs:Parameter>

</wfs:StoredQuery>
</wfs:GetFeature>

Listing 22: Example GetFeature operation.

The WFS will answer the above request with either the CityGML city object(s) whose
gml:id value matches ID 0815 or with an exception report in case no matching city object
was found in the 3D City Database.

A single GetFeature operation can also be used to request more than one feature.

<?xml version="1.0" encoding="UTF-8"?>

<wfs:GetFeature "WEFS" "2.0.0" xmlIns:wfs="http://www.opengis.net/wfs/2.0">
<wfs:StoredQuery id="urn:ogc:def:query:0GC-WFS::GetFeatureByld">
<wfs:Parameter "id">first gml:id</wfs:Parameter>

</wfs:StoredQuery>

<wfs:StoredQuery id="urn:ogc:def:query:0GC-WFS::GetFeatureByld">
<wfs:Parameter "id">second gml:id</wfs:Parameter>
</wfs:StoredQuery>

</wfs:GetFeature>

Listing 23: Example GetFeature operation requesting for two city objects.

If a GetFeature request results in more than one city objects or consists of more than one
stored query, the response will be wrapped by one or more <wfs:FeatureCollection>
elements. Please refer to the WFS 2.0 specification for details on the encoding of the response
document.

The GetFeature operation can be influenced by the following XML attributes.

XML attribute 0/ M, Default value Description
, The service attribute indicates the
i WIS (e service type. The value “WFS” is fixed.

The version of the WFS Interface
version M 2.0.x Standard to be used in the
communication.

service

272

3D Geodatabase for CityGML 2018

handle

The handle parameter allows a client to
associate a mnemonic name with the
request that will be used in exception
reports.

outputFormat

application/gml+xml;
version=3.1

Controls the encoding of the response.
Per default, the WFS uses CityGML /
GML 3.1.1. The outputFormat attribute
may also take the value
“application/json”, in which case the
response is encoded in CityJSON.

count

unlimited

The maximum number of features to be
returned by the WFS service.

resultType

results

If the value of the resultType parameter
is set to "results" the server generates a
response document containing features
that satisfy the operation. If set to “hits”
the server generates an empty
response document indicating the count
of the total number of features that the
operation would return.

20 = optional, M = mandatory

Listing 24: Supported XML attributes of a GetFeature operation.

A KVP-encoded GetFeature request is shown below.

http[s]://[host] [:port]/[context path]/wfs?

SERVICE=WFS&

VERSION=2.0.26&

REQUEST=GetFeature&

STOREDQUERY ID=http%3A%2F%2Fwww.opengis.net$2Fdef%2Fquery%$2FOGC
-WFSS$2F0%2FGetFeatureByIdé&

ID=ID 0815

Note that the last parameter ID in the above request is not a WFS parameter but instead is
required by the invoked stored query (see also Listing 22).

The supported KVP parameters are listed in the following table.

KVP parameters 0/ M, Default value Description
SERVICE M WFS (fixed) see above
VERSION M 2.0.x see above
Used to specify namespaces and their
NAMESPACES 0] prefixes. The format shall be
xmins(prefix,escaped_url).
OUTPUTEORMAT o appl|cat|9n/gml+xml; see above
version=3.1
COUNT 0o unlimited see above
RESULTTYPE 0] results see above
STOREDQUERY_ID M The identifier of the stored query to
invoke.
storedquery_parameter 0 Each parameter of the stored query shall

=value

be encoded in KVP as key-value pair.

20 = optional, M = mandatory

Listing 25: Supported KVP parameters of a GetFeature operation.

3D Geodatabase for CityGML 2018 273

7.5 Web-based WFS client

The 3D City Database WFS is shipped with a simple web-based client that is mainly meant to
test the functionality of the server. The client is automatically installed with the server and is
available at the following URL (cf. chapter 7.4.1.2 for details):

http([s]://[host] [:port]/[context path]/wfsclient

The screenshot below shows the user interface of the client rendered in a standard web
browser.

[WFS Client
<« €' | [1 localhost:8080/3dditydb-wis/wisclient/

virtualcitySYSTEMS WFS Client

WFS Request

WFS Result

(€} virtuakitySYSTEMS GmbH, 2013

Figure 150: Web-based WES client.

The user interface consists of two text fields. A user simply enters the XML-encoded
operation request that shall be sent to the server into the upper text field named WFS Request
[1]. Clicking on the Send button forwards the request to the server. As soon as the response
document is received from the WFS server, it is rendered in the lower text field named WFS
Result.

Note: Avoid sending requests through this client that might potentially result in a large
number of city objects contained in the response document. Otherwise the available
main memory of the web browser is quickly exhausted when trying to display the
response document, which renders the browser non-responsive or might even lead to
a program crash. You may want to use the count attribute on the GetFeature
request in order to limit the maximum number of features to be contained in the

274 3D Geodatabase for CityGML 2018

response document. Alternatively, you can specify the “hits” value for the resultType
attribute in order to only receive the number of features matching your query instead
of the features themselves (cf. chapter 7.4.6).

3D Geodatabase for CityGML 2018 275

8 3DCityDB-Web-Map-Client

Starting from version 3.3.0, the 3DCityDB software package comes with a software package
called 3DCityDB-Web-Map-Client (in this chapter we simply call it “3D web client”) acting
as a web-based front-end for high-performance 3D visualization and interactive exploration of
arbitrarily large semantic 3D city models. The 3D web client has been developed based on the
Cesium Virtual Globe, which is an open source JavaScript library developed by Analytical
Graphics, Inc. (AGI)'°. It utilizes HTML5 and the Web Graphics Library (WebGL) as its core
for hardware acceleration and provides cross-platform functionalities like displaying 3D
graphic contents on the web without the needs of additional plugins.

While developing the 3D web client, various extensions have been made to the Cesium
Virtual Globe in order to facilitate users to view and explore 3D city models conveniently.
The major one among those extensions is that the KML/gITF models exported using the
Import/Export tool can now be directly visualized along with imagery and terrain layers
within a web browser using the 3D web client, which additionally can link the KML/gITF
models with table data exported using the Spreadsheet Generator Plugin (SPSHG) and allows
querying the thematic data of every city object. With this newly introduced 3D web client, the
functionalities of the 3DCityDB now range from high-efficient storage and management of
virtual 3D city models according to the CityGML standard up to high-performance
visualization and exploration of them on the web.

Show / Hide Toolbox ~

tyDB L bing e 2015 chair of Gecinformaties Tu Minchen - © 20

ographics LLC

.. Number of showed _ Number of cached
e Thes: 1 = Ties: 1

Figure 151: Screenshot showing the example of displaying different CityGML top-level features (building,
bridge, tunnel, water, vegetation, transportation etc.) in glTF format in the 3D web client

10 https://www.agi.com/

https://www.agi.com/

276 3D Geodatabase for CityGML 2018

8.1 System requirements

Since the 3D web client utilizes the WebGL-based Cesium Virtual Globe as its 3D geo-
visualization engine, the hardware on which the 3D web client will be run must have a
graphics card installed that supports WebGL. In addition, the web browser in use must also
provide appropriate WebGL support. You can visit the following website to check whether
your web browser supports WebGL or not:

http://get.webgl.org/

The 3DCityDB-Web-Map-Client has been successfully tested on (but is not limited to) the
following web browsers under different desktop operating systems like Microsoft Windows,
Linux, Apple Mac OS X, and even on mobile operating systems like Android and iOS.

e Apple Safari

e Mozilla Firefox
e Google Chrome
e Opera

For best viewing and interaction performance, it is recommended to use Google Chrome.

8.2 Installation and configuration

For convenient use, there is an official web link (see the link below) that can be called to
directly run the 3D web client on your web browser.

https://www.3dcitydb.org/3dcitydb-web-map/1.6/3dwebclient/index.html

Note: The number 1.6 in URL denotes the version number of the 3D web client. Once the
3D web client has been upgraded in the future, this version number will be adapted to
conform to the current release of the 3D web client. Web links pointing to the previous
software versions will remain valid and accessible online.

The 3D web client is a static web application purely written in HTML and JavaScript and can
therefore be easily deployed by uploading its files to a simple web server. A zip file for the
3D web client can be found in the installation directory of the Import/Export tool within the
subfolder 3d-web-map-client or downloaded via the following GitHub link:

https://github.com/3dcitydb/3dcitydb-web-map/releases

The extracted contents of the zip file should look something like the screenshot below.

http://get.webgl.org/
https://www.3dcitydb.org/3dcitydb-web-map/1.6/3dwebclient/index.html
https://github.com/3dcitydb/3dcitydb-web-map/releases

3D Geodatabase for CityGML 2018

277

3dwebclient
examples
js
node_modules
theme
ThirdParty

12| build

|| LICENSE
README.md

SEMVEr

The 3D web client comes with a lightweight JavaSript-based HTTP server (the file with the
name “server”) that is mainly meant to test the functionality of the 3D web client on your
local machine. For running this web server, the open source JavaScript runtime environment
Node.js is required to be installed on your machine. The latest version of Node.js can be
download via the web link below:

https://nodejs.org/en/

Once the Node.js program has been installed, you need to open a shell environment on your
operating system and navigate to the folder where the server.js file is located, then simply run
the following command to launch the server:

node server.js

Bl ChWindows\system32iemd exe

G Cnd>rem Recho off

IC:~Cnd>cd C:x\Eclipse_CityGHL>N3IDWebclient_Workspaces3decitydb—web—map

IC:~Eclipse_ CityGML~3DWehclient_UWorkspaces3ddcitydb—web—map>*node server.js
iCezium development server running publicly.

Connect to localhost:8008-

Figure 152: Example of running the JavaScript-based web server

Now, the 3D web client is available via the URL below and its user interface should look like

in the following figure:

http://localhost:8000/3dwebclient/index.html

https://nodejs.org/en/

278 3D Geodatabase for CityGML 2018

2DCityDB-Web-Map-C Xy

< C [localhost:8000/3dwebclient/index.htn

Show / Hide Toolbox ¥ s o

RCESIUM E»3DCityDB b bing ® 2015 Chair of Geoinformatics TU Manchen - Image courtesy « ?.m of showed hs %gbgr of cached

crosoft Corporation - © 2010 NAVTEQ

Figure 153: User interface of the 3D web client

8.3 Using the 3D web client

8.3.1 Overview of the relevant features and functionalities

Basically, the 3D web client has been developed by extending and customizing the so-called
Cesium Viewer which is a composite widget shipped with Cesium and provides overall
functionalities of a 3D globe such as camera control, rendering geometries and materials,
animation etc. In addition, the Cesium Viewer contains a number of especially attractive
widgets and plugins providing functionalities like querying of geocoding service, switching
between different viewing modes (2D, 2.5D, and 3D view), and handling imagery and terrain
layers, which are commonly useful for a variety of GIS applications. In addition, starting from
version 1.6.0, the web client provides better support for mobile devices, such as a more
compact GUI layout as well as the ability to interact with the web map in first-person view
based on the user’s location in real-time. All these functionalities along with the enhanced
features and functionalities developed for the 3D web client are explained in more detail
below.

3D Geodatabase for CityGML 2018 279

l@teme) = | @] =
¥4 3DCityDB-Web-Map-Clie: X

« C 1 | @& Sicher | https:;//www.3dcitydb.org/3dcitydb-web-map/1.6/3dwebclient/index.htm | @

1 4 A 6 500 am
apsoos . WECESIUIM B 3DCityDB -
By DS

- © 2018 Chair of Geoinform: ic . - Number of showed Number of cached

M’zoo:ﬁo uTc Aug 3 2018 1|s-.uo-.uu UT Aug4201 05 Tiles 0 1? Tiles: 0
| 1

11:38:52 UTC

< 11>

Figure 154: Relevant GUI components of the 3D web client

The 3D Globe [1] is a base Cesium widget that allows the user to navigate through the Earth
map by panning, moving, tilting, and rotating the camera perspective using a mouse or
touchscreen. In addition, the camera perspective can also be controlled by means of the
Navigation Component [2] which is an open source Cesium plugin'!' and offers the
same navigation possibilities that can be achieved with mouse or touchscreen. It consists of a
group of widgets, namely a Navigator widget for controlling the camera perspective, a
North Arrows widget for orienting the Earth map towards the north, and a Scale Bar
for estimating the distance between two points on the ground.

The Cesium Viewer provides an especially useful built-in Toolkit [3] containing the
widgets like Geocoder, HomeButton, GeolocationButton, BaselLayerPicker,
and NavigationHelpButton. The view panel of Geocoder can be expanded by
clicking on the button QI display an input filed into which the user can enter either an
explicit position value in the form of “/longitude], [latitude]” or an address name to search a
particular location. After pressing the “Enter” key on the keyboard or clicking on the button
E, the Geocoding process will be performed using the Bing Maps Locations API according
to the entered location information. Once the target location has been found, the Earth map
will be automatically adjusted to the returned location and zoomed to the bounding box with
the best fit with the camera perspective. For example, if you want to search the position
(longitude = 11.56786, Latitude = 48.14900) where the Technical University of Munich is,

' https://github.com/alberto-acevedo/cesium-navigation

280 3D Geodatabase for CityGML 2018

the input field of the Geocoder can be filled with the text value of “11.56786, 48.14900”
and the result should look like the following figure.

N

'/ Show / Hide Toolbox ¥ I 11 56786, 48.14900

Q
'S
~
-

2

&
v

hmca!
/ mversrty
/ Mumch

Figure 155: Searching the main building of the Technical University of Munich by using the Geocoder widget

The HomeButton & helps the user to quickly reset the camera perspective to the default

status (cf. Figure 153). In addition, the GeolocationButton provides some
geolocation-based features such as flying to the user’s current location on the 3D map and
displaying the first-person view in real-time on mobile devices, which shall be explained in
more details in Section 1.

In most GIS applications, the term base layer (or basemap) is generally considered as a
background layer on the map using, for example, satellite imagery and terrain model, to help
people to quickly identify the locations and orientations from a certain camera perspective.
Per default, Cesium comes with a number of selectable imagery layers provided by different
mapping services, such as Bing Maps, OpenStreetMap, ESRI Maps etc. In addition, a terrain
layer so-called STK World Terrain'? is available for showing worldwide 3D elevation data
with an average grid resolution of 30 meters. All these base layers (imagery and terrain
layers) can be controlled by the BaseLayerPicker widget (cf. the following figure) which
has a view panel for listing all the available base layers represented by their names and
respective icons and allows the user to select the desired one. For example, when an icon
representing the OpenStreetMap is selected, a new instance of the OpenStreetMap imagery
layer will be created to replace the imagery layer that is currently in use. Similarly, the terrain
layer can be independently selected and added to the Earth map to overlap with the selected
imagery layer.

12 Due to changes in Cesium Terms of Service as well as the introduction of the new commercial Cesium ion
platform starting from September 1% 2018, the STK World Terrain layer is replaced by the Cesium World
Terrain hosted by Cesium ion (https://cesium.com/content/cesium-world-terrain).

3D Geodatabase for CityGML 2018 281

Show / Hide Toolbox

STK World
Terrain
meshes

Figure 156: Per default available base layers listed in the BaseLayerPicker widget

The last widget contained within the Cesium Toolkit [3] (cf. Figure 154) is the so-called
NavigationHelpButton for showing brief instructions on how to navigate the Earth
map with mouse (typically for desktop and laptop PCs) and touchscreen (typically for smart
phones and tablet PCs). By clicking on the (2 button, the corresponding view panel (cf. the
following figure) will be shown on the upper-right corner of the 3D web client.

282 3D Geodatabase for CityGML 2018

Show / Hide Toolbox

Pan view
Left click + dra¢

Zoom view
Right click + drag, or
Mouse wheel scroll+

Rotate view c
Middle click + drag,_or
CTRL + Left/Right click
+ drag

|_200 km

" F A 2 ; -5 . T ‘
& CE_éTEJM4?'-Wb-blngmﬁ-ﬂlﬁa&ohm&$mMﬁnnhen-E %gbﬁr of showed o ?.gbgr of cached

- G ’
SIO -Image courtesy of NASA = ©2016 Interma

Figure 157: The NavigationHelpButton widget showing the instructions for navigating Earth map

The next widget is the so-called CreditContainer [4] (cf. Figure 154) which displays a
collection of credits with respect to the software and data providers that have been involved in
the development and use of the 3D web client. These credits mainly include the mapping
services (depending on the selected base layer, e.g. Bing Maps), the 3D geo-visualization
engine (Cesium Virtual Globe), and the development provider of the 3D web client
(3DCityDB), which are all represented with their icons, descriptions, and hyperlinks
referencing to their respective homepages.

The majority of the functionalities specially provided by the 3D web client are controlled by
the Toolbox widget [5] (cf. Figure 154) which is an extended module based on the Cesium
Viewer for integrating and controlling the user-provided data in different formats, namely
KML/gITF modes, thematic data (online spreadsheet), Web Map Service (WMS) data, and
digital terrain model (DTM) on the one hand. On the other hand, the user interaction with 3D
city models can also be aided by this Toolbox widget which allows, for example,
deselecting, shadowing, hiding and showing 3D objects, as well as exploring them from
different view perspectives using third-party mapping services like Microsoft Bing Maps with
oblique view, Google Streetview, and a combined version (DualMaps).

The visualization of the 3D city model with large data size often result in significant
performance issue in most 3D web applications. In order to overcome this troublesome issue,
a tiling strategy has been implemented within the 3D web client to support for efficient
displaying of large pre-styled 3D visualization models in the form of tiled datasets exported
from the 3DCityDB by using the KML/COLLADA/gITF Exporter. This tiling strategy
utilizes the multi-threading capabilities of HTMLS, so that the time-costly operations such as
parsing of multiple 3D objects can be delegated to a background thread running in parallel. At
the same time, for data layer, another thread monitors the interactions with the virtual camera
and takes care of determining which the data tiles should be loaded and unloaded according to

3D Geodatabase for CityGML 2018 283

their current visibility and the display size on the screen. Moreover, this tiling strategy
supports caching mechanism allowing the data tiles loaded from an earlier computation to be
temporarily stored in a cache, from which the data tiles can be loaded and rendered much
faster than reloading them again from the remote server. Of course, a larger number of cached
data tiles will consume more memory and may cause a memory overflow of the web browser.
In order to avoid this, the 3D web client provides a so-called Status Indicator widget
[6] (cf. Figure 154) which can display the real-time status of the amount of showed and
cached data tiles and can be used to help the user to conveniently monitor and control the
memory consumed by the 3D web client.

While streaming the tiled 3D visualization models, each data tile requires at least an
asynchronous HTTP (Hypertext Transfer Protocol) request (AJAX) to fetch the corresponding
KML/gITF files from the remote data server. This server must support CORS (Cross-Origin
Resource Sharing) to get around the cross-domain restrictions.

Note: Alternatively, the open specification Cesium 3D Tiles can also be employed to stream
massive heterogeneous 3D geospatial datasets'®. This is supported in 3DCityDB Web
Map Client version 1.6.0 or later.

8.3.2 Handling KML/gITF models with online spreadsheet

As mentioned before, the 3D web client extends the Cesium Virtual Globe to support efficient
displaying, caching, dynamic loading and unloading of large pre-styled 3D visualization
models in the form of tiled KML/gITF datasets exported the 3DCityDB using the
KML/COLLADA/gITF Exporter. However, there is a major problem regarding the graphical
visualization of semantic 3D city models as their attribute information is completely or partly
lost in the 3D graphics formats. This issue has been considered and solved within the 3D web
client by supporting the explicit linking of the 3D visualization models with thematic data
which can be exported using the Spreadsheet Generator Plugin (SPSHG) and uploaded to an
online spreadsheet (Google Fusion Table!#) stored and published via the Google Cloud. This
strategy can therefore offer the possibilities for collaborative and interactive data exploration
of semantic 3D city models by means of querying the thematic data of the selected city object.
The corresponding system architecture is illustrated in the following figure.

13 https://github.com/Analytical GraphicsInc/3d-tiles
14 https:/fusiontables.google.com/

284

3D Geodatabase for CityGML 2018

Visualization model
on the web

o]

3D City Database

Export
e.g. KML/gITF

logical link

Online
Spreadsheet in
the Cloud

read

Integration

3D Web Client

Figure 158: Coupling an online spreadsheet with a 3D visualization model (i.e. a KML/gITF visualization
model) in the cloud [Herreruela et al. 2012].

W% Berlin_Buildings_Attribute X |,

<« C A B https//www.google.com/fusiontables/data?docid=1tFuuEc3HIGewzyCT2hY1-8131nP1W_FXUnvpHwCL#rows:id=1

Berlin_Buildings_Attributes

Edited at 13:56

File Edit Teols Help =Rows1~ | HiCards 1 h
Mo filters applied

M4 1-1000of 954 » »

GMLID Building_Height

BLDG_00030009003f3fa8 12.6454
BLDG_000300000020b7de 6.75036
BLDG_00030009006dad12 19.09051
BLDG_00030009003f3f7a 15.91154
BLDG_00030009007ef023 17.6925
BLDG_00030000001ec6da 15.21935
BLDG_0003000a00295b95 2243517
BLDG_00030009007eef% 16.05035
BLDG_0003000000204e5d 2484635
BLDG_0D03000e00579887 2286551
BLDG_0003000f004136e9 13.26942
BLDG_0003000a00368137 2474132

Building_Height_Unit

um:ege :def:uom:UCUM::
um:oge -def:uom:UCUM::
umn:oge def:uom:UCUM::
um:oge :def:uom:UCUM::
um:ege :def:uom:UCUM::
um:oge -def:uom:UCUM::
umn:oge def:uom:UCUM::
um:oge :def:uom:UCUM::
um:ege :def:uom:UCUM::
um:oge -def:uom:UCUM::
umn:oge def:uom:UCUM::
um:oge :def:uom:UCUM::

Street Name
Bemauer Str
Lortzingstr
Jasmunder Str.
Brunnenstr.
Wolgaster Str.
Stralsunder Str
Brunnenstr.
Swineminder Str.
Stralsunder Str.
Usedomer Str
Usedomer Str.

Strelitzer Str.

House_Number Denkmal_Art
86
32

1
142
"
34A
122
27
61
6

"

42 Gesamtanlage

Figure 159: Example of an online spreadsheet (Google Fusion Table)

Similar to the structure of a database table, the first row of the online spreadsheet defines the
attribute names, and the further rows store the respective attribute values for each 3D object.
The logical links between the 3D models and the respective rows are established via a specific

column within the spreadsheet, namely the GMLID column, which contains the unique
identifiers of the 3D objects. Each further column is used to represent one attribute of the 3D
object. By using the freely available Google Drive application, all users having access to the

3D Geodatabase for CityGML 2018 285

online spreadsheet are able to edit it, for example to modify attribute values or insert new
attribute fields, in order to keep the contents up-to-date without affecting the original
(possibly official) 3D city model. Besides, such a detachment of the thematic data from the
3D visualization models also has the advantage that any update of thematic contents can
exclusively take place within the online spreadsheet and therefore does not require exporting
and deploying the 3D visualization models again.

In order to add a KML/gITF data layer along with its linked online spreadsheet to the 3D web
client, the parameters must be properly specified (some of which are optional) on the
corresponding input panel [1] (cf. Figure 160) which can be expanded and collapsed by
clicking on the Add / Configure Layer button.

Note: All default parameter values used in the 3D web client were chosen accordingly to the
standard settings (e.g., the standard predefined tile size is 125m x 125m) specified in
the preference settings of the KML/COLLADA/gITF Exporter (cf. section 5.6.3.1).
The parameter name with the suffix “(*)” denotes that this parameter is mandatory;
otherwise it is optional.

Show / Hide Toolbox

Add / Configure Layer Remove selected layer

URL(")

Name(*)

thematicDatalUr
cityobjectsJsonUrl
minLodPixels
maxLodFixels
MaxCountOfvisibleTiles(*)
MaxSizeOfCachedTiles(*)

Add layer Save layer settings

Add WMS-Layer Remove WMS layer

Add Temain-Layer Remove Temain layer
Choose highlighted Object
Choose hidden Object

Generate Scene Link Hide selected OI..:iecls
Clear Highlighting Show Hidden 0|aecls
Create Screenshot Print cument view
Toggle Shadows Toggle Temain Shadows
Show the selected object in Extemal Maps ®

Number of showed Number of cached
~ CESIUM S:JDC“)"DB b biNg 2015 chair of Geoinformatics TU Minchen - Image courtesy of NASA - © 2018 |mmpv|=.mm.cao._.-!—l,le§_' _q_ £ 2048 Mcrosch Co Tl!es 0_ 2018

Figure 160: The input panel [1] for adding a new KML/gITF data layer and the extended Geocoder widget [2]
allowing to search a 3D object also by its gmlld

First of all, the web link of the master JSON file (cf. section 5.5) holding the relevant meta-
information of this data layer has to be entered into the input field URL(*). In the input field
Name(*), a proper layer name must be specified which will be listed at the top of the input
panel [1] once the KML/gITF data layer has been successfully loaded into the 3D web client.
The parameter thematicDataUrl denotes the URL of an online spreadsheet (Google Fusion

286 3D Geodatabase for CityGML 2018

Table) which stores the attribute data. This parameter is optional and is only required if the
user wants to attach thematic data to the KML/gITF visualization model.

The next optional parameter cityobjectsJsonUrl holds the URL of the JSON file which can be
generated automatically by using the KML/COLLADA/gITF Exporter (cf. section 5.6.3.1).
This JSON file contains a list of GMLIDs of all 3D objects which were exported and might be
distributed over different tiles. For every 3D object, it is also stored in which tile it is
contained together with its envelope represented using a bounding box in WGS84 lat/lon.
These location information can be used to search for a certain 3D object with the help of the
Geocoder widget [2], which has been extended to support a specific geocoding process
performed in the following manner: In the input field, either a GMLID of a 3D object or an
address can be entered. If an object with the given GMLID is found in the JSON file, the
camera perspective will be adjusted to look at the center point of the 3D object with a proper
oblique view. If not, the Bing Maps Locations API will be automatically called and the map
view will be adjusted to the returned location and bounding box.

The combination of the parameters minLodPixels and maxLodPixels defines the minimum and
maximum limit of the visibility range for each data layer to control the dynamic loading and
unloading of the data tiles. The maximum visibility range can start at 0 and end at an infinite
value expressed as -1. Optionally, the user can directly specify the two parameter values
within the 3D web client. Otherwise, the parameter values will be achieved from the master
JSON file, which also contains the parameters minLodPixels and maxLodPixels and their
values which have been specified using the KML/COLLADA/gITF Exporter before
performing the export process.

With these two parameters, the 3D web client implements the so-called Level of Details
(LoD) concept which is a common solution being used in 3D computer graphics and GIS (e.g.
KML NetworkLinks) for efficient streaming and rendering of tiled datasets. According to the
LoD concept, the data tiles with higher resolution should be loaded and visualized when the
observer is viewing them from a short distance. When data tiles are far away from the
observer, the data tiles with higher resolution should be substituted by the data tiles with
lower resolution. In order to realize this LoD concept in the 3D web client, each data tile
which is being intersected with the current view frustum will be projected onto the screen
while navigating the Earth map. Subsequently, the diagonal length of the projected area on the
screen will be calculated by the 3D web client to determine whether the respective data tile
should be loaded or unloaded. If the diagonal length is greater than minLodPixels and less
than maxLodPixels, the respective data tile will be loaded and displayed; otherwise it will be
hidden from display and unloaded. Of course, all data tiles lying outside of the view frustum
are unloaded and invisible anyway.

3D Geodatabase for CityGML 2018 287

B A data tile is visible only when its
diagonal length lie within the
visibility range defined by the
minimum and maximum limit in

screen pixel

L tom

Number of showed Number of cached

. R Tles: 75 & Ties 35
R

Figure 161: Efficient determination of which data tiles should be loaded according to the user-defined visibility
range in screen pixel

Loading massive amounts of data tiles often result in poor performance of the 3D web client
or even memory overload of the web browser. This could happen when, for example, the
visibility range (determined by the parameters minLodPixels and maxLodPixels) starts at a
very small value and ends at an infinite size. In this case, each data tile will always be
visualized even though it only takes up a very small screen space. This issue can be avoided
by a proper setting of the parameter maxCountOfVisibleTiles which specifies the maximum
number of allowed visible data tiles. When this limit is reached, any additional data tiles that
are farthest away from the camera will not be shown, regardless the size of screen space they
occupy. Per default, this parameter receives a value of 200, which is appropriate in most use
cases. However, depending on data volume of each tile and the hardware you use, this
parameter value has to be adjusted by means of practical tests.

As mentioned before, the 3D web client implements a caching mechanism allowing for high-
speed reloading of those data tiles that have been loaded before and which are stored in the
memory of the web browser. In order to prevent memory overload, the parameter
maxSizeOfCachedTiles can be applied for specifying the maximum allowable cache size
expressed as a number of data tiles. With this parameter, the 3D web client implements the
so-called Least Recently Used (LRU) algorithm which is a caching strategy being widely used
in many computer systems. According to this caching algorithm, newly loaded data tiles will
be successively put into the cache. When the cache size limit is reached, the 3D web client
will remove the least recently visualized data tiles from the cache. By default, the value of this
parameter is set to 200 and can of course be increased to achieve a better viewing experience
depending on the hardware you use.

288 3D Geodatabase for CityGML 2018

Usage example:

In this example, a tiled KML dataset containing around 8000 LoD1 buildings in the
Manbhattan district of New York City (NYC) will be visualized on the 3D web client. This
KML dataset is derived from the semantic 3D city model of New York City (NYC)!® which
has been created by the Chair of Geoinformatics at Technical University of Munich on the
basis of datasets provided by the NYC Open Data Portal'é. The following parameter values
should be entered into the corresponding input fields:

o url: https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-
20170501/Building_gltf/Building_gltf collada MasterJSON.json

e name: NYC Manhattan Buildings

o thematicDataUrl.
https://www.google.com/fusiontables/DataSource?docid=1iG6_vYe7JGTNAUwFw7TpDSEMO-
1Qe6gSpa6MIJICF

e cityobjectsJsonUrl:
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-
20170501/Building_gltf/Building_gltf.json

o minLodPixels: 100

o maxLodPixels: -1

o maxSizeOfCachedTiles: 200

o maxCountOfVisibleTiles: 200

After clicking on Add layer, a data layer will be loaded into the 3D web client and the
corresponding layer name NYC Manhattan_Buildings will be listed above the input panel.
The Earth map can be zoomed to the extent of the loaded data layer by double-clicking on the
layer name. The parameter values of the data layer (its radio button must be activated) can be

Show [Hide Toolbox v RV "2 SPegs’
© [NYC Manhattan_Buildings
Add / Configure Layer

F URL()

Name(*) NYC_Manhattan_Buildings
 benatcpaatn
! dityobjectsisonUrl i
*) minLogPets
! maodphes
e —

MaxSizeOfCachedTiles(')

Add layer Save layer settings

Add WMS-Layer o/ Remove WMS layer
Add Terrain-Layer v Remove Terrain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Obijects
Create Screenshot Print current view
Toggle Shadows. Toggle Terrain Shadows

Show the selected object in Extemal Maps

Figure 162: Screenshot showing how to add a new KML/gITF data layer into the 3D web client

135 https://www.gis.bgu.tum.de/en/projects/new-york-city-3d/
16 hitps://nycopendata.socrata.com/

https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf_collada_MasterJSON.json
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf_collada_MasterJSON.json
https://www.google.com/fusiontables/DataSource?docid=1iG6_vYe7JGTNAUwFw7TpD8EMO-iQe6gSpa6MJlCF
https://www.google.com/fusiontables/DataSource?docid=1iG6_vYe7JGTNAUwFw7TpD8EMO-iQe6gSpa6MJlCF
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf.json
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf.json

3D Geodatabase for CityGML 2018 289

Users are also able to control the visibility of the selected data layers by deactivating its
checkbox or clicking on the Remove selected layer button to completely remove it from the
3D web client (cf. the following two screenshots)

Show / Hide Toolbox v

© BB IYC_Manhattan_Buildings

Add / Configure Layer v Remove selected layer

URLEY
Name(*)
tematikDataun
ciyotfectsJsontn
minLodPoces oo —
maxtodPucs
MaxCountOfVisibleTiles(*)
MaxSizeOTCachedTiles(")

Add layer Save layer settings

Add WMS-Layer Remove WMS layer
Add Terrain-Layer Remove Termrain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot Print curent view
Toggle Shadows Toggle Terrain Shadows

Show the selected object in External Maps

Show / Hide Toolbox v

Add / Configure Layer Remove selected layer

L
Namer)
P —
E—
minl odPixels
maxtoaPues
MaxCountOVisibleTies(*)
MasSes0Cachedries) ER

Add layer Save layer settings

Add WMS-Layer Remove WMS layer
Add Terrain-Layer Remove Termrain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objecis
Clear Highlighting Show Hidden Objects

Create Screenshot Print current view

Figure 164: Screenshot showing how to remove a KML/gITF data layer from the 3D web client

290 3D Geodatabase for CityGML 2018

8.3.3 Handling Web Map Service data

Cesium supports adding additional imagery layer to the Earth map by using the OGC
compliant Web Map Service (WMS). The 3D web client provides a simple widget panel
which allows the user to easily add and remove arbitrary number of WMS layers. The widget
panel [1] (marked in the following figure) can be expanded and collapsed by clicking on the
Add WMS-Layer button on the widget panel.

Show [Hide Toolbox ¥

Add / Configure Layer v Remove selected layer
Add WMS-Layer v Remove WMS layer
name(*)

iconUri(*)

ooltip(*)

url{*)

layers({*) £ Y o Mapbax ESRI World
m 4 Streets Imagery
addiionalParameters Classic

proxyUrd proxy/

Add WMS layer

Add Temain-Layer v Remove Temain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot Print cument view
Toggle Shadows Toggle Terrain Shadows

Show the selected object in External Maps

” CESIUM 1_.::3DCI'WDB b bing © 2015 Chak of Geoinformatics TU Minchen - Image courtesy of NASA - © 2018 Intermap - Ex .IN_lll:g'bgr Ay 1 mbg Hlasie

Figure 165: The input panel [1] for adding a new WMS layer and the BaseLayerPicker widget [2] where
the added WMS layers will be listed together with the per default available imagery layers

A user-defined name for labelling the WMS layer has to be firstly specified via the name(*)
input field. In addition, the iconUrl parameter points to the URL address of an icon image,
which will be listed together with the user-defined layer name in the BaseLayerPicker
panel [2]. When the mouse pointer is over the icon image, a tooltip will appear which can be
specified in the tooltip(*) input field. The ur/ parameter value corresponds to the URL address
of the WMS server that provides the imagery contents of a WMS layer. According to the
WMS specification, a WMS layer is allowed to contain one or more sublayers (listed in the
WMS Capabilities file) whose names must be separated by comma and entered into the input
field layers(*). Besides the standard WMS HTTP request parameters, additional parameters
might be required by some WMS servers. In this case, such additional parameters must be
formatted as key=value pairs separated by the “&” character and entered into the
additionalParameters input field. The proxyUrl parameter helps the 3D web client to get
around the cross-domain issue when performing WMS requests. Since most of the WMS
server do not support CORS, a proxy running behind the 3D web client is required. If you use
the JavaScript-based HTTP server shipped with the 3D web client, you don’t need to change
the default value, since there already exists a built-in proxy running with the relative path

3D Geodatabase for CityGML 2018 291

“/proxy/”. Otherwise, this parameter value must be adjusted according to the path of the proxy
in use.

Usage example:

In this example, a WMS imagery layer provided by the Vorarlberg State Government'” will
be added to and displayed in the 3D web client. The following parameter values should be
entered into the corresponding input fields:

e name: Vorarlberg Aerial Photography

o iconUrl: http://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif
e ftootip: Vorarlberg Aerial Photography taken during the winter 2015

e url: http://vogis.cnv.at/mapserver/mapserv

o layers: wi2015 20cm
o additionalParameters: map=i_luftbilder r wms.map
o proxyUrl: /proxy/

Show / Hide Toolbox v

Add / Configure Layer) Remove selected layer

Add WMS-Layer v Remove WMS layer

— 6
N
iconUni(*) hitp://cdn flaggenplatz. de/medialcataloo/c T, - A8
[
[4
&

tooltip(*) Vorarlberg Aerial Photography taken dunn

uri(*) http://vogis.cnv.alimapserver/mapsery
layers(’)
aadonaiParameers :
proxyUt fs
Add WMS layer
Add Temain-Layer L Remove Temain layer
Chaose highlighted Object
se hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot Print cument view
Toggle Shadows Toggle Terrain Shadows

Show the selected object in Extemal Maps

- meshes
| . - Mumber of showed Number of cached
A~ EESIRAL | — : : . et jiies)

Figure 166: Example showing how to add a new WMS layer to the 3D web client

As shown in the figure above, once the parameter settings have been completed, the WMS
layer can be loaded by clicking on the Add WMS layer button [3] and its icon image together
with its label name [4] will be listed on the BaseLayerPicker widget. You can use the
Geocoder widget [5] to zoom the Earth map to the region of Vorarlberg state and check the
added WMS layer. Clicking on the Remove WMS layer button [6], the WMS layer will be
removed and substituted with the Bing Maps Aerial that is the first item listed on the
BaseLayerPicker widget.

17 http://www.vorarlberg.at/

http://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif
http://vogis.cnv.at/mapserver/mapserv

292 3D Geodatabase for CityGML 2018

8.3.4 Handling Digital Terrain Models

Cesium offers the possibility of high-performance streaming and rendering of Digital Terrain
Models (DTM) for the realistic representation of the Earth’s surface. Cesium provides per
default two available terrain layers, which can be selected in the BaseLayerPicker [2] widget.
The first one is the so-called WGS84 Ellipsoid (default terrain layer) which approximates the
Earth’s surface using a smooth ellipsoid surface with a constant height value of 0. The other
one is the so-called STK World Terrain’® using a worldwide 3D elevation data with an
average grid resolution of 30 meters, which is sufficient in many use cases.

For specific application cases, high-resolution Digital Terrain Models might be required. For
this case, the 3D web client provides a simple widget to facilitate handling the terrain data that
must be created in a specific terrain format (heightmap or quantized-mesh) defined by
Cesium. There exists an open source software tool Cesium Terrain Builder'’ for creating
terrain data in heightmap format. The created terrain data is generated in a hierarchical folder
structure according to the TMS tiling schema and can be easily published on the web by
uploading the terrain data files to a CORS-enabled web server.

The input panel [1] on the 3D web client for adding and removing terrain layers can be
expanded and collapsed by clicking on the Add Terrain-Layer button.

St i ok | 5 af#]»]¢]0©]

Add | Configure Layer v Remove selected layer

Add WMS-Layer ¥ Remove WMS layer

Add Terrain-Layer v Remove Termain layer
name(*)
iconUri(*)
Tooltip{*)
uri(*)
Add Tesain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot Print current view
Toggle Shadows Toggle Temrain Shadows

Show the selected object in Extemal Maps

I~ EESIIAL)

Figure 167: The input panel [1] for adding a new terrain layer and the BaseLayerPicker widget [2] where
the added terrain layers will be listed together with the per default available base layers

18 Replaced by Cesium World Terrain starting from September 1% 2018, see Footnote 12 on Page 255.
19 https://github.com/geo-data/cesium-terrain-builder

3D Geodatabase for CityGML 2018 293

For adding a new terrain layer, the input fields name(*), iconUrl(*), and tooltip(*) in the input
panel [1] have to be filled with a proper label name, an URL of an icon image, and a short
tooltip respectively. When a terrain layer has been loaded, its icon image together with its
label name will be listed in the BaseLayerPicker panel [2]. The tooltip will automatically
appear when the mouse is moved over the respective icon image. The ur/ parameter points to
the URL of the web server folder where the terrain data are stored.

Usage example:

In this example, a high-resolution (0.5m) Digital Terrain Model provided by the Vorarlberg
State Government will be added to the 3D web client. This terrain data was created in
heightmap format using the open source tool Cesium Terrain Builder. Here, the following
parameter values should be entered into the corresponding input fields:

e name: Vorarlberg DTM

e iconUrl: https://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif

e tootip: Digital Terrain Model of Vorarlberg

e url: https://www.3dcitydb.org/3dcitydb/fileadmin/mydata/Vorarlberg Demo/Vorarlberg DTM

| Show [Hide Toolbox ¥

Add / Configure Layer v Remove selected layer
Add WMS-Layer ¥ Remove WMS layer

Add Temain-Layer v Remove Temain layer

name(*) Vorarlberg_DTM > .
. E

iconUri(*) http://cdn_flaggenplatz.de/media/c atalog/produc

footfip(*) Digital Terrain Model of Vorarlberg t

uri(*) http:/fwww. 3dcitydb.de/ 3dcity db/fileadmin/ig
Add Temain layer
Choose highlighted Object
Choose hidden Object A . ESRI OpenStrest- 5
s ¥ ? National Map Waterc
Generate Scene Link Hide selected Objects . 25 "

e L - =) ™~ ‘- 3

Clear Highlighting Show Hidden Objects \ X &l N %,
o B

k. —MM-# The Black

Toggle Shadows Toggle Temain Shadows oo Ll T

Show the selected object in Extemal Maps 5 5 L 9 Terrain

Create Screenshot Print curment view

Vorarberg_D
™ 4

| 200m

Number of showed Number of cached
Tiles: 0 Tiles: 0

Figure 168: Example showing how to add a new terrain layer to the 3D web client

As shown in the figure above, once the parameter settings have been completed, the terrain
layer can be loaded by clicking on the Add Terrain layer button [3] and its icon image
together with its label name [4] will be listed on the BaseLayerPicker widget. You can use the
Geocoder widget [5] to zoom the Earth map to the region of Vorarlberg state and check the
loaded terrain data. Clicking on the Remove Terrain layer button [6], the terrain layer will be
removed and substituted with the WGS84 Ellipsoid terrain layer.

https://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif
https://www.3dcitydb.org/3dcitydb/fileadmin/mydata/Vorarlberg_Demo/Vorarlberg_DTM

294 3D Geodatabase for CityGML 2018

8.3.5 Interaction with 3D objects

The 3D web client supports rich model interaction such as highlighting of 3D objects on
mouse over and mouse click. More than one 3D object can be selected by Ctrl-clicking on
them and can also be hidden and redisplayed in the 3D web client interactively. Besides, the
user is able to create a screenshot image of the current map view (including the highlighted
and hidden 3D objects) or print it directly via the web browser. Moreover, when a 3D object
is selected, it can be visually inspected in other third-party mapping applications (Bing Maps,
Google Streetview, OpenStreetMap and DualMaps) from multiple view perspectives such as
oblique view, street view, or a combined version.

For the sake of clarity, the above mentioned functionalities will be illustrated with the help of
a number of screenshots generated based on the online demo Semantic 3D City Model of
Berlin which shows all Berlin’s buildings (> 550,000) with textured 3D geometries and many
thematic attributes in the 3D web client. You can find the link of this demo via the following
web page:

https://github.com/3dcitydb/3dcitydb-web-map

Once the demo was opened in your web browser, you may need to use the Geocoder widget
to zoom the Earth map to the building object with the GMLID “BLDG _0003000b0009a940”.

BLDG_0003000b00092940
- w

- BLDG_0003000b0009a940

Show / Hide Toolbox ¥

GMLID BLDG_0003000b0009a94(

BUILDING_MEASURED_HEIGHT 82

BUILDING_FUNCTION 141

DENKMALART Baudenkmal

EIG_KL_ST 1

DENK_ID 9030374

EIG_KL_PV

H_First_Min 40.7

H_First_Max 118.75

H_Trauf_Min 40.7

H_Trauf_Max 80

TexVersion 1

Kachel 2300024000
"~ LAND 1

RBEZ

KREIS

GMDE

STR

FOLIE
ANZ_LOC

Numbércf showed Number of cached
d Tiles: 10 ® Tiles: 12

Figure 169: By clicking on a building object it will automatically be highlighted and its attribute information
will be queried from a Google Fusion Table and displayed in tabular form on the right side of the 3D web client

https://github.com/3dcitydb/3dcitydb-web-map

3D Geodatabase for CityGML 2018 295

Show / Hide Toolbox ¥ ; ' ‘r BLDG_0003000b00092940 Q #
— O WP — —
© [Bdin_Buildings_rgbTexiure . .

- BLDG_0003000b0009a940

GMLID BLDG_0003000b0005a940
BUILDING_MEASURED_HEIGHT 82

i P { BUILDING_FUNCTION 1141
Add Temrain-Layer v Remove Temain layer f —

Add / Configure Layer v Remove selected layer

Add WMS-Layer v Remove WMS layer

. ! DENKMALART Baudenkmal
Choose highlighted Object g EIG KL ST i
DENK_ID 9030374
v 5 = [- EIG_KL_PV
Generate Scene Link Hide selected Objects % "

Choose hidden Object

H_First_Min 40.7
Clear Highlighting Show Hidden Objects

H_First_Max 118.75
Create Screenshot Print cumrent view

H_Traul_Min 407
Toggle Shadows ([—— ' LUl g

e —— y TexVersion 1
Show the selected object in External Maps |

Kachel
LAND
RBEZ
KREIS
GMDE
STR

10 m

-

Number of showed Number of cached
MR TS R B

Figure 170: By clicking on the dropdown list Show the selected object in External Maps, the user can select one
of the given options to explore the selected building object in the chosen mapping application which will be
opened in a new browser window or tab

¥ Map ¥ StreetView ¥ Birds Eve Info Al Eull Page Reset |Find Address | Go |

N

P . Road Aerial Bird'seye | Labels |
Gartenpl. " { i B -

-

Gartenpl.
& .-—‘

Gaﬂen}'.__

Google

® 2016 Google
Predictive Analytics B
Map Sarellite Mehrwerte und Einsatzbeispiele - | wp
Kostenfreies PAC Whitepaper!
Dorotheenstadt ,
Friedhof |1 = O
o %
2 B/)
v}\(} 'F%, % 2
& "% ®
S 5 o
L) 3
% & %4
% a &3 %
= & & Ko
%, "? < s,
o K) “s,
o o]
Gartenplatz F’o%
3, %o
e
%
=
%
2 &
B
\._,\(\\E“S‘i ‘9} .é
[y % o s
& ch & e
I 3, % x o)
Google = B il i 3 ml
Map data ©2016 GeoBatis-DE/BKG (£2000), Google | 100mL—— 1 Terms of Use Report a map emar

peritin ©20J0 AN

Figure 171: If the option DualMaps has been chosen, the selected building will be shown in a so-called mash-up
web application linking different view perspectives, e.g. Google 2D map view, Google Streetview, and Bing
Maps oblique view

296 3D Geodatabase for CityGML 2018

Show / Hide Toolbox : o 5 2 . BLDG_0D003000000092940

S
>
2
=
£
®

10m
=, v/ = .
Number of showed Number of cached

N CESIUM T:.30!’..:“!.!'03 1> biNg © 2015 Chini S G Minchan - © 2018 Mool Bl © 20401 ERE- GAND - © 2018 G .]_Il.es.: 19 S Tﬂ_pfS: .1.2 e

*

Figure 172: A group of building objects can be interactively selected by Ctrl-clicking. Deactivating the selection
of a certain building object can be done by Ctrl-clicking on it again

Show / Hide Toolbox v W <’ - . oy s|_-[1rs cw;mclﬂm ;
© [Brin_Buildings_rgbTexture :

Add | Configure Layer v Remove selected layer

Add WMS-Layer T Remove WMS layer

Add Terrain-Layer v Remove Temain layer

Choose highlighted Object

Choose hidden Object i

Generate Scene Link Hide selected Objects ‘

Clear Highlighting Show Hidden Objects
Create Screenshot Print cument view
Toggle Shadows Toggle Terrain Shadows

Show the selected object in External Maps

o

S
C
2
=
%
®

10m
- e w e
3 Number of showed Number of cached
NCE5|UM 1:.3DCitYDB !) bing € 2015 Chair of Geoinformatics TL Minchen - © 7018 Mcrosoft Corporstion = © 2018 HERE -5#«0&)--&:-?1:"‘ G I_.Im: 1‘.3 S - “m_: 1=

Figure 173: The selected building objects can be hidden by clicking on the button Hide selected Objects. The
GMLIDs of the selected (highlighted) and hidden building objects can be explored by clicking the drop-down
buttons Choose highlighted Object and Choose hidden Object respectively

3D Geodatabase for CityGML 2018 297

Show / Hide Toolbox ¥

© [Bidin_Buildings_rgbTexture

Add | Configure Layer ¥ Remove selected layer

Add WMS-Layer L Remove WMS layer

Add Terrain-Layer Y Remove Temain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link
Clear Highlighting
Create Screenshot Print cument view
Toggle Shadows Toggle Temain Shadows

Show the selected object in External Maps

2.
%
w

: 10m
= e - e
Number of showed Number of cached

N CESIUM 1:' 3DCityDB b biNg © 2015 Char of Geaintormatics Tu Minchen - © 2018 Memsofl Comporation © 2016 HERE - 8MnD - ©2016 G L e 12 =

o Ry il i e

Figure 174: The hidden objects can be shown on the 3D web client again by clicking on the button Show Hidden
Objects

Show / Hide Toolbox

© [Brin_Buildings_rgbTexture

Add / Configure Layer v Remove selected layer
Add WMS-Layer v Remove WMS layer
Add Temain-Layer v Remove Temain layer

Choose highlighted Object

Choose hidden Object

Generate Scene Link
Clear Highlighting

Create Screenshot

Hide selected Objects
Show Hidden Objects

Print cument view

Toggle Terrain Shadows

Show the selected object in Extemal Maps

Number of showed

Tiles: 11

T

Figure 175: The objects selection and along with the highlighting effect can be deactivated by clicking on the
button Clear Highlighting

298 3D Geodatabase for CityGML 2018

Show [Hide Toolbox ¥

(] Briin_Buildings_rgbTexture

Add / Configure Layer ¥ Remove selected layer
Add WMS-Layer v Remove WMS layer
Add Temrain-Layer b4 Remove Temain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot ‘ Print current view] .
Toggle Shadows Toggle Temrain Shadows

Show the selected object in Extemnal Maps

B\
%
2
24
%
®

/ 10m

> - .: b r
3 Number of showed Number of cached
N CESIUM 1:.3Dcit)|f|33 1> BiNG © 2015 crins S CeciimmmtiaTu Minchan - ; e Ii:n_-eﬂﬂ\!H-EF:Evﬁl}dﬂl-féi‘ﬂ!f-&.]—i!cs.: 1? oy TII_E‘S‘I? e

Figure 176: A screenshot of the current view can be created directly within the 3D web client by clicking on the
button Create Screenshot or Print current view

| Print

Totak: 1 sheet of paper

L | Cancel

(/] GISLASERS

Destination

| Change.. |

Pages

Portrait

Options | Two-sided

= More settings

Print using system dialog... (Ctrl+Shift+P)

Figure 177: Once the button Print current view has been clicked on, a printer settings dialog (differs for
different web browsers) will appear giving a preview of the screenshot file to be printed

3D Geodatabase for CityGML 2018 299

Show / Hide Toolbox ¥

© [Bidin_Buildings_rgbTexiure
Add / Configure Layer x: Remove selected layer

Add WMS-Layer v Remove WMS layer

Add Terrain-Layer v Remove Temain layer

Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot Print cument view
Toggle Shadows Toggle Terrain Shadows
Show the selected object in External Maps

. . - = e
- Number of showed Number of cached

A cCESIUM ‘:.300“5’03 b biNg ©2015 Cra of Geonfomaties' T Minchen - © 2010 Mcrosal Comeralion® © 2018 HERE - SAND - © 2010 l__]'iles_ i i T'fs..: 12 G

Figure 178: Shadow visualization of the 3D city models can also be activated and deactivated by clicking the
Toggle Shadows button

Show [Hide Toolbox v
© [Bdin_Buildings_rgbTexture

Add | Configure Layer x| Remove selected layer
Add WMS-Layer v Remove WMS layer
Add Temain-Layer v Remove Temain layer
Choose highlighted Object

Choose hidden Object

| Generate Scane Link [Hide selected Objects

Clear Highhghting Show Hidden Objects
Create Screenshot Print curment view Scene Link
Toggle Shadows Togghe Terrain Shadows

Show the selected object in External Maps

Number of showed Number of cached
Tiles: 10 Tiles: 12

Figure 179: It is possible to create a scene link saving the current status of the 3D web client by clicking on the
Generate Scene Link button. This scene link encodes the information about the title of the web site, activation
status of the shadow visualization, parameters of the current loaded layers, the camera perspective etc. The
created scene link can be stored as a browser bookmark or favorite and can also be sent e.g. by email to friends,
colleagues, project partners etc. When they open the link, the same scene will open in their browsers.

300 3D Geodatabase for CityGML 2018

8.3.6 Mobile Support Extension

Starting from version 1.6.0, the 3DCityDB-Web-Map-Client is equipped with an extension
that provides better support for mobile devices. The extension comes with a built-in mobile
detector, which can automatically detect and adjust the client's behaviors accordingly to
whether the 3D web client is operating on a mobile device. The extension has been tested on
several smartphones and tablets running Android and iOS.

Some of the most important mobile features enabled by this extension are listed as follows:
1. A more lightweight graphical user interface

In order to make the best use of the limited screen real-estate available on mobile devices,
some elements are removed or hidden from the web client, such as credit texts and logos,
as well as some of Cesium's built-in navigation controls that can easily be manipulated
using touch gestures (see Figure 180).

The main toolbox now scales to fit to the screen size. In case of excess lines/length, the
toolbox becomes scrollable (see Figure 181).

The infobox displayed when a city object (e.g. building) is clicked is now displayed in
fullscreen with scrollable contents, as illustrated in Figure 182 below.

SIM fehlt = 16:14 _Ji

& 3dcitydb.org ¢

Sep 4 2017
14:14:38 UTC

M

Figure 180: The 3DCityDB Web Map Client on mobile devices

3D Geodatabase for CityGML 2018 301

SIM fehlt = 18:07

& 3dcitydb.org

1

SIM fehlt = 11:19 L1

& 3dcitydb.org

LS

Qs

a DEBY_LOD2_4959457

GMLID DEBY_LOD2_4959457
DatenquelleBodenhoehe 1100

Remove selected layer DatenquelleDachhoehe 1000
DatenquelleLage 1000
Gemeindeschluessel 9162000
HoeheDach 547.33
Methode 2000
NiedrigsteTraufeDesGebaeudes 527.279
StandLK 12/5/2014
Stadt Mlnchen
StraBBe ArcisstraBe 21

measuredHeight 37.54

Remove WMS layer

Remove Terrain layer

Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot Print current view

Toggle Shadows Toggle Terrain Shadows

roof_type 3200
storeys_above_ground 6

function 99999 1001
ExternalObjectName 4959457

http://repository.gdi-

VIR de.org/schemas/adv/city|

directRad_year
directRad_month_01

M m @ < LN A AT

Figure 181: The main toolbox on mobile devices Figure 182: The infobox on mobile devices

Sep 4 2017
14:25:38 UTC

<« 11>

2. Geolocation-based features

The web client contains a new GPS button (located on the top right corner in the view
toolbar) providing new functionalities involving user's current location and orientation (see
Figure 183 and Figure 184). Namely:

e Location "snapshot" (single-click): shows the user's current position and orientation.

e Real-time Orientation Tracking (double-click): periodically shows the user's current
orientation with fixed location.

e Real-time Compass Tracking + Position (triple-click) or the "First-person View"
mode: periodically shows the user's current orientation and position.

Figure 183: From left to right, the 3 modes of geolocation-based features:
Location snapshot, Real-time orientation tracking and First-person view

302 3D Geodatabase for CityGML 2018

SIM fehlt = 10:35 [)

& 3dcitydb.org ¢

@

1
Sep 282017
08:35:50 UTC Sep 29 2017 FOZOO:OO uTC

<« up)
M O
Figure 184: Real-time orientation tracking and First-person View on mobile devices

To disable real-time tracking, simply either click on the button again to return to
"snapshot" mode or hold the button for 1 second, the camera will then ascend to a
higher altitude of the current location.

Note that the mobile extension makes use of the Geolocation API and the DeviceOrientation
API in HTMLS. The Geolocation API only works via HTTPS since Google Chrome 50.
Therefore, make sure the client is called from a secured page (via SSL/HTTPS). Additionally,
permission to retrieve current orientation and location must be granted by the user.

8.3.7 Using the 3D Web Client from the 3DCityDB homepage

If you want to try the 3DCityDB-Web-Map-Client or do not have a possibility to install it on
your own web server, you can use the pre-installed version from the 3DCityDB homepage
under the URL

https://www.3dcitydb.org/3dcitydb-web-map/1.6/3dwebclient/index.html

This is a stable link and can be used for long-time working demo links. If new versions will
be released in the future, the old versions remain functional on the server and the new
versions will be installed in new subfolders (i.e. next to the folder ‘1.6).

https://www.3dcitydb.org/3dcitydb-web-map/1.6/3dwebclient/index.html

3D Geodatabase for CityGML 2018 303

9 3DCityDB Docker Images

Docker is a widely used virtualization technology that makes it possible
to pack an application with all its required resources into a standardized
unit - the Docker Container. Software encapsulated in this way can run
on Linux, Windows, macOS and most cloud services without any
further changes. Docker containers are lightweight compared to
traditional virtualization environments that emulate an entire operating
system because they contain only the application and all the tools,

program libraries, and files it requires. dOCker

9.1 Getting started

The Docker Container for 3D City Database is based on the Open Source database
management system PostgreSQL and the PostGIS extension for spatial data. The image is
freely available via DockerHub?’ and can be directly downloaded and used. The detailed
documentation and source code can be found on the GitHub project page (see below). All that
is needed is a Docker installation on your system. The time-consuming installation of a
database server, its configuration, the installation of a database extension for spatial data and
the setup of the 3D City Database data model are a thing of the past. An example for setting
up a 3DCityDB using Docker from a command line is given below:

Windows

docker run -dit --name citydb-container -p 5432:5432"
-e "SRID=31468""
-e "SRSNAME=urn:adv:crs:DE _DHDN 3GK4*DE DHN92 NH""
tumgis/3dcitydb-postgis

Linux

docker run -dit --name citydb-container -p 5432:5432 \
-e "SRID=31468" \
-e "SRSNAME=urn:adv:crs:DE DHDN 3GK4*DE DHN92 NH" \
tumgis/3dcitydb-postgis

Note: In the examples above the long commands are broken to several lines for readability
using the Bash (\) or CMD (") line continuation.

The docker run command fetches the most recent version of the Docker image from the
Docker hub. This image includes a PostgreSQL/PostGIS installation. The 3DCityDB schema
is being installed and a new and empty 3DCityDB database is created using the SRID 31468
and GML SRSName “urn:adv:crs:DE_ DHDN 3GK4*DE DHN92 NH”. After completion of
the command the user can directly start importing a CityGML file into the database using the
Importer/Exporter tool, which must have been installed locally.

20 https://hub.docker.com/u/tumgis/

https://hub.docker.com/u/tumgis/

304 3D Geodatabase for CityGML 2018

9.2 Further images

In addition to the Docker Image for the 3D City Database, Docker Images for the 3DCityDB
Web-Feature-Service (WFS) and the 3DCityDB 3D-Web-Map-Client are also available.

Docker Compose?! files are available for orchestrating the individual services. This allows for
example, that a single command call can be used to create a 3DCityDB linked to a 3DCityDB
WES, which makes the data from the database accessible via a standardized web interface.

Downloads, documentation and source code

The documentation and source code for the individual images can be found on the Github
project pages listed below. If you experience any problems or want to contribute, please
submit an Github issue or pull request.

3DCityDB PostGIS

e Documentation, source code https://github.com/tum-gis/3dcitydb-docker-postgis

e Image download https://hub.docker.com/r/tumgis/3dcitydb-postgis/

3DCityDB Web Feature Service (WFS)

e Documentation, source code https://github.com/tum-gis/3dcitydb-wfs-docker

e Image download https://hub.docker.com/r/tumgis/3dcitydb-wfs/

3DCityDB 3D Web Map Client

e Documentation, source code https://github.com/tum-gis/3dcitydb-web-map-docker

e Image download https://hub.docker.com/r/tumgis/3dcitydb-web-map/

3DCityDB Docker Compose service orchestration

e Download, Documentation, and source code
https://github.com/tum-gis/3dcitydb-docker-compose

21 https://docs.docker.com/compose/

https://github.com/tum-gis/3dcitydb-docker-postgis
https://hub.docker.com/r/tumgis/3dcitydb-postgis/
https://github.com/tum-gis/3dcitydb-wfs-docker
https://hub.docker.com/r/tumgis/3dcitydb-wfs/
https://github.com/tum-gis/3dcitydb-web-map-docker
https://hub.docker.com/r/tumgis/3dcitydb-web-map/
https://github.com/tum-gis/3dcitydb-docker-compose
https://docs.docker.com/compose/

3D Geodatabase for CityGML 2018 305

10 References

3DCityDB Homepage, http://www.3dcitydb.org/ (accessed September 2018).

Active Server Pages Reference, Microsoft, Weblink (accessed September 2018):
http://msdn.microsoft.com/en-us/library/ms526064.aspx

Barners, M., Finch, E. L. (2008): COLLADA - Digital Asset Schema Release 1.5.0. The
Khronos Group Inc., Sony Computer Entertainment Inc, April 2008.
http://www.khronos.org/files/collada_spec 1_5.pdf (accessed September 2018)

Berlin 3D City Model, Business Location Center Berlin, Weblink (accessed September 2018):
https://www.businesslocationcenter.de/en/WA/B/seite0.jsp

Borrmann, A., Kolbe, T. H., Donaubauer, A., Steuer, H., Jubierre, J. R., Flurl, M. (2015):
Multi-scale geometric-semantic modeling of shield tunnels for GIS and BIM
applications. Computer-Aided Civil and Infrastructure Engineering (Vol. 30, No. 4).
Weblink (accessed September 2018): http://dx.doi.org/10.1111/mice.12090

Chaturvedi, K., Yao, Z., Kolbe, T. H. (2015): Web-based Exploration of and Interaction with
Large and Deeply Structured Semantic 3D City Models using HTMLS5 and WebGL. In:
Proc. of the 35th Annual Conference of the German Society for Photogrammetry,
Remote Sensing and Geoinformation (DGPF), Weblink (accessed September 2018):
http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34 DGPF2015_ Chaturvedi

_et_al.pdf

CityGML Homepage, http://www.citygml.org (accessed September 2018).

Coffman, E.G. Jr., Garey, M. R., Johnson, D.S., Tarjan, R.E. (1980): Performance bounds for
level-oriented two-dimensional packing algorithms. In: STAM Journal on Computing 9
(1980), pp. 801-826.

Dollner, J., Buchholz, H., Brodersen, F., Glander, T., Jiitterschenke, S., Klimetschek, A.
(2005): Smart Buildings — A Concept for Ad-Hoc Creation and Refinement of 3D
Building Models. In: Kolbe, T. H., Groger, G. (eds.): Proceedings of the 1st
International Workshop on Next Generation 3D City Models, Bonn, Germany, June
2005, EuroSDR Publications.

Déllner, J., Kolbe, T. H., Liecke, F., Sgouros, T., Teichmann, K. (2006): The Virtual 3D City
Model of Berlin - Managing, Integrating, and Communicating Complex Urban
Information. In: Proceedings of the 25th Urban Data Management Symposium UDMS
2006 in Aalborg, Denmark, May 15-17. Weblink (accessed September 2018):
http://mediatum.ub.tum.de/doc/1145759/484057.pdf

Fiutak, G.; Marx, C.; Willkomm, P.; Donaubauer, A.; Kolbe, T. H. (2018): Automatisierte
Generierung eines digitalen Landschaftsmodells in 3D. PFGK18 - Photogrammetrie -
Fernerkundung - Geoinformatik - Kartographie, 37. Jahrestagung in Miinchen 2018
(Publikationen der Deutschen Gesellschaft fiir Photogrammetrie, Fernerkundung und

http://www.3dcitydb.org/
http://msdn.microsoft.com/en-us/library/ms526064.aspx
http://www.khronos.org/files/collada_spec_1_5.pdf
https://www.businesslocationcenter.de/en/WA/B/seite0.jsp
http://dx.doi.org/10.1111/mice.12090
http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi_et_al.pdf
http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi_et_al.pdf
http://www.citygml.org/
http://mediatum.ub.tum.de/doc/1145759/484057.pdf

306 3D Geodatabase for CityGML 2018

Geoinformation (DGPF) e.V. 27), Deutsche Gesellschaft fiir Photogrammetrie,
Fernerkundung und Geoinformation e.V., 888-902.

Foley, J., van Dam, A,. Feiner, S., Hughes, J. (1995): Computer Graphics: Principles and
Practice. Addison Wesley, 2nd Ed.

glTF - Efficient, Interoperable Transmission of 3D Scenes and Models, Khronos, Weblink
(accessed September 2018): https://www.khronos.org/gltf

Google Elevation API, https://developers.google.com/maps/documentation/elevation/
(accessed September 2018).

Groger, G., Kolbe, T. H., Schmittwilken, J., Stroh, V., Plimer, L. (2005): Integrating
versions, history and levels-of-detail within a 3D geodatabase. In: Kolbe, T. H.,
Groger, G. (eds.): Proceedings of the 1st International Workshop on Next Generation
3D City Models, Bonn, Germany, June 2005, EuroSDR Publications. Weblink
(accessed September 2018): https://mediatum.ub.tum.de/doc/1453849/1453849.pdf

Groger G., Kolbe, T. H., Czerwinski, A., Nagel C. (2008): OpenGIS® City Geography
Markup Language (CityGML) Encoding Standard, Version 1.0.0. Open Geospatial
Consortium, Doc. No. 08-007r1, August 20th.
http://portal.opengeospatial.org/files/?artifact 1d=28802

Groger G., Kolbe, T. H., Nagel C., Hifele, K. H. (2012): OpenGIS® City Geography Markup
Language (CityGML) Encoding Standard, Version 2.0.0. Open Geospatial
Consortium, Doc. No. 12-019,
http://portal.opengeospatial.org/files/?artifact 1d=28802

Herreruela, J., Nagel, C., Kolbe, T. H. (2012): Value-added Services for 3D City Models using
Cloud Computing. In: Lowner, M.-O., Hillen, F., Wohlfahrt, R. (eds.): Geoinformatik
2012 "Mobilitdt und Umwelt", Proc. of the Conference Geoinformatik 2012, 28.-30. 3.
2012 in Braunschweig. Weblink: http://mediatum.ub.tum.de/doc/1145739/42082.pdf
(accessed September 2018)

Herring, J. (2001): The OpenGIS Abstract Specification, Topic 1: Feature Geometry (ISO
19107 Spatial Schema). OGC Document Number 01-101

Java Application Launcher (2015): Oracle, Weblink (accessed September 2018):
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/java.html

Kaden, R., Kolbe, T. H. (2014): Simulation-Based Total Energy Demand Estimation of
Buildings using Semantic 3D City Models. International Journal of 3-D Information
Modeling, 3(2), 35-53, April-June 2014. Weblink (accessed September 2018):
http://dx.doi.org/10.4018/ij3dim.2014040103

Kolbe, T. H., Groger, G. (2003): Towards unified 3D city models. In Schiewe, J., Hahn, M.,
Madden, M., Sester, M. (eds.): Proceedings of the ISPRS Comm. IV Joint Workshop
on Challenges in Geospatial Analysis, Integration and Visualization II in Stuttgart.
Weblink: http://mediatum.ub.tum.de/doc/1145769/703861.pdf (accessed Sept. 2018)

https://www.khronos.org/gltf
https://developers.google.com/maps/documentation/elevation/
https://mediatum.ub.tum.de/doc/1453849/1453849.pdf
http://portal.opengeospatial.org/files/?artifact_id=28802
http://portal.opengeospatial.org/files/?artifact_id=28802
http://mediatum.ub.tum.de/doc/1145739/42082.pdf
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/java.html
http://dx.doi.org/10.4018/ij3dim.2014040103
http://mediatum.ub.tum.de/doc/1145769/703861.pdf

3D Geodatabase for CityGML 2018 307

Kolbe, T. H. (2009): Representing and Exchanging 3D City Models with CityGML. In: Lee,
J., Zlatanova, S. (eds.): Proceedings of the 3rd International Workshop on 3D Geo-
Information 2008 in Seoul, South Korea. Lecture Notes in Geoinformation &
Cartography, Springer Verlag, 2009. Weblink (accessed September 2018):
http://mediatum.ub.tum.de/doc/1145752/947446.pdf

Kolbe, T. H.; Konig, G.; Nagel, C.; Stadler, A. (2009): 3D-Geo-Database for CityGML,
Documentation Version 2.0.1, Institute for Geodesy and Geoinformation Science, TU
Berlin. Weblink (accessed September 2018):
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-
Documentation-v2_0.pdf

Kunde, F. (2013): CityGML in PostGIS: portability, usage and performance analysis using
the example of the 3D City Database of Berlin. (in german only) Master Thesis,
University of Potsdam, Germany, URN: urn:nbn:de:kobv:517-opus-63656 (accessed
September 2018).

Lodi A., Martello S., Vigo D. (1999): The Touching Perimeter Algorithm: Heuristic and
Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems. In:
INFORMS J on Computing: pp. 345-357.

Lodi A., Martello S., Monaci M., (2002): Two-dimensional packing problems: A survey. In:
European Journal of Operational Research, 141, issue 2, pp. 241-252.

Murray, C. et al. (2010): Oracle ® Spatial Developer’s Guide 11g Release 2 (11.2), E11830-
06, March 2010. Weblink (accessed September 2018):
http://docs.oracle.com/cd/E18283 01/appdev.112/e11830.pdf

Nagel, C., Stadler, A. (2008): Die Oracle-Schnittstelle des Berliner 3D-Stadtmodells. In:
Clemen, C. (Ed.): Entwicklerforum Geoinformationstechnik 2008, Shaker Verlag,
Aachen, S. 197-221.

Pliimer, L., Groger, G., Kolbe, T. H., Schmittwilken, J., Stroh, V., Poth, A., Taddeo, U.
(2005): 3D-Geodatenbank Berlin, Dokumentation V1.0 Institut fiir Kartographie und
Geoinformation der Universitit Bonn (IKG), lat/lon GmbH. Weblink
https://www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo

db_berlin.pdf (accessed September 2018).

Stadler, A., Nagel, C., Konig, G., Kolbe, T. H. (2009): Making interoperability persistent: A
3D geo database based on CityGML. In: Lee, J., Zlatanova, S. (eds.): Proceedings of
the 3rd International Workshop on 3D Geo-Information 2008 in Seoul, South Korea.
Lecture Notes in Geoinformation & Cartography, Springer Verlag, 2009. Weblink
(accessed September 2018): http://mediatum.ub.tum.de/doc/1145748/781842.pdf

Whiteside, A. (2009): Definition identifier URNs in OGC namespace, Version 1.3. Open
Geospatial Consortium, OGC® Best Practices, Doc. No. 07-092r3, January 15th.
http://portal.opengeospatial.org/files/?artifact id=30575

http://mediatum.ub.tum.de/doc/1145752/947446.pdf
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-Documentation-v2_0.pdf
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-Documentation-v2_0.pdf
http://docs.oracle.com/cd/E18283_01/appdev.112/e11830.pdf
https://www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo_db_berlin.pdf
https://www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo_db_berlin.pdf
http://mediatum.ub.tum.de/doc/1145748/781842.pdf
http://portal.opengeospatial.org/files/?artifact_id=30575

308 3D Geodatabase for CityGML 2018

Wilson, T. (2008): OGC® KML, OGC® Standard Version 2.2.0. Open Geospatial
Consortium, Doc. No. 07-147r2, April 14th.
http://portal.opengeospatial.org/files/?artifact id=27810

Weisstein, E. W. (2015): Affine Transformation, Wolfram MathWorld, Weblink (accessed
September 2018): http://mathworld.wolfram.com/AffineTransformation.html

Yao, Z., Sindram, M., Kaden, R., Kolbe, T. H. (2014): Cloud-basierter 3D-Webclient zur
kollaborativen Planung energetischer Mafinahmen am Beispiel von Berlin und
London. In: Kolbe, Bill, Donaubauer (eds.): Geoinformationssysteme 2014 — Beitrige
zur 1. Minchner GI-Runde, 24.-25. 2. 2014, Wichmann Verlag, Berlin. Weblink
(accessed September 2018): http://mediatum.ub.tum.de/doc/1276243/359202.pdf

Yao, Z., Chaturvedi, K., Kolbe, T. H. (2016): Browserbasierte Visualisierung grofser 3D-
Stadtmodelle durch Erweiterung des Cesium Web Globe. In: Kolbe, T. H., Bill, R.,
Donaubauer, A. (eds.): Geoinformationssysteme 2016 — Beitrdge zur 3. Miinchner GI-
Runde, 24.-25. 2. 2016, Wichmann Verlag, Berlin. Weblink (accessed September
2018): http://mediatum.ub.tum.de/doc/1296408/547142.pdf

Yao, Z., Kolbe, T. H. (2017): Dynamically Extending Spatial Databases to support CityGML
Application Domain Extensions using Graph Transformations. In: Kersten, T.P. (ed.):
Beitrag zur 37. Wissenschaftlich-Technische Jahrestagung der DGPF. Deutsche
Gesellschaft fiir Photogrammetrie, Fernerkundung und Geoinformation e.V. Weblink
(accessed September 2018): http://mediatum.ub.tum.de/doc/1425154/602735.pdf

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi, T., Kolbe,
T. H. (2018): 3DCityDB - a 3D geodatabase solution for the management, analysis,
and visualization of semantic 3D city models based on CityGML. Open Geospatial
Data, Software and Standards 3 (5), 2018, 1-26. Weblink (accessed September 2018):
http://dx.doi.org/10.1186/s40965-018-0046-7

http://portal.opengeospatial.org/files/?artifact_id=27810
http://mathworld.wolfram.com/AffineTransformation.html
http://mediatum.ub.tum.de/doc/1276243/359202.pdf
http://mediatum.ub.tum.de/doc/1296408/547142.pdf
http://mediatum.ub.tum.de/doc/1425154/602735.pdf
http://dx.doi.org/10.1186/s40965-018-0046-7

3D Geodatabase for CityGML 2018 309

Appendix A Changelog

This appendix provides an overview of the most important changes in version 4.0.0 of the 3D
City Database and the Importer/Exporter compared to the previous release version 3.3.0.

A.1 3D City Database relational schema

A.1.1 General changes

New metadata tables ADE, SCHEMA, SCHEMA REFERENCING and
SCHEMA TO_ OBJECTCLASS for registering CityGML ADEs

Added OBJECTCLASS ID column to all feature tables to distinguish objects from
CityGML ADEs. Also extended OBJECTCLASS table by more feature-specific
details and inserted new entries for feature properties such as geometry, generic
attributes etc.

Added NOT NULL constraints on each OBJECTCLASS ID column

New prefilled metadata table AGGREGATION INFO that supports the automatic
generation of DELETE and ENVELOPE scripts

Changed delete rule of one foreign key in link tables to ON DELETE CASCADE to
produce better delete scripts

A.2 3D City Database scripts

Moved interactive prompts from SQL to batch/shell scripts for better setup automation
Provide batch (Windows) and shell scripts (UNIX, macOS) for both PostgreSQL and
Oracle DBMS
Re-added scripts to create a read-only user (UTIL folder), called GRANT ACCESS
and REVOKE ACCESS (removed in v3.x). Also includes a read-write option.
New MIGRATION scripts to upgrade from a 3DCityDB v2.1.0 or v3.3.2 to v4.0.0.
Tidier folder and script structure:

o Removed folders PL SQL (Oracle) and PL pgSQL (PostgreSQL) to make

CITYDB_PKG a top-level directory under the SQLScripts folder

o Moved OBJECTCLASS INSTANCES script to SCHEMA/OBJECTCLASS
folder
PostgreSQL: New SCHEMAS directory in UTIL folder
Oracle: One instead of two CREATE DB scripts
Oracle: Moved versioning scripts to its own directory in the UTIL folder

o Oracle: Renamed CREATE DB folder in UTIL directory to HINTS
Oracle: Better treatment if SDO_ GEORASTER support 1S missing
Oracle: Defining spatial metadata on all geometry columns with new function
set schema sdo metadata in CITYDB CONSTRAINT package instead of a
hard-coded part in SPATIAL INDEX. sql script

O O O

310 3D Geodatabase for CityGML 2018

A.3 3D City Database stored procedures

A.3.1 General changes
e New packages: CITYDB CONSTRAINT and CITYDB OBJCLASS
e Removed parts with dynamic SQL where possible. Required renaming of some
function arguments to avoid conflicts with column names in querys
e PostgreSQL: Added volatility categories for better query planning

A.3.2 UTIL package

e Updated version numbers in citydb version function

e Moved update schema constraints and update table constraint
procedures into new CITYDB CONSTRAINT package and renamed them to
set schema fkey delete rule and set fkey delete rule. Change
data type for on delete param to CHAR as only one letter is needed to set a new
delete rule: 'a' for ON DELETE NO ACTION, 'n'for ON DELETE SET NULL
("'n"), 'c' for ON DELETE CASCADE or (PostgreSQL-only) 'r"' for ON DELETE
RESTRICT

e Moved objectclass id to table name function to new
CITYDB OBJCLASS package.

e Added schema name parameter to functions do_metadataand db_info

e Removed schema name parameter from get seqg_values function

e Oracle: Removed schema name parameter from construct solid function

A.3.3IDX package

e Oracle: Added schema name parameter to get index function
e Oracle: Dropping spatial indexes will not delete spatial metadata anymore

A.3.4 SRS package
e Added schema name parameterto is db ref sys 3d function
e Oracle: Added schema name parameter to get dim function
e Oracle: Do not delete spatial metadata when spatial index is not valid

A.3.5 STAT package

e Exclude new metadata tables from database report

A.3.6 DELETE package

e Aligned API of Oracle version with PostgreSQL (no more pre and post
methods)

e Two delete endpoints are provided for each feature class: Delete by single ID value or
delete by a set of IDs

e All 1:n references are deleted right away. Replaced all explicit cleanup scripts
(except for cleanup appearances) with one generic cleanup function

e New prefix del instead of delete

3D Geodatabase for CityGML 2018 311

e The DELETE scripts have been generated automatically by the ADE Manager Plugin
of the Importer/Exporter. This process shall be repeated when introducing ADE
extensions to the database schema.

A.3.7 DELETE_BY_LINEAGE package

e The package and included stored procedures have been removed
e New function del delete cityobjects by lineage in DELETE package

A.3.8 ENVELOPE package

e New prefix env ~ instead of get envelope (except for
get envelope cityobjects function)

e The ENVELOPE scripts have been generated automatically by the ADE Manager
Plugin of the Importer/Exporter. This process shall be repeated when introducing ADE
extensions to the database schema.

A.4 3D City Database Importer/Exporter

The new version 4.0 of the Importer/Exporter contains many bug fixes as well as stability and
performance improvements. A full list of fixes and changes is available from the GitHub
repository at https://github.com/3dcitydb/importer-exporter.

A.4.1 General changes

e Java 8 is required since version 3.3.0.

e The Importer/Exporter can now connect to both Oracle and PostgreSQL.

e Temporary information required during data imports and exports (e.g., for resolving of
XLink references) can now optionally be stored to a local file-based database instead
of using temporary tables in the 3D City Database instance.

e 3.1: Importer/Exporter now checks the version of the 3DCityDB before connecting

e 3.1: Re-Added user dialog to control GMLID CODESPACE during import

e 3.1: Added user dialog to calculate the ENVELOPE of city objects in the database

e 3.3: The location of the main config file (‘project.xml’) has been changed to
%HOMEDRIVE%%HOMEPATH%\3dcitydb\importer-exporter\config (Windows 7
and higher) respectively $SHOME/3dcitydb/importer-exporter/config (UNIX/Linux,
Mac OS families). Old config files can still be loaded manually (note: was ../importer-
exporter-3.0/.. in versions 3.0 to 3.2)

A.4.2 CityGML import

e CityGML import now supports CityGML versions 2.0, 1.0 and 0.4.

e A new import log optionally tracks all successfully imported top-level city objects in a
separate CSV file. In case an import process aborts abnormally, this file can be used to
understand which city objects have been processed and stored in the database before
termination.

e The import process now follows a fail-on-first-error strategy, i.e. the import terminates
upon the first error thrown instead of trying to continue.

https://github.com/3dcitydb/importer-exporter

312

3D Geodatabase for CityGML 2018

Improved import of texture atlases. Each texture atlas is only stored once in the
database (new table ‘tex image’) even if it is referenced by more than one city object.
Local appearance information is now resolved in main memory to reduce import times
instead of using temporary database tables.

Texture metadata is imported even if texture images are chosen to be not imported

3.1: Changed the way global appearances are imported

3.1: Fixed bug in BRIDGE importer preventing import of bridges with thematic
surfaces

A.4.3 CityGML export

Database content can now be exported to CityGML 2.0 or 1.0. When exporting to
CityGML 1.0, feature types only available in CityGML 2.0 such as bridges and
tunnels are omitted.

City object group members can now be exported as-reference (using XLink
references) instead of as-value to reduce export times. However, note that filter criteria
are not applied in this case, which might result in CityGML files containing non-
resolvable XLink references.

When exporting city objects with textures, the texture image files can now be
organized into subfolders. This reduces the number of files per folder.

A.4.4 KML/COLLADA/gITF export

Support for gITF version 2.0 in addition to version 1.0. New COLLADA2gITF
binaries (version 2.1.3) for Windows, Linux and MacOS.

Solved bugs that might prevent exporting LandUse 3D models from functioning
correctly.

A.5 Web Feature Service

Since 3.0: Added a basic Web Feature Service interface for the 3D City Database
Fixed a SQL Injection vulnerability with version 3.3.0. It is strongly recommended
to update to this version.

A.6 3D Web Map Client

Introduced geolocation-based features such as the first-person view on mobile devices.
Support for gITF 2.0.
Support for Cesium 3D Tiles.

3D Geodatabase for CityGML 2018 313

Appendix B 3DCityDB @ TU Munchen

The Chair of Geoinformatics?? at Technische Universitdt Miinchen (TUM) took over the
further development of the 3D City Database from TU Berlin (TUB) when Prof. Kolbe moved
from TUB to TUM in 2012. 3DCityDB is being used at TUM in teaching courses on spatial
databases and 3D city modeling, in student projects and master theses, and in many past and
ongoing research projects.

B.1 Interactive Cloud-based 3D Webclient

Besides the Open Source 3DCityDB-Web-Map-Client as described in chapter 8 the Chair of
Geoinformatics has also developed a “Professional Version” of the interactive 3D web client.
This version links 3D visualization models exported in KML/gITF from 3DCityDB with table
data exported using the 3DCityDB Spreadsheet Generator and allows viewing, editing, and
querying objects and their thematic data [Herreruela et al. 2012; Yao et al. 2014; Chaturvedi
et al. 2015]. The configuration of a 3D webclient project (information about each layer,
thematic data, preferences, spatial bookmarks) is also stored in the Cloud as a Google
Spreadsheet. The following image shows a screenshot of a tool created by TUM for the
Energy Atlas Berlin that is based on the “3D Webclient Professional”. It estimates building
energy demands based on the German standard DIN 18599 and the 3D building models in
CityGML and allows to interactively explore retrofitting potentials for single or sets of
buildings [Kaden & Kolbe 2014]. Thematic data are stored in Google Spreadsheets, where
spreadsheet formulas are employed to implement ad-hoc computation of energy values and
their changes according to retrofit measures. Also the costs of the retrofitting measures are
estimated for each building individually.

3DCityDB Webclient Professional V2.3 ©2012-2017 Chair of Geoinformatics TU Miinchen

Control Panel Cesium Viewer Layer Settings || GSpreadsheet | GFusionTable | Mashuy|
Layer List = Projectv | Toolsv | . ‘Bounding Box Sign Out ' Thomas H. Kolbe | Showin~ = Generate Report
— [houivsingmswanon
48 Berlin Moabit 1 __ EsTiMaTED_ _HEAT_DEMAND____
7] Jan_kwh 11944
[7] Feb_kwh 10055
[T] Mar_kwh 7972
[C] Apr_kwh 3820
[T] May_kwh 1220
8 [[] Jun_kwh 278
[Julkwh 0
[T Aug_kwh 4
[7] Sep_kwh 1280
" [octkwh 4535
AamGontool] Nov_kwh 9234
Stored Viewpoints [7] Dec_kwh 12473
Create new Viewpoint = Upload to Cloud = Remove All [[] Year_kwh 62821
Name Last Modification D... = Last Modifier [T1 Year_m2_kwh 48
hello 20.03.2017 12:37:09 Thomas H. Kolb [[] ___ REFURBISHMENT_ _COSTS___
hello2 19.10.2017 17:06:09 Thomas H. Kolb [WallRetrofit 70566
Commit Changes = Rollback Changes = Query~ = Open Spres
@ @CES|UM {. 3DCityDB b - \ e~ Object Selection | Hidden Objects
Add KML/KMZ/gITF Layer Configuation - Miinghen + © 2018 Microsoft Cofporation +(9.2018 HER 8 GCNES'(2018) Clear Selected Objects | Aggregation~ | Appearance~ | Hide
Add 3D-Tiles Layer Configuation + 0%35'318628'T% Distribution Airbus DS N X, }! Object D
Add WMS Layer Configuation + <« uf[p] | peenioz 2oonotite ‘ T g e o T BLDG_0003000600446edc
| it e L @i +1| @ Tiling Manager is idle Number of showed tiles: 12 Number of cached tiles: 27 Count of the selected Objects: 1

22 https://www.gis.bgu.tum.de

https://www.gis.bgu.tum.de/

314 3D Geodatabase for CityGML 2018

B.2 Research Projects in which 3DCityDB is being used

Semantic 3D city modeling, city system modeling, and indoor navigation are major research
fields of the Chair of Geoinformatics at TUM. We have been driving the international
development of CityGML and IndoorGML within the OGC. We are partners in and/or
coordinators of projects on Smart Cities, Sustainable Urban Development, and Strategic
Energy Planning funded by the Climate-KIC of the European Institute of Innovation &
Technology (EIT). Projects using 3DCityDB are: Energy Atlas Berlin?*, Neighborhood
Demonstrators, Smart Sustainable Districts?*, Modeling City Systems®’, and Smart District
Data Infrastructure?®. 3DCityDB has also been used in the OGC Future Cities Pilot?’, and ‘3D
Tracks ?® - Collaborative Subway Track Planning in Multi-Scale 3D City and Building
Models’ [Borrmann et al. 2015] funded by the German Science Foundation (DFG) and was
used in projects on deriving 3D DLM from 2D DLM and DTM/DSM [Fiutak et al. 2018].

B.3 Current and future work on 3DCityDB

The team at the Chair of Geoinformatics is currently working on the following tools and
extensions to 3DCityDB. Most of them will be made available as Open Source software
within the 3DCityDB repository as soon as they are finished and tested:

Support of the Dynamizer ADE: Dynamizers extend CityGML to support the representation
and exchange of time-varying attribute values for all CityGML feature properties using
timeseries. Support in 3DCityDB is facilitated by 1) provision of the Java library for
importing and exporting CityGML Dynamizer ADE contents, and 2) provision of a new
web service, the so-called InterSensor Service, which will give access to the timeseries
data stored in the 3DCityDB according to the OGC Sensor Web Enablement standards.

Update Manager: This tool will provide a check-out / check-in functionality for parts of
stored 3D city models for the purpose of editing and updating. It will automatically
detect changes made on the previously exported (checked-out) CityGML dataset and
create WFS as well as direct database transactions that will update the 3DCityDB
contents according to the identified changes (check-in).

Solar potential analysis: This tool computes the solar energy of direct and diffuse irradiation
on building walls and roofs. The computation considers shadow casting by buildings,
vegetation, a Digital Surface Model and the Digital Terrain Model. The monthly energy
and irradiation values as well as the sky view factors are attached as generic attributes to
wall and roof surface objects and in aggregated form to buildings. The software is
implemented in Java and directly connects to the 3DCityDB. It has been employed to
estimate the solar potentials in the official Energy Atlas of the city of Helsinki, Finland.

23 See http://www.gis.bgu.tum.de/en/projects/energicatlas-berlin/ and http://energyatlas.energie.tu-berlin.de/
24 https://www.gis.bgu.tum.de/en/projects/smart-sustainable-districts-ssd/

2 https://www.gis.bgu.tum.de/en/projects/modeling-city-systems-mcs/

26 https://www.gis.bgu.tum.de/en/projects/smart-district-data-infrastructure/

27 https://www.gis.bgu.tum.de/en/projects/future-cities-pilot-phase-1/

28 https://www.gis.bgu.tum.de/en/projects/3dtracks/ and http://www.3dtracks.kit.edu/english/index.php

http://www.climate-kic.org/
http://www.gis.bgu.tum.de/en/projects/energieatlas-berlin/
https://www.gis.bgu.tum.de/en/projects/smart-sustainable-districts-ssd/
https://www.gis.bgu.tum.de/en/projects/modeling-city-systems-mcs/
https://www.gis.bgu.tum.de/en/projects/smart-district-data-infrastructure/
https://www.gis.bgu.tum.de/en/projects/smart-district-data-infrastructure/
https://www.gis.bgu.tum.de/en/projects/future-cities-pilot-phase-1/
https://www.gis.bgu.tum.de/en/projects/3dtracks/
https://www.gis.bgu.tum.de/en/projects/3dtracks/
http://www.gis.bgu.tum.de/en/projects/energieatlas-berlin/
http://energyatlas.energie.tu-berlin.de/
https://www.gis.bgu.tum.de/en/projects/smart-sustainable-districts-ssd/
https://www.gis.bgu.tum.de/en/projects/modeling-city-systems-mcs/
https://www.gis.bgu.tum.de/en/projects/smart-district-data-infrastructure/
https://www.gis.bgu.tum.de/en/projects/future-cities-pilot-phase-1/
https://www.gis.bgu.tum.de/en/projects/3dtracks/
http://www.3dtracks.kit.edu/english/index.php

3D Geodatabase for CityGML 2018 315

Appendix C 3DCityDB @ virtualcitySYSTEMS

virtualcitySYSTEMS? has successfully applied the 3D City Database

a 3D Spatial Data Infrastructure solution for the management,

in customer projects worldwide and also funded its development. With v
the Open Source database at the core, virtualcitySYSTEMS also offers ruslagy

distribution, maintenance and visualization of massive 3D geo data

(see next page). As leading developers of the 3D City Database joined
the company, virtualcitySYSTEMS now takes an active role in its = 3D City Data
development. Moreover, virtualcitySYSTEMS offers a branded | A,

version of the 3D City database called the virtualcityDATABASE to

answer customer demands and to provide support and maintenance.

Figure 185:
Extending the 3D
City Database

C.1 virtualcityDATABASE

The virtualcityDATABASE provides enhanced database functionality as well as plugins for
the Importer/Exporter tool that support workflows for maintaining and updating the 3D city
model content. Main features are:

Integration of additional LoDs against existing city objects in the database

This plugin allows for integrating city objects from an external data source with
existing city objects stored in the database. The candidate objects are identified with
the database objects based on thematic and spatial checks. Therefore, data
inconsistency can easily be spotted and analyzed before an import. If an integration is
performed, exiting LoDs are replaced and newly introduced LoDs are attached to the
existing objects. Moreover, appearance information can be integrated without
replacing the geometry.

Deletion of entire city objects or single LoDs representations

The 3D City Database provides a low-level API for deleting city objects. This API
has been extended in the virtualcityDATABASE to also delete single LoDs of city
objects. A graphical user dialog realized as a plugin for the Importer/Exporter allows
users to easily delete city objects based on comprehensive thematic filter criteria.
Adding material appearances for buildings

This plugin helps to define constant material information for building surfaces based
on thematic properties (e.g., to colorize roofs according to their solar potential).
Transactional Web Feature Service

Customers of the virtualcityDATABASE already benefit from an OGC-compliant
WES 2.0 implementation that supports transactions as well as comprehensive spatial
and thematic queries using the OGC Filter Encoding standard.

The virtualcityDATABASE is fully compliant with the 3D City Database. If features
developed for the virtualcityDATABASE have gained enough maturity, virtualcitySYSTEMS
will introduce them to the Open Source 3D City Database project (e.g. the WFS interface).

2 http://www.virtualcitysystems.de/

http://www.virtualcitysystems.de/

316 3D Geodatabase for CityGML 2018

C.2 virtualcitySUITE — The 3D City Platform

The virtualcitySUITE is a modular 3D Spatial Data Infrastructure solution to store, manage,
distribute and visualize 3D geo data. Core components are the virtualcityDATABASE and its
OGC WEFS interface for accessing and editing the data, the virtualcityWAREHOUSE, a data
distribution solution running on FME technology that enables users to export 3D city model
content from the virtualcityDATABASE into various industry GIS and CAD formats, and the
web-based authoring tool virtualcityPUBLISHER for creating high-performance 3D web
maps. Based on the Open Source 3D City Database, the virtualcitySUITE allows for building
a 3D SDI platform for virtual 3D city models based on open standards and interfaces.

virtualcityPUBLISHER
a 3D maps compilation Client
CryamL PocersS0L L @
s
% .. data requests
+ . continuation
virtualcityDATABASE WFS
-V
-
’ - i data distribution
i i external
virtualcitySUITE virtualcityWAREHOUSE WMS / WFS

Figure 186: Components of the virtualcitySUITE.

Our 3D web maps offer enhanced GIS functionality beyond pure 3D visualization including
3D measurements, real-time shadows, WFS-based thematic and spatial queries, POI
integration, data exports through a virtualcity WAREHOUSE interface, and integration of
external WMS and WFS data sources as well as pointcloud data and oblique imagery. The 3D
web maps are based on the Cesium WebGL virtual globe and therefore can be displayed on
modern web browsers and mobile devices such as tablets and smartphones without the need
for additional plugins.

Figure 187: The Berlin 3D City Model consisting of more than 500,000 fully textured buildings is managed
based on our virtualcitySUITE. The Berlin Economic atlas shown above is a 3D web map application that
displays the entire city model and combines the 3D objects with business and POI information, see
http://www.businesslocationcenter.de/wab/maps/main/.

http://www.businesslocationcenter.de/wab/maps/main/

3D Geodatabase for CityGML 2018 317

Appendix D 3DCityDB @ M.O.S.S.

M.0.S.S. Computer Grafik Systeme GmbH?> is a leading provider of geo topographical data
management and processing solutions. Within the M.O.S.S. product suite novaFACTORY,
the 3D City Database is used since 2011 as the primary storage container for 3D and
CityGML based data. M.O.S.S. as an active development partner within the 3D City Database
implementation group drives on the technological progress of the 3D City Database. Within
the M.O.S.S. customer projects millions of CityGML objects are imported managed and
exported by novaFACTORY and the included 3D City Database. One example is the
nationwide database for the german LoD1 building product (LOD-DE) which is based on the
3D City Database. novaFACTORY is also used as a 3D platform within different projects
concerning renewable energy topics like building heat demand analysis or solar potential
assessment.

Legend
Heating demand
[kWhim=.a]

invalid buidings
i
Bl s0-75

75- 100

100 - 150
[150200
I 200 - 250
. > 250

Figure 188: Example of a 3D building heat demand map for the city of Ludwigsburg created with
novaFACTORY 3D within project SimStadt>!

D.1 novaFACTORY at a glance

novaFACTORY is an advanced Spatial Data Management solution for efficient geodata
cataloguing, exploitation and dissemination. With novaFACTORY we are leading the way in
the full integration of enterprise-wide geospatial data sources which the whole organization
can have access to and work from, covering all aspects of

* Data Import

* Quality Assurance

* Data Storage and Management

* Data Processing and Enrichment
* Data Dissemination

As applications for geodata have grown, so too has the need to efficiently administer them.
Many businesses, whether government departments or private companies, are faced with the
complex task of managing geospatial data. The challenge is to allow collaboration across the

30 http://www.moss.de/
31 http://simstadt.hft-stuttgart.de/

http://www.moss.de/
http://simstadt.hft-stuttgart.de/

318 3D Geodatabase for CityGML 2018

organization in a meaningful way, from a range of sources and formats located throughout
their enterprise.

novaFACTORY is the solution to this challenge. It brings geodata together and eliminates
barriers to spatial data usability by automatically uniting disparate data and combining them
into one spatial database. novaFACTORY is designed for seamlessly integrating large
geographical data sets from many different sources, e.g. topographic maps, digital surface
models, aerial photographs or 3D building models.

Within novaFACTORY the module 3D GDI is where the 3D City Database comes into the
action.

novaFACTORY 3D Pro novaFACTORY 3D GDI
L]
process- und job controlling & workflow control
o[— o] —
i
autc:}a:ci’cofgteyr;eer:tion release dissemination
t } ! l f ! !
— I — —
dat a 3D City Database disposal presen-
e P pilding outines e a4
- building models 2D & 3D GIS objects :)
digital surface model e Gk .
building footprints — CityGML / KML / VRML /
digital terrain model DXF / 3D Shape
mono & stereo
editing
automatic supply of raw idata

Figure 189: novaFACTORY 3D overview and workflow. 3D data management based on 3D City Database

D.2 novaFACTORY 3D GDI

The novaFACTORY 3D GDI module is designed for handling and serving 3D city models in
CityGML format. It enables the RDBMS based seamless storage and dissemination of 3D city
models as well as setting up web services using them. The data is kept within the 3D City
Database and can be automatically transferred into an ArcGIS® Geodatabase.

As with all novaFACTORY modules data can be disseminated via an intuitive web interface
and via any workstation, in alternatively formats, e.g. CityGML, KML/COLLADA, VRML,
3D Shape, 3D PDF and 3D DXF. Depending on which kind of format is chosen different
export parameters can be opted for showing specific object data.

Additional benefit is gained by automatically enhancing the 3D building data. The
novaFACTORY 3D GDI module offers a fully integrated solar potential analysis during the
export, targeted at the area of interest. 3D data can be visualized directly. Appropriate ArcGIS
presentation rules will be generated automatically during the export.

The novaFACTORY 3D GDI module works best in cooperation with the novaFACTORY 3D
Pro module for automatic recognition of building roofs from photogrammetric raw data. This
raw data will be supplied automatically and the 3D City Database will be updated
automatically when production data are approved.

	Disclaimer
	1 Introduction
	1.1 Main features of 3DCityDB
	1.2 System and design decisions
	1.3 List of changes between software versions
	1.3.1 Notable changes between 4.0.0 and 3.3.0

	1.4 Development history
	1.5 Acknowledgements
	2.1 Simplification compared to CityGML 2.0.0
	2.1.1 Multiplicities, cardinalities and recursions
	2.1.2 Data type adaptation
	2.1.3 Project specific classes and class attributes
	2.1.4 Simplified design of GML geometry classes
	2.2.1 Geometric-topological Model
	2.2.2 Implicit Geometry
	2.2.3 Appearance Model
	2.2.4 Thematic model
	2.2.4.1 Core Model
	2.2.4.2 Building model
	2.2.4.3 Bridge Model
	2.2.4.4 CityFurniture Model
	2.2.4.5 Digital Terrain Model
	2.2.4.6 Generic Objects and Attributes
	2.2.4.7 LandUse Model
	2.2.4.8 Transportation Model
	2.2.4.9 Tunnel Model
	2.2.4.10 Vegetation Model
	2.2.4.11 WaterBodies Model

	2.3 Relational database schema
	2.3.1 Mapping rules, schema conventions
	2.3.1.1 Mapping of classes onto tables
	2.3.1.2 Explicit declaration of class affiliation

	2.3.2 Conceptual database structure
	2.3.3 Database schema
	2.3.3.1 Metadata Model
	2.3.3.2 Core Model
	2.3.3.3 Tables for geometry representation
	2.3.3.4 Appearance Model
	2.3.3.5 Building Model
	2.3.3.6 Bridge Model
	2.3.3.7 CityFurniture Model
	2.3.3.8 Digital Terrain Model
	2.3.3.9 Generic Objects and Attributes
	2.3.3.10 LandUse Model
	2.3.3.11 Transportation Model
	2.3.3.12 Tunnel Model
	2.3.3.13 Vegetation Model
	2.3.3.14 WaterBody Model

	2.3.4 Sequences

	3 Implementation and Installation
	3.1 System requirements
	3.1.1 3D City Database
	3.1.2 Importer/Exporter Tool

	3.2 Installation of the Importer/Exporter and the 3D City Database SQL Scripts
	3.3 Setting up the database schema
	3.3.1 Shell Scripts
	3.3.2 SQL Scripts
	3.3.3 Installation steps on Oracle Databases
	3.3.4 Installation steps on PostgreSQL

	3.4 Working with multiple database schemas
	3.4.1 Create and address database schemas
	3.4.2 Read and write access to a schema
	3.4.3 Schema support in stored procedures

	3.5 Migration from previous major releases
	3.5.1 V2 to V4 Migration on Oracle
	3.5.2 V2 to V4 Migration on PostgreSQL
	3.5.3 V3 to V4 Migration

	3.6 Upgrade between minor releases

	4 Stored procedures and additional features
	4.1 User-defined data types
	4.2 CITYDB_UTIL
	4.3 CITYDB_CONSTRAINT
	4.4 CITYDB_IDX
	4.5 CITYDB_SRS
	4.6 CITYDB_STAT
	4.7 CITYDB_OBJCLASS
	4.8 CITYDB_DELETE
	4.9 CITYDB_ENVELOPE
	5.1 Running and using the Importer / Exporter
	5.2 Database connections and operations
	5.2.1 Managing and establishing database connections
	5.2.2 Executing database operations

	5.3 Importing CityGML files
	5.4 Exporting to CityGML
	5.5 Exporting to KML/COLLADA/glTF
	5.5.1 Support of GenericCityObject having any geometry types
	5.5.2 Loading exported models in Google Earth and Cesium Virtual Globe

	5.6 Preferences
	5.6.1 CityGML import preferences
	5.6.1.1 Continuation
	5.6.1.2 gml:id handling
	5.6.1.3 Bounding box
	5.6.1.4 Address
	5.6.1.5 Appearance
	5.6.1.6 Geometry
	5.6.1.8 XML validation
	5.6.1.10 Import log
	5.6.1.11 Resources

	5.6.2 CityGML export preferences
	5.6.2.1 CityGML version
	5.6.2.2 Bounding box
	5.6.2.4 Address
	5.6.2.8 Resources

	5.6.3 KML/COLLADA/glTF export preferences
	5.6.3.1 General Preferences
	5.6.3.2 Rendering Preferences
	5.6.3.3 Information Balloon Preferences
	5.6.3.4 Altitude/Terrain Preferences
	5.6.3.5 General setting recommendations

	5.6.4 Management of user-defined coordinate reference systems
	5.6.5 General preferences
	5.6.5.1 Cache
	5.6.5.2 Import and export path
	5.6.5.3 Network proxies
	5.6.5.4 Logging
	5.6.5.5 Language selection

	5.7 Map window for bounding box selections
	5.8 Using the command line interface (CLI)
	6.1 Introduction to the plugin architecture
	6.2 Spreadsheet Generator Plugin (SPSHG)
	6.2.1 Definition
	6.2.2 Plugin installation
	6.2.3 User Interface
	6.2.3.1 Main Parameters
	6.2.3.2 Columns
	6.2.3.3 Content Source
	6.2.3.4 Output

	6.3 ADE Manager Plugin
	6.3.2 Plugin installation
	6.3.3.1 ADE Registration
	6.3.3.2 ADE Transformation

	7.1 System requirements
	7.2 Installation
	7.3 Configuring the Web Feature Service
	7.3.1 Database settings
	7.3.2 Capabilities settings
	7.3.3 Feature type settings
	7.3.4 Operations settings
	7.3.5 Postprocessing settings
	7.3.6 Server settings
	7.3.7 Cache settings
	7.3.8 Constraints settings
	7.3.9 Logging settings

	7.4 Using the Web Feature Service
	7.4.1 Basic functionality
	7.4.1.1 WFS operations
	7.4.1.2 Service URL
	7.4.1.3 Service bindings
	7.4.1.4 CityGML feature types
	7.4.1.5 Exception reports

	7.4.2 GetCapabilities operation
	7.4.3 DescribeFeatureType operation
	7.4.4 ListStoredQueries operation
	7.4.5 DescribeStoredQuery operation
	7.4.6 GetFeature operation

	7.5 Web-based WFS client

	8 3DCityDB-Web-Map-Client
	8.1 System requirements
	8.2 Installation and configuration
	8.3 Using the 3D web client
	8.3.1 Overview of the relevant features and functionalities
	8.3.2 Handling KML/glTF models with online spreadsheet
	8.3.3 Handling Web Map Service data
	8.3.4 Handling Digital Terrain Models
	8.3.5 Interaction with 3D objects
	8.3.6 Mobile Support Extension
	8.3.7 Using the 3D Web Client from the 3DCityDB homepage

	9 3DCityDB Docker Images
	9.1 Getting started
	9.2 Further images

	Appendix A Changelog
	A.1 3D City Database relational schema
	A.1.1 General changes

	A.2 3D City Database scripts
	A.3 3D City Database stored procedures
	A.3.1 General changes
	A.3.2 UTIL package
	A.3.3 IDX package
	A.3.4 SRS package
	A.3.5 STAT package
	A.3.6 DELETE package
	A.3.7 DELETE_BY_LINEAGE package
	A.3.8 ENVELOPE package

	A.4 3D City Database Importer/Exporter
	A.4.1 General changes
	A.4.2 CityGML import
	A.4.3 CityGML export
	A.4.4 KML/COLLADA/glTF export

	A.5 Web Feature Service
	A.6 3D Web Map Client

	Appendix B 3DCityDB @ TU München
	B.1 Interactive Cloud-based 3D Webclient
	B.2 Research Projects in which 3DCityDB is being used
	B.3 Current and future work on 3DCityDB

	Appendix C 3DCityDB @ virtualcitySYSTEMS
	C.1 virtualcityDATABASE
	C.2 virtualcitySUITE – The 3D City Platform

	Appendix D 3DCityDB @ M.O.S.S.
	D.1 novaFACTORY at a glance
	D.2 novaFACTORY 3D GDI

