3D City Database for CityGML

Version 4.0

Documentation

2019

virtualcitySYSTEMS

‘ U
Computer Grafik Systeme
Geoinformationssysteme



2 3D Geodatabase for CityGML 2019

The images on the cover page were provided by:

- Chair of Photogrammetry and Remote Sensing & Chair of Cartography, Technische
Universitat Minchen

- Geobasisdaten: © Stadtvermessung Frankfurt am Main
- IDAC Ltd, UK.
- virtualcitySYSTEMS GmbH, Berlin, Germany

- Chair of Geoinformatics, Technische Universitat Miinchen. Image created based on
master thesis work of Matthias Korner, jointly supervised with HTW Dresden
- 3D City Model of Berlin © Berlin partner GmbH

- M.O.S.S. Computer Grafik Systeme GmbH, Taufkirchen, Germany



3D Geodatabase for CityGML 2019

Versions of software packages

This documentation covers the following versions of the 3D City Database and its tools.

Software package Version

3D City Database 4.0.1,4.0.0
Importer/Exporter and plugins 4.2.x,4.1.x,4.0.0
3DCityDB-Web-Map-Client 1.6.2

Web Feature Service 4.2x,4.1.x,4.0.0

Active participants in development

Name

Institution

Email

Thomas H. Kolbe
Son H. Nguyen
Kanishk Chaturvedi
Bruno Willenborg
Andreas Donaubauer

Chair of Geoinformatics,
Technische Universitat Miinchen

thomas.kolbe@tum.de
son.nguyen@tum.de
kanishk.chaturvedi@tum.de
b.willenborg@tum.de
andreas.donaubauer@tum.de

Claus Nagel
Zhihang Yao

virtualcitySYSTEMS GmbH, Berlin

cnagel@virtualcitysystems.de
zyao@virtualcitysystems.de

Harald Schulz
Philipp Willkomm
Gyorgy Hudra

M.0.S.S. Computer Grafik Systeme GmbH,
Taufkirchen, Germany

hschulz@moss.de
pwillkomm@moss.de
ghudra@maoss.de

Felix Kunde

Beuth University of Applied Sciences

felix-kunde@gmx.de

Participants in earlier developments

The 3D City Database Version 4.0 and its tools are based on earlier versions. During the
development phase 2006-2012 at the Institute for Geodesy and Geoinformation Science, TU

Berlin, the following individuals contributed to the development:

Name

Institution

Email

Thomas H. Kolbe
Claus Nagel
Javier Herreruela
Gerhard Konig
Alexandra Lorenz
(geb. Stadler)
Babak Naderi

Institute for Geodesy and Geoinformation
Science, Technische Universitat Berlin

Felix Kunde

University of Potsdam



mailto:thomas.kolbe@t

4 3D Geodatabase for CityGML 2019

During the development phase 2004-2006 at the Institute for Cartography and Geo-
information, University of Bonn, the following individuals contributed to the development:

Name Institution Email
Thomas H. Kolbe Institute for Cartography and Geoinformation,
Lutz Plumer University of Bonn

Gerhard Groger
Viktor Stroh

Jorg Schmittwilken
Andreas Poth lat/lon GmbH, Bonn
Ugo Taddei




3D Geodatabase for CityGML 2019 5
Table of Contents

D IS O I A 11 = PP 11

1 I O 1518 1 [ ] R 13

1.1 Main features of 3DCILYDB..........ccocoiiiiiieee s 15

1.2 System and design AECISIONS.........cceeueiieriieie e sieeie e ste e sre e sree s 20

1.3 List of changes between SOftware VErsioNS...........ccoovveerierieieesesie e see e 21

1.3.1 Notable changes between 4.0 and 3.3.........ccocoeiiiieiinicceeeee e 21

1.4 Development NISTOIY .......ccciiiii it 23

1.5  ACKNOWIEAQEMENTS ....ccvviiiieiece et et re e 24

2 DATA MODELLING AND DATABASE DESIGN .....ccoovvviiiiiiiiiiieeieeeeeeeeeeeeeee 27

2.1 Simplification compared to CityGML 2.0.0 ......cccoveviiieiieiice e 27

2.1.1 Multiplicities, cardinalities and reCUrsSIONS ..........cccoererenereseseseereerieens 27

2.1.2 Data type adaptation ..........cooeiieieieiene e 28

2.1.3 Project specific classes and class attribUtesS...........ccovvveverieeneiresinseeriene 28

2.1.4 Simplified design of GML geometry Classes ........cccoceveriienenreiienivennennns 28

2.2 UML ClasS QIaQIam .......cviiiiiiiieiiiesiieeee ettt nes 28

2.2.1 Geometric-topological MOdel............coccoviiiiiiiiiiiie e 29

2.2.2  IMPICIE GEOMELIY...c.eiiiiiiiiieiieieie et 30

2.2.3  Appearance MOEl ... 31

2.2.4 Thematic MOEl .......cccooiviiiiee e e 34

2.2.4.1 COre MO ..ot nneas 34

2.2.4.2 Building model ..........coooiiii 36

2.2.4.3 Bridge Model.........cccooiiiiiiii e 39

2.2.4.4 CityFurniture Model..........ocoeiiiiiiiieeceee e 42

2.2.4.5 Digital Terrain Model............ccoovviiiiiiie e 43

2.2.4.6 Generic Objects and Attributes ..........ccocoveieiiiie i, 45

2.2.4.7 LandUse MOl .........cooeveieiieiiii i 47

2.2.4.8 Transportation Model ... 47

2.2.4.9 Tunnel MOodel .........cvoiieiee e 49

2.2.4.10 Vegetation Model ..........cccoeiiiiiiiiiiii e 52

2.2.4.11 WaterBodiesS MOdel...........coeiieiiiiiieceec e 53

2.3 Relational database SChEMA..........cccveviiiieiiieie e 55

2.3.1 Mapping rules, schema CONVENLIONS...........ccooeiieiinieniesie e 55

2.3.1.1 Mapping of classes onto tables............cccovvrviiiieniiinicee 55

2.3.1.2 Explicit declaration of class affiliation.............c.ccccoecevvverviinnenn 55

2.3.2  Conceptual database StrUCTUIE .........ccecveeeriverieiie e 58

2.3.3  Database SChEMA........c.cccviiiiiei et 59

2.3.3.1 Metadata MOl .........oooveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 59



3D Geodatabase for CityGML 2019

2.3.3.2 COre MOGEL.......coiiiiiiiiiiee e 62

2.3.3.3 Tables for geometry representation ............ccoceeererereneeeeieennenns 64

2.3.3.4 Appearance Model ..........ccooiiiiiiiiiie 71

2.3.3.5 BUIldING MOGEL........ceiiiieiiiicet e 76

2.3.3.6 Bridge Model.........cccooiiiiiiiiee 82

2.3.3.7 CityFurniture Model..........ccoviiiiiiesieseee e 84

2.3.3.8 Digital Terrain Model..........ccccceiviiiiieieee e 85

2.3.3.9 Generic Objects and Attributes ..........ccccveveiieiieie e, 87

2.3.3.10 LandUse MOl .........ccoeieirrieiieniieseseeeee e 89

2.3.3.11 Transportation Model ... 89

2.3.3.12 Tunnel MOdel ..o 91

2.3.3.13 Vegetation Model ..........cccoiiiiiiiiiseee e 93

2.3.3.14 WaterBody MOdEl .........cocoeiiiiiiiiiiesieeeee e 94

234 SEOUEIICES ...ttt ettt ettt ettt et nb e e e be e nn e e nne e nn e e beennne e 95

2.3.5 Definition of the CRS for a 3D City Database instance.............c.ccocueuenee. 96
IMPLEMENTATION AND INSTALLATION ..cooi i, 99
3.1 SYSIEM FEOQUITEMENTS ...uiieieiieieite ettt bbbt nes 99
3.1.1 3D City DAabase. ........ccviiiiieieieiesie et 99

3.1.2  Importer/EXPOrter TOOL.......ccvviiiiieie st 99

3.2 Installation of the Importer/Exporter and the 3D City Database SQL Scripts... 100
3.3 Setting up the database SChemMa...........ccoveiieiiiie e 102
33,1 SNEII SCIIPLS .. 102

3.3.2  SQL SCIIPES. ittt bbb 103

3.3.3 Installation steps on Oracle Databases ..........ccccceeververeiiiesieseeieseeneenns 103

3.3.4 Installation steps 0n POStGreSQL.........ccccoiiriiiiiiiiese e 106

3.4 Working with multiple database SChemas ............ccooovviiiiii e, 108
3.4.1 Create and address database SChemas...........ccoceverereneneneniseseees 108

3.4.2 Read and write acCess t0 @ SCNEMA..........cccueiiiiiiiireie e 109

3.4.3 Schema support in stored ProCeduUreS .........ccccverveeerieereerie e e eee e 109

3.5 Migration from previous Major rel ases..........cccvveiveveiieieeie s 110
3.5.1 V210 V4 Migration on Oracle.........ccoceveiiiiiiiiieese e 111

3.5.2 V2to V4 Migration on PoStgreSQL........cccvuveieienenine s 113

3.5.3 V310 VA MIQration .....cc.coeiiiiiiiiiesie et 113

3.6  Upgrade between minor rel€ases .........cceivvveiieiiiieiie e 113
STORED PROCEDURES AND ADDITIONAL FEATURES..........cccccvvvvinnes 115
4.1 User-defined data tYPeS .......cuviiereiieiierie e 115
4.2 CITYDB _UTIL oottt 116
4.3 CITYDB_CONSTRAINT ....ctiiiieieieieriese sttt nees 117
A4 CITYDB _IDX.cuiiiiiiiieiie ittt sttt sttt sttt sttt st sneane e e nee e 118
4.5 CITYDB SRS ..ottt sttt bbb et st re e e 119



3D Geodatabase for CityGML 2019 7

4.6 CITYDB _STAT oottt ettt bbb bbb 120
4.7 CITYDB_OBJICLASS. ... ..ottt bbbt 120
4.8 CITYDB _DELETE.....cicoi ittt et 120
4.9 CITYDB _ENVELOPE .......co ittt 123
5 IMPORTER / EXPORTER.....ccoiii oo 125
5.1 Running and using the Importer / EXPOITEr .........ccocoiiieieiiieie e 125
5.2 Database connections and OPEratioNns ..........cccccevveervereesieeseenesieesee e eeesee e 128
5.2.1 Managing and establishing database connections ............c.ccocvvvvinvennn 128

5.2.2 Executing database OPerations...........c.covvririnieienienene e 130

5.3 Importing CItyGML fIES .......eeiiiie e e 137
5.4 EXPOrting 10 CIYGML ......ooviiiiiiiiiirieiee e 142
5.4.1  SQL QUETIES ettt bbbt 147

5.4.2 XML QUETY EXPIESSIONS. ....ccueiuiireietesiestestesieeseeseeee ettt 149
54.2.1 <typeNames> PAramMELel.......ccccoiiiiirriieiiiienie e 149

54.2.2 <propertyNames> projection clause...........cccceecvvvvrvennnne. 151

5423 <filter>selection Clause........c.coocmiiiiiiiiiiiiiiseseeien, 152

5424 <count> PArAMELEL ...ccccvviiiiee e 160

5.4.25 <10ds> PArAMELEL....c.eiiiiiiieiie et 161

5.4.2.6 <appearance> PArAMELEr .......cccoviiiiiiiieiiiee e 162

5.4.2.7 <tiling> PArAMELEr....cccciiiiiiiiiieiiiie s 163

5.4.2.8 targetSrid attribute ..........ccccoveviiiiiieee e 164

5.4.2.9 Using address information and 3DCityDB metadata in queries 164

5.4.2.10 Using XML queries in batch proCcesses..........ccoceevvevviveevivennenne. 166

5.5 Exporting to KML/COLLADA/GITF ......cviiiee e 167
5.5.1 Support of GenericCityObject having any geometry types..........cccc.e.... 174

5.5.2 Loading exported models in Google Earth and Cesium Virtual Globe... 175

T T o =1 {=T =] oL SRS 178
5.6.1 CityGML iImpOrt PreferenCes ........cooevereiiniiieieicese e 179
5.6.1.1 CONLINUALION ....ovviieiiiiieie e 179

56.1.2 gml:id handling....ccccooiieiiiiiniiiiiiiieieeese e 180

5.6.1.3  AUAIESS ..ottt 181

5.6.1.4 APPEAIANCE ... .oeiiiiieeeiiiieeiiee ettt e sttt e sre et 183

5.6.1.5 GEOMELIY ...t 183

5.6.1.6  INUEBXES....eeeueeiieeieerieeteeiieeiese e e eee e ste e sreeae e e ae e sreeneennes 185

5.6.1.7 XML VaAlIdAtioN ......ccveiieiieiieiicie e 186

5.6.1.8 XSL Transformation..........ccccoccveveiieeneiinsiese s 187

5.6.1.9 IMPOMt10g . .ccivviiiiiiie et 188

5.6.1.10 RESOUICTES. ....c.uviiuiieiiieeiee st ettt ettt 189

5.6.2 CityGML export preferenCes. ........oocoveeeiieiiiiie e 192

5.6.2.1 CityGML VEISION ....ooovviiiiiciie e 192



3D Geodatabase for CityGML 2019

5.6.2.2 TiliNg OPLIONS ...c.vveviiiiieiecie e 192

5.6.2.3 CityODJECIGIOUP ...cvviveiiieiieieiiesie sttt 193

5.6.2.4  AUAIESS ....ocviiieieiieie et 194

5.6.2.5 APPEATANCE ..ottt s 195

5.6.2.6  XLINKS ..c.viiiieiiieiiieie e 196

5.6.2.7 XSL Transformation.........ccoceveiiiinieniiniieneniese s 197

0.6.2.8 RESOUICTES. ....cuviiiieiieiaiee st eiee et 198

5.6.3 KML/COLLADA/QITF export preferences.......ccovvereienenesesinieennenns 199
5.6.3.1 General PreferenCesS.......cccovvivieieiiiieiieieiese et 199

5.6.3.2 Rendering PreferenCes........ccooviiiiniiieiieieiese e 204

5.6.3.3 Information Balloon Preferences.........ccccooevviieneeienin e, 213

5.6.3.4 Altitude/Terrain Preferences ........cccevvvveieenenieseene e 220

5.6.3.5 General setting recommendations .............ccoecvviereeresienieeneennns 225

5.6.4 Management of user-defined coordinate reference systems.................... 227

5.6.5 General PreferenCeS ... s 229
5.6.5.1 CACNE ..cviiiiiiece st 229

5.6.5.2 Import and export Path ..........ccccceeieeieiie i 230

5.6.5.3 NEtWOIK PrOXIES ....veivveieiiieiireiieetieseesieseeseeste e e sae e sre e 230

5.6.5.4 APLKEYS ..ooviiiiiiiesteee et 231

5.6.5.5 LOGGING ..vriiiiiiiiiiiiieiieieie ettt 232

5.6.5.6 Language SeIeCtiON ..........cccoiveiiiiiiiiiieieee e 234

5.7 Map window for bounding box SEIECtIONS...........cccvevvevieiieiiec e, 235
5.8 Using the command line interface (CLI).......cccccoveiieii e, 238
IMPORTER / EXPORTER PLUGINS. ..ot 241
6.1 Introduction to the plugin architeCture .............coceiiriiiiiiice e 241
6.2 Spreadsheet Generator Plugin (SPSHG) .......ccccoiiiiiiiiiiicee e 242
6.2.1  DEFINILION.....cciiiiiie et 242
6.2.2  Plugin inStallation .............ccooviiiiiiiiee e 242
6.2.3  USEI INTEITACE ..oveeeeie e 243
6.2.3.1 Main Parameters.......cccccveueriereeieieeneeieseeseeseesee e see e enee e 243

6.2.3.2  COIUMNS.....oiiiiiiiciece e 244

6.2.3.3 CONLENT SOUICE ...t 249

6.2.3.4  OULPUL....eoviiiiieiie sttt 249

6.3 ADE Manager PIUGIN .......ccoiiiiiiiiiiieeeiee et 256
6.3.1  DEFINIION.....cciiiiiic e 256
6.3.2  Plugin inStallation ............ccooiiiiiiii e 256
6.3.3  USEI INEITACE ...eeeie e 258
6.3.3.1 ADE REQISration .........cccuveviieiiiieiie i esie et 258

6.3.3.2 ADE Transformation...........ccocceeeieeneiin e 261

6.3.4 Workflow of extending the Import/EXport Tool .........ccccccevveiviiniinennenn 264

WEB FEATURE SERVICE ...t 271



3D Geodatabase for CityGML 2019 9

7.1 SYStEM FEQUITEMENTS .. .cuviiiieiieeie e e e eie et e ste e este e e re e e e e sseesraesaeeneesreeneeans 271
7.2 INSTAIIALION. ..ot 272
7.3 Configuring the Web Feature SErVICE ........ccoovveiiiiniiieieeese e 274
7.3.1  Database SELLINGS .....coevieiieieiie et 274

7.3.2  Capabilities SEIINGS ......cccviiriiieieie e 277

7.3.3  Feature type SEIINGS .....cccviiiiiieiiie e 278

7.3.4  OPErations SELHINGS ....cccivririiieieiie et 279

7.3.5 POStProCeSSiNg SEIINGS ....ccvieirieiiiiiesie et 280

7.3.6  SEIVEL SELHINGS. ..c.eiiiteitiitiiti ettt 281

7.3.77  CaCNE SELHINGS ....vveivieieeiecieee et 282

7.3.8  CONSLAINTS SEIINGS.....eivieitieieiiie ettt nee e 282

7.3.9  LOQQING SELLINGS ..ovveieirieiieeie e sie ettt sne e 283

7.4 Using the Web Feature SErVICE .......cccuiiiiiiiiiie e 284
7.4.1 Basic FUNCtIONANITY ........ccoiiiiiicice e 284
7411 WFES OPEIatiONS .....ccuviiiiiieieieieesie st 284

T7.4.1.2 ServiCe URL ....cccooiiiiiieiie st 285

7.4.1.3 Service DINAINGS .....ccoovvieieieieeeee e 286

7.4.1.4 CityGML TEALUIE tYPES....cveieiiiriirierieriieie e 286

7.4.1.5 EXCEPLION FEPOIS....ccvveiicieiir et 287

7.4.2 GetCapabilitieS OPeration ... 287

7.4.3 DescribeFeatureTYPe OPeration.........cccccvviiririeeiierienesieseseseseseeeeseens 288

7.4.4 ListStoredQUErieS OPEratioN .........cocvvveivereienieieieriese e, 290

7.4.5 DescribeStoredQUEry OPeration ...........ccoceoererierieeienesesee e, 291

7.4.6 GetFeature OPEratioN ..........cccoeiieiiie e 293

7.5 Web-based WS CHENL..........ccooi it 295
8  3DCITYDB-WEB-MAP-CLIENT ..ccoiiiii i 297
8.1  SYSEM FEQUITEMENTS ....c.eiivieieieieeiiesiee e eeesiee e esee e sreeeesreesteeneeereesraesneeneesreeneeans 298
8.2 Installation and CONfIQUIAtION.........cccuiiiiiiiiie e 298
8.3 Using the 3D WED ClIENt ......coooiiieceee e 300
8.3.1 Overview of the relevant features and functionalities..............cc.cccovenee. 300

8.3.2 Handling KML/gITF models with online spreadsheet ..............cccccvene..e. 305

8.3.3 Handling Web Map Service data...........cccccevverrriinineiesieneee e 312

8.3.4 Handling Digital Terrain Models ..o 314

8.3.5 Interaction With 3D ODJECES.........ccoviiiiiiiiiee e 316

8.3.6  Mobile SUPPOrt EXIENSION .......ccviiiiiiiieiieieeese s 322

8.3.7 Using the 3D Web Client from the 3DCityDB homepage ............cc....... 324

9  3DCITYDB DOCKER IMAGES. ... 325
0.1 GettiNg STAMEA ... ..ot 325
0.2 FUINEE IMAGES ..ottt bbbttt bbb 326

10 REFERENCES....... e 327



10 3D Geodatabase for CityGML 2019

APPENDIX A CHANGELOG. ..., 331
A.1 3D City Database relational SChema ............ccccovoveiiiiiniiicie e 331
A.LL GeNneral CRANQES. ......ccviiieieeie ettt sre s 331

A2 3D City DAtabase SCIIPLS ........eieriiiiriieieieeiesiesi sttt 331

A.3 3D City Database Stored ProCeUIES .........cccorerierererieieerie e 332
A.3.1 General ChaNQES.......coviiieiiee e e 332

A3.2 UTIL PACKAGE ....ceeviiiitiiiieieee e 332

A3.3 IDX PACKAGE ... ettt 332

A.3.4 SRS PACKAGE .....ccveieeii ettt 332

A.35 STAT PACKAGE ....vveveeieiieiie ettt naeanaesre s 332

A.3.6 DELETE PACKAGE ... .cviiieriieieitieiteeiestesteeseesteeste e snee e sae e e sae e nnees 332

A.3.7 DELETE_BY_LINEAGE pPackage ........c.cceorivrrimreiieiinenesesesesesienens 333

A.3.8 ENVELOPE PaCKAGE ....ccuvivieiiiiiieiieie s 333

A.4 3D City Database Importer/EXPOItEr.........cccvivveiveieeiieieeie e 333
A4 L1 General ChanQeS.......c.coiiieiice e 333

A4.2 CityGML IMPOI.....ci i 333

A.4.3 CityGIML EXPOIt ....cvieiiiiiecieeie et 334

A.44 KML/COLLADA/GITE EXPOIt...cccciiiiiiiiieiiieieeieieenie et 334

AL WED FEALUIE SEIVICE ...ovveiiiieiieitieieseeee ettt 334

A6 3D Web Map CHENL.......coeeee e 335
APPENDIXB  3DCITYDB @ TU MUNCHEN........ccociiiiieeeieeee e 337
B.1 Interactive Cloud-based 3D WebClent ...........cccocooiiiiiiiniiiec e, 337

B.2 Research Projects in which 3DCityDB is being USed ...........cccocveveivieieeneciennnn, 338

B.3 Current and future work on 3DCItyDB...........ccccoveviiiieiiece e 338
APPENDIX C 3DCITYDB @ VIRTUALCITYSYSTEMS .....ccoovvvvvveiiieeeeeeeeeeeee 339
C.1 VIrtUaICItyDATABASE .........coiiece sttt 339

C.2 virtualcitySUITE — The 3D City Platform.........ccccceiveviiieieeece e, 340
APPENDIX D  3DCITYDB @ M.O.S.S. oottt 341
D.1 novaFACTORY @t @ glanCe .........cccooiiiiiiiiieie e 341

D.2 NOVAFACTORY 3D GDI.....ooiiiiiiiieieee e 342



3D Geodatabase for CityGML 2019 11

Disclaimer

The 3D City Database (3DCityDB) version 4.0 has been developed in collaboration of the
Chair of Geoinformatics, Technische Universitat Minchen (TUMGI), virtualcitySYSTEMS
GmbH, and M.0O.S.S. Computer Grafik System GmbH. 3DCityDB is free and Open Software
licensed under the Apache License, Version 2.0. See the file LICENSE file shipped together
with the software for more details. You may obtain a copy of the license at
http://www.apache.org/licenses/LICENSE-2.0.

Please note that releases of the software before version 3.3.0 continue to be licensed under
GNU LGPL 3.0. To request a previous release of the 3D City Database under Apache License
2.0 create a GitHub issue at https://github.com/3dcitydb.

THE SOFTWARE IS PROVIDED BY TUMGI "AS IS" AND "WITH ALL FAULTS."
TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE QUALITY, SAFETY OR SUITABILITY OF THE SOFTWARE,
EITHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH,
ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR
MATERIALS CONCERNING THE SOFTWARE THAT IS CONTAINED ON AND
WITHIN ANY OF THE WEBSITES OWNED AND OPERATED BY TUMGI.

IN NO EVENT WILL TUMGI BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND
EVEN IF TUMGI HAVE BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.


http://www.apache.org/licenses/LICENSE-2.0
https://github.com/3dcitydb

12

3D Geodatabase for CityGML 2019




3D Geodatabase for CityGML 2019 13

1 Introduction

Virtual 3D city and landscape models are provided for an increasing number of cities, regions,
states, and even countries. They are created and maintained by public authorities like national
and state mapping agencies as well as by cadastre institutions and private companies. The 3D
topography of urban and rural areas is essential for both visual exploration and a range of
different analyses in, for example, the urban planning, environmental, energy, transportation,
and facility management sectors.

3D city models are nowadays used as an integrative information backbone representing the
relevant urban entities along with their spatial, semantic, and visual properties. They are often
created and maintained with full coverage of entire cities and even countries, i.e. all real
world objects of a specific type like buildings, roads, trees, water bodies, and the terrain are
explicitly represented. In most cases the 3D city model objects have well-defined identifiers,
which are kept stable during the lifetime of the real world objects and their virtual
counterparts. Such complete 3D models are a good basis to organize different types of data
and sensors within Smart City projects as they build a stable platform for information linking
and enrichment.

In order to establish a common understanding and interpretation of the urban objects and to
achieve interoperable access and exchange of complete 3D models including the geometric,
topologic, visual, and semantic data, the Open Geospatial Consortium (OGC) has issued the
CityGML standard [Kolbe 2009]. CityGML defines a feature catalogue and data model for
the most relevant 3D topographic elements like buildings, bridges, tunnels, roads, railways,
vegetation, water bodies, etc. The data model is mapped to an XML-based exchange format
using OGC’s Geography Markup Language (GML).

The 3D City Database (3DCityDB) is a free Open Source package consisting of a database
schema and a set of software tools to import, manage, analyse, visualize, and export virtual
3D city models according to the CityGML standard. The database schema results from a
mapping of the object oriented data model of CityGML 2.0 to the relational structure of a
spatially-enhanced relational database management system (SRDBMS). The 3DCityDB
supports the commercial SRDBMS Oracle (with ‘Spatial’ or ‘Locator’ license options) and
the Open Source SRDBMS PostGIS (which is an extension to the free RDBMS PostgreSQL).
3DCityDB makes use of the specific representation and processing capabilities of the
SRDBMS regarding the spatial data elements. It can handle also very large models in multiple
levels of details consisting of millions of 3D objects with hundreds of millions of geometries
and texture images.

3DCityDB is in use in real life production systems in many places around the world and is
also being used in a number of research projects. For example, the cities of Berlin, Potsdam,
Munich, Frankfurt, Zurich, Rotterdam, Singapore all keep and manage their virtual 3D city
models within an instance of 3DCityDB. The companies virtualcitySYSTEMS (VCS) and
M.O.S.S., who are also partners in development, use 3DCityDB at the core of their
commercial products and services to create, maintain, visualize, transform, and export virtual



14 3D Geodatabase for CityGML 2019

3D city models (see Appendix B, Appendix C, and Appendix D for examples how and where
TUM, virtualcitySYSTEMS, and M.O.S.S. employ 3DCityDB in their projects). Furthermore,
the state mapping agencies of all 16 states in Germany store and manage the state-wide
collected 3D building models in CityGML LOD1 and LOD2 using 3DCityDB. In 2012 the
previous version of 3DCityDB and the developer team received the Oracle Spatial Excellence
Award, issued by Oracle USA.

Since 3DCityDB is based on CityGML, interoperable data access from user applications to
the database can be achieved in at least two ways:

1) by using the included high-performance CityGML Import/Export tool or the included
basic Web Feature Service 2.0 in order to exchange the data in CityGML format
(Version 2.0 or 1.0), and

2) by directly accessing the database tables whose relational structures are fully
explained in detail within this document. It is easy to enrich a 3D city model by
adding information to the database tables in some user application (using e.g. the
database APIs of programming language like C++, Java, Python, or of ETL tools like
the Feature Manipulation Engine from Safe Software). The enriched dataset then can
be exchanged or archived by exporting the city model to CityGML without
information loss. Analogously, 3DCityDB can be used to import a CityGML dataset
and then access and work with the city model by directly accessing the database tables
from some application programs or ETL software.

The Import/Export tool also provides functionalities for the direct export of 3D visualization
models in KML, COLLADA, and gITF formats. A tiling strategy is supported which allows
to visualize even very large 3D city and landscape models in geoinformation systems (GIS) or
digital virtual globes like Google Earth or CesiumJS Virtual Globe. The Import/Export tool
comes with an API to create further importers, exporters, and database administration tools.
One export plugin coming with the software installer package is the so-called ‘Spreadsheet
Generator Plugin’ (SPSHG) which allows to export thematic data of 3D objects into tables in
CSV and Microsoft Excel format that can be easily uploaded to and published as online
spreadsheets, for instance, within the Google Cloud. Starting from release 3.3.0, the
3DCityDB software package comes with the CesiumJS-based 3D viewer called “3DCityDB-
Web-Map-Client” which can link the 3D visualization models with online spreadsheets and
facilitates interactive visualization and exploration of 3D city models over the Internet within
web browsers on desktop and mobile computers. The most significant new functionality in
release 4.0.0 is the support of CityGML Application Domain Extensions (ADEs). ADEs
extend the CityGML datamodel by domain specific object types, attributes, and relations.

This document describes the design and the components of the 3D City Database as well as
their usage for the new major release 4.0.0 which has been developed and implemented by the
three partners in development, namely the Chair of Geoinformatics at Technische Universitat
Munchen, virtualcitySYSTEMS, and M.O.S.S. The development is continuing the previous
work carried out at the Institute for Geodesy und Geoinformation Science (IGG) of the Berlin
University of Technology and the Institute for Cartography and Geoinformation (IKG) of the
University of Bonn.



3D Geodatabase for CityGML 2019 15

This document has been completely reworked, integrated, extended, and edited from the
previous 3DCityDB documentations (version 3.3.0, version 2.0.1, and the documentation
addendum on 3DCityDB version 2.1.0 and the Importer/Exporter tool version 1.6.0). Some
figures and texts are cited from the OpenGIS City Geography Markup Language (CityGML)
Encoding Standard, Version 2.0.0 [Groger et al. 2012].

1.1 Main features of 3DCityDB

Many (but not all) of the features referring to object modelling and representation are implied
by following the CityGML standard 2.0.0 issued by the Open Geospatial Consortium.

e CityGML 2.0.0 and 1.0.0 compliant database: The implementation defines the
classes and relations for the most relevant topographic objects in cities and regional
models with respect to their geometrical, topological, semantical, and appearance
properties. Included are generalization hierarchies between thematic classes,
aggregations, relations between objects, and spatial properties. These thematic
information go beyond graphic exchange formats and allow to employ virtual 3D city
models for sophisticated analysis tasks in different application domains.

¢ Implementation on the basis of a spatially-enhanced relational database manage-
ment system (Oracle 10G R2 or higher with Spatial/Locator option; PostgreSQL
9.1 or higher with PostGIS extension 2.0 or higher): For the representation of all
vector and grid geometry the built-in data types provided by the SRDBMS are used
exclusively. This way, special solutions are avoided and different geoinformation
systems, CAD/BIM systems, and ETL software systems can directly access (read and
write) the geometry objects stored in the SRDBMS.

e Support for CityGML Application Domain Extensions (ADEs): Semantic 3D city
models are employed for many different applications from diverse domains like
energetic, environmental, driving, and traffic simulations, as-built building infor-
mation modeling (as-built BIM), asset management, and urban information fusion. In
order to store and exchange application specific data aligned and integrated with the
3D city objects, the CityGML datamodel can be extended by new feature types,
attributes, and relations using the CityGML ADE mechanism. ADEs are specified as
(partial) GML application schemas using the modeling language XML Schema.
Starting from release 4.0.0 the 3DCityDB database schema can be dynamically
extended by arbitrary ADEs like the Energy ADE, UtilityNetwork ADE, Dynamizer
ADE, or national CityGML extensions like IMGeo3D (from The Netherlands). Since
ADEs can define an arbitrary number of new elements with all types and numbers of
spatial properties, a transformation method has been developed to automatically derive
the relational database schemas for arbitrary ADEs from the ADE XML schema files.
Since we intended to follow similar rules in the mapping of the object-oriented ADE
models onto relational models as we used for the (manual) mapping of the CityGML
datamodel onto the 3DCityDB core schema, the Chair of Geoinformatics at TUM
developed a new transformation method based on graph transformation systems. This



16

3D Geodatabase for CityGML 2019

method is described in detail in [Yao & Kolbe 2017] and is implemented within the
“ADE Manager” plugin for the Importer/Exporter software tool. It performs a
sophisticated analysis of the XML schema files of an ADE, the automatic derivation
of additional relational table structures, and the registration of the ADE within the
3DCityDB. Furthermore, SQL scripts are generated for each ADE for e.g. the deletion
of ADE objects and attributes from the database. Please note that in order to support
also the import and export of CityGML datasets with ADE contents, a Java library for
the specific ADE has to be implemented. This library has to perform the handling of
the CityGML ADE XML elements and the reading from and writing into the
respective ADE database tables using JDBC and SQL. An example how to develop
such a Java library is given for a Test ADE in the 3DCityDB github repository?.

Tool for importing and exporting CityGML data: The included Importer/Exporter
software tool allows for high performance importing and exporting of CityGML
datasets according to CityGML versions 2.0 and 1.0. The tool allows processing of
very large datasets (>> 4 GB), even if they include XLinks between CityGML features
or XLinks to 3D GML geometry objects. The multi-threaded programming exploits
multiprocessor systems or multikernel CPUs to speed up the processing of complex
XML-structures, resulting in high performance database access. Objects can be
filtered during import or export according to spatial regions (bounding box), their
object IDs, feature types, names, and levels of detail. Bounding boxes can be
interactively selected using a map window based on OpenStreetMap (OSM). A tiling
strategy is implemented in order to support the export of very large datasets. In case of
a very high number of texture images they can be automatically distributed in a
configurable number of subdirectories in order to avoid large directories with millions
of files which can render a Microsoft Windows operating systems unresponsive. The
Importer can also validate CityGML files and can be configured to only import valid
features. It considers CityGML ADE contents, if the ADESs have been registered in the
database and specific Java libraries for reading/writing the ADE contents from/into the
ADE database tables is provided (see above). The Importer/Exporter tool can be run in
interactive or batch mode.

Tool for exporting visualization models in KML, COLLADA, and gITF formats:
This tool exports city models from the 3D city database in KML, COLLADA, and
gITF formats which can directly be viewed and interactively explored in
geoinformation systems (GIS) or digital virtual globes like Google Earth or Cesium
WebGL Virtual Globe. A tiling strategy is supported where only tiles in the vicinity of
the viewer’s location are being loaded facilitating the visualization of even very large
3D city and landscape models. Information balloons for all objects can be configured
by the user. The exported models are especially suited to be visualized using the
3DCityDB-Web-Map-Client (see below), an Open Source 3D web viewer that is
based on the CesiumJS Webglobe framework with many functional extensions.

1 https://github.com/3dcitydb/extension-test-ade



https://github.com/3dcitydb/extension-test-ade

3D Geodatabase for CityGML 2019 17

Tool for exporting data to spreadsheets: The ‘Spreadsheet Generator’ (SPSHG)
allows exporting thematic data of 3D objects into tables in CSV and Microsoft Excel
format which can be uploaded to a Google Spreadsheet within the Google Document
Cloud. For every selected geoobject one row is being exported where the first column
always contains the GMLID value of the respective object. The further columns can
be selected by the user. This tool can be used to export attribute data from e.g.
buildings like the class, function, usage, roof type, address, and further generic
attributes that may contain information like the building energy demand, potential
solar energy gain, noise level on the facades etc. The spreadsheet rows can be linked
to the visualization model generated by the KML/COLLADA/QITF Exporter. This is
illustrated in Appendix B.

Tool for 3D visualization and interactive exploration of 3D models on the web:
The ‘3DCityDB-Web-Map-Client’ is a WebGL-based 3D web viewer which extends
the Cesium Virtual Globe to support efficient displaying, caching, prefetching,
dynamic loading and unloading of arbitrarily large pre-styled 3D visualization models
in the form of tiled KML/gITF datasets generated by the KML/COLLADA/gITF
Exporter. It provides an intuitive user interface to facilitate rich interaction with 3D
visualization models by means of the enhanced functionalities like highlighting the
objects of interests on mouseover and mouseclick as well as hiding, showing, and
shadowing them. Moreover, the 3DCityDB-Web-Map-Client is able to link the 3D
visualization model with an online spreadsheet (Google Fusion Table) in the Google
Cloud and allows viewing and querying the thematic data of every city object
according to its GMLID. For details see also [Chaturvedi et al. 2015, Yao et al. 2016].

Web Feature Service (WFS) 2.0: The 3DCityDB comes with an OGC compliant
implementation of a basic WFS 2.0 allowing web-based access to the 3D city objects
stored in the database. WFS clients can directly connect to this interface and retrieve
3D content for a wide variety of purposes. The implementation currently satisfies the
Simple WFS conformance class. The WFS considers CityGML ADE contents, if the
ADEs have been registered in the database and specific Java libraries for reading/
writing the ADE contents from/into the ADE database tables is provided (see above).
An implementation of a full, transactional WFS is commercially available from one of
the development partners, see Appendix C.

Support of different kinds of multi-representations: Levels of detail, different
appearances, (and with Oracle RDBMS only) planning versions and history:
Every geoobject as well as the DTM can be represented in five different resolution or
fidelity steps (Levels of Detail, LOD). With increasing LOD, objects do not only
obtain a more precise and finer geometry, but do also gain a thematic refinement.

Different appearance data may be stored for each city object. Appearance relates to
any surface-based theme, e.g. infrared radiation or noise pollution, not just visual
properties. Consequently, data provided by appearances can be used as input for both
presentation and analysis of virtual 3D city models. The database supports feature



18

3D Geodatabase for CityGML 2019

appearances for an arbitrary number of themes per city model. Each LOD of a feature
can have individual appearances. Appearances can represent — among others — textures
and georeferenced textures. All texture images can be stored in the database.

The version and history management employs Oracle’s Workspace Manager and,
hence, is only available for 3DCityDB instances running on an Oracle RDBMS. It is
largely transparent to application programs that work with the database. Procedures
saved within the database (Stored Procedures) are provided, which allow for the
management of planning alternatives and versions via application programs.

Complex digital terrain models: DTMs may be represented in four different ways in
CityGML and therefore also in the 3D city database: regular grids, triangular irregular
networks (TINs), 3D mass points and 3D break lines. For every level of detail, a
complex DTM consisting of any number of DTM components and DTM types can be
defined. Besides, it is possible to combine certain kinds of DTM representations for
the same geographic area with each other (e.g. mass points and break lines or grids
and break lines). In Oracle Spatial (but not Locator) Grid-based DTMs may be of
arbitrary size and are composed from separate tiles to a single overall grid using the
Oracle GeoRaster functionality. Please note that the Import/Export tool provides
functions to read and write TIN, mass point, and break line DTM components, but not
for raster based DTMs. GeoRaster data would have to be imported and exported using
other tools from e.g. Oracle, ESRI, or Safe Software.

Complex city object modelling: The representation of city objects in the 3D city
database ranges from coarse models to geometrically and semantically fine grained
structures. The underlying data model is a complete realization of the CityGML data
model for the levels of detail (LOD) 0 to 4. For example, buildings can be represented
by simple, monolithic objects or can consist of an aggregation of building parts.
Extensions of buildings, like balconies and stairs, can be classified thematically and
provided with attributes just as single surfaces can be. LOD4 completes a LOD3
model by adding interior structures for 3D objects. For example, LOD4 buildings are
composed of rooms, interior doors, stairs, and furniture. This allows among other
things to select the floor space of a building, so that it can later be used e.g. to derive
SmartBuildings or to form 3D solids by extrusion [Déllner et al. 2005]. Buildings can
be assigned addresses that are also stored in the 3D city database. Their implemen-
tation refers to the OASIS xAL Standard, which maps the address formats of the
different countries into a unified XML schema. In order to model whole complexes of
buildings, single buildings can be aggregated to form special building groups. The
same complex modelling applies to the other CityGML feature types like bridges,
tunnels, transportation and vegetation objects, and water bodies.

Representation of generic and prototypical 3D objects: Generic objects enable the
storage of 3D geoobjects that are not explicitly modelled in CityGML yet, for example
dams or city walls, or that are available in a proprietary file format only. This way,
files from other software systems like architecture or computer graphics programs can



3D Geodatabase for CityGML 2019 19

be imported directly into the database (without interpretation). However, application
systems that would like to use these data must be able to interpret the corresponding
file formats after retrieving them back from the 3D geodatabase.

Prototypical objects are used for memory-efficient management of objects that occur
frequently in the city model and that do not differ with respect to geometry and
appearance. Examples are elements of street furniture like lanterns, road signs or
benches as well as vegetation objects like shrubs, certain tree types etc. Every instance
of a prototypical object is represented by a reference to the prototype, a base point and
a transformation matrix for scaling, rotating and translating the prototype.

The geometries (and appearances like textures, colors etc.) of generic objects as well
as prototypes can be stored either using the geometry datatype of the spatial database
management system (Oracle Spatial/Locator or PostGIS) or in proprietary file formats.
In the latter case a single file may be saved for every object, but the file type (MIME
type), the coordinate transformation matrix that is needed to integrate the object into
the world coordinate reference system (CRS) and the target CRS have to be specified.

e [Extendable object attribution: All objects in the 3D geodatabase can be augmented
with an arbitrary number of additional generic attributes. This way, it is possible to
add further thematic information as well as further spatial properties to the objects at
any time. In combination with the concept of generic 3D objects this provides a highly
flexible storage option for object types which are not explicitly defined in the
CityGML standard. Every generic attribute consists of a triple of attribute name, data
type, and value. Supported data types are: string; integer and floating-point numbers;
date; time; binary object (BLOB, e.g. for storing a file); geometry object according to
the specific geometry data type of Oracle or PostGIS respectively; simple, composite,
or aggregate 3D solids or surfaces. Please note that generic attributes of type BLOB or
geometry are not allowed as generic attributes in CityGML (and will, thus, not be
exported by the CityGML exporter). However, it may be useful to store binary data
associated with the individual city objects, for example, to store derived 3D computer
graphics representations.

e Free, also recursive grouping of geoobjects: Geoobjects can be grouped arbitrarily.
The aggregates can be named and may also be provided with an arbitrary number of
generic attributes (see above). Object groups may also contain object groups, which
leads to nested aggregations of arbitrary depth. In addition, for every object of an
aggregation, its role in the group can be specified explicitly (qualified association).

e External references for all geoobjects: All geoobjects can be provided with an
arbitrary number of references to corresponding objects in external data sources (i.e.
hyperlinks / linked data). For example, in case of building objects this allows to store
e.g. the IDs of the corresponding objects in official cadasters, digital landscape models
(DLM), or Building Information Models (BIM). Each reference consists of an URI to
the external data store or database and the corresponding object ID or URI within that
external data store or database.



20 3D Geodatabase for CityGML 2019

e Flexible 3D geometries: The geometry of most 3D objects can be represented through
the combination of solids and surfaces as well as any - also recursive - aggregation of
these elements. Each surface may has attached different textures and colors on both its
front and back face. It may also comprise information on transparency. Additional
geometry types (any geometry type supported by the spatial database management
system Oracle Spatial/Locator or PostGIS) can be added to the geoobjects by using
generic attributes.

e Open Source and Platform Independence: The entire software is freely accessible
to the interested public. The 3DCityDB is licensed under the Apache License, Version
2.0, which allows including 3DCityDB in commercial systems. You may obtain a
copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0. Both
the Importer/Exporter tool and the Web Feature Service are implemented in Java and
can be run on different platforms and operating systems.

e Docker support: We now provide Docker images for 1) a complete 3DCityDB
installation pre-installed within a PostGIS SRDBMS, 2) a webserver with an installed
3DCityDB-Web-Map-Client, 3) a 3DCityDB WFS. We also provide a Docker-
compose script to launch all three Docker containers in a linked way with just a single
command. Details are given in Section 9 and in the respective github repositories?.
Docker is a runtime environment for virtualization. Docker encapsulates individual
software applications in so-called containers, which are — in contrast to virtual
machines — light-weight and can be deployed, started and stopped very quickly and
easily. Using our Docker images a 3DCityDB can be installed by a single command.

1.2 System and design decisions

The 3D City Database is implemented as a relational database schema using the spatial
datatypes provided by a spatially-enhanced relational database management system
(SRDBMS). Above, external software applications and database stored procedures are
provided working on this database schema. Since only Oracle with the Spatial or Locator
licensing option (10G R2 or higher) and PostgreSQL (9.3 or higher) with PostGIS extension
(2.0 or higher) offer comprehensive support for 3D spatial data, the 3D City Database schema
is being provided for these two systems only.

In addition to the general advantages arising from the usage of a widely used relational
database management system (RDBMS), both Oracle Spatial/Locator and PostgreSQL/
PostGIS offer some important performance characteristics that allow an efficient implemen-
tation of the required functionalities:

e Both RDBMS support spatial data types with coordinates ranging from 2D to 4D.
Spatial indexes and filters can be 2D or 3D allowing for efficient spatial selections in
very large city models. Furthermore, the spatial data types are supported by a number

2 https://github.com/tum-gis



https://github.com/tum-gis

3D Geodatabase for CityGML 2019 21

of commercial and Open Source GIS that provide a database connection as for
example ESRI’s ArcGIS/ArcSDE or Safe Software’s Feature Manipulation Engine
(FME). This enables such systems to directly access the data stored in the 3D
geodatabase.

e Rules can be implemented using stored procedures and trigger mechanisms which
propagate updates of objects to likewise affected objects in the database (transparent
for the user).

The data model of the 3D City Database is based on the CityGML 2.0 standard. The object-
oriented data model of CityGML has been mapped to a purely relational data model with the
exception that geometry objects are mapped to the spatial datatypes provided by the SDBMS.
In order to achieve high performance for data manipulations and queries the mapping was
done manually with a number of optimizations. A few simplifying assumptions where made
regarding the usage of the CityGML concepts in the real world helping to increase
performance. These are documented in chapter 2.1.

Surface-based geometries like Polygons, TINs, MultiSurfaces as well as Solids are stored in a
special way: they are decomposed into their primitive surfaces and each surface is stored as an
individual tuple in one big surface table. The reason for this is that each surface can be
assigned multiple appearances (e.g. textures) in CityGML and, thus, each appearance must be
explicitly linkable to the corresponding surface. For Solids also the solid geometry objects are
stored in addition to their decomposed boundary surfaces allowing to apply spatial operations
on them like the computation of the volume.

The provided software tools like the Importer/Exporter application are implemented in the
Java language in order to be platform independent. The tools have been confirmed to run
under Microsoft Windows, Linux, and Apple Mac OS X. High performance is achieved by
exploiting multi-threading on multiprocessor or multi-core CPU systems.

1.3 List of changes between software versions

1.3.1 Notable changes between 4.0 and 3.3
New features and functionalities:

e Importer/Exporter 4.2: Reworked Plugin API to support non-GUI plugins.

e Importer/Exporter 4.2: Property projections can now also be defined for abstract
feature types.

e Importer/Exporter 4.1: Added support for using SQL and XML queries for CityGML
exports to be able express more flexible and complex filter conditions

e Importer/Exporter 4.1: Added support for importing CityGML data from (G)ZIP files
and exporting CityGML content to (G)ZIP files

e Importer/Exporter 4.1: OSM Nominatim is now used as default geocoder for the map
window. Google Map API services can still be used for the map window and for
KML/COLLADA exports but require an API key.



22

3D Geodatabase for CityGML 2019

Management and storage of arbitrary CityGML ADEs with the 3DCityDB, the
Importer/Exporter ADE Manager Plugin and the 3DCityDB WFS

New 3DCityDB Docker images to support continuous integration workflows

New metadata tables ADE, SCHEMA, SCHEMA REFERENCING and
SCHEMA TO OBJECTCLASS for registering CityGML ADEs

New prefilled metadata table AGGREGATION INFO that supports the automatic
generation of DELETE and ENVELOPE scripts

New function to create entries in USER _SDO GEOM METADATA View (Oracle)
Function objectclass id to table name now has a counterpart:
table name to objectclass ids returning an array of objectclass ids
(CITYDB OBJCLASS package in Oracle, part of a data schema in PostgreSQL)

New database procedures to enable/disable foreign key constraints to speed up bulk
write operations (CITYDB CONSTRAINT package in Oracle, part of the
citydb pkg schema in PostgreSQL)

New SQL script to create additional data schemas in one database (PostgreSQL)

New shell and SQL scripts to grant read-only or full read-write access to another
schema.

Importer/Exporter can connect to different database schemas with the same user
Enabling XSL transformations on CityGML imports and exports as well as WFS
responses

New database operation panel to change the spatial reference system used in the
database (incl. optional coordinate transformation)

New LoD filter for CityGML exports

3DCityDB WEFS allows for exporting into the CityJSON format

Improved and updated features and functionalities:

Moved interactive prompts from SQL to batch/shell scripts for better setup automation
Added OBJECTCLASS ID column to all feature tables to distinguish objects from
CityGML ADEs. Also extended OBJECTCLASS table by more feature-specific
details and inserted new entries for feature properties such as geometry, generic
attributes etc.

Improved performance on stored procedures by reducing amount of dynamic SQL.
Therefore, schema_name parameter has been removed from DELETE and ENVELOPE
scripts. Under PostgreSQL these scripts (as well as the INDEX TABLE) are now part
of a data schema such as citydb.

DELETE and ENVELOPE are now generated automatically in order to deal with
schema changes introduced by ADEs. Therefore, the function prefix has been
shortened to del and env_ not hit the character limit under Oracle,

The CITYDB DELETE BY LINEAGE package has been removed. The only
function left is del cityobjects by lineage which is now part of the
DELETE package

Database migration scripts for version 2.1.0 or version 3.3.0 to version 4.0.0



3D Geodatabase for CityGML 2019 23

o Switching from Ant to Gradle as the new build system for the Importer/Exporter tools

o Allow import of CityGML files with flat hierarchies between city objects

e Added support for importing gml:MultiGeometry objects containing only polygons

e Added support for exporting to gITF v2.0

e 3DCityDB WFS now supports CORS and provides a KVVP over HTTP GET endpoint
for every operation simplifying the integration with GIS and ETL software such as
FME

1.4 Development history

The development of the 3D City Database was always closely related to the development of
the CityGML standard [Kolbe & Groger 2003]. It was started back in 2003 by Dr. Kolbe and
Prof. Plimer at the Institute for Cartography and Geoinformation at University of Bonn. In
the period from November 2003 to December 2005 the official virtual 3D city model of
Berlin, commissioned by The Berlin Senate and Berlin Partner GmbH, was developed within
a pilot project funded by the European Union [Plimer et al. 2005, Berlin 3D]. Since then, the
model has been playing a central role in the three-dimensional spatial data infrastructure of
Berlin and opened up a multitude of applications for the public and private sector alike. As an
example the virtual city model is successfully used for presentation of the business location,
its urban development combined with application related information to politicians, investors,
and the public in order to support civic participation, provide access to decision-making
content, assist in policy-formulation, and control implementation processes [Ddllner et al.
2006]. 3DCityDB was key in demonstrating the real world usage of CityGML to the Open
Geospatial Consortium on the one hand, and the practical usability and versatility of
CityGML to the city of Berlin on the other hand. This first development phase was carried out
by University of Bonn in collaboration with the company lat/lon GmbH. Oracle Spatial was
the only supported SDBMS in that phase and the next (3DCityDB Versions 0.2 up to 1.3).

Within the framework Europdische Fonds fiir regionale Entwicklung (EFRE II) the project
Geodatenmanagement in der Berliner Verwaltung — Amtliches 3D-Stadtmodell fiir Berlin
allowed for upgrading the official 3D city model based on the former CityGML specification
draft 0.4.0 in the year 2007. The developments were carried out by the Institute for Geodesy
und Geoinformation Science (IGG) of the Berlin University of Technology (where Kolbe
became full professor for Geoinformation Science in 2006) on behalf of the Berliner
Senatsverwaltung fur Wirtschaft, Arbeit und Frauen and the Berlin Partner GmbH (former
Wirtschaftsforderung Berlin International). The relational database model (3DCityDB
versions 1.4 up to 1.8) was implemented and evaluated in cooperation with 3DGeo GmbH
(later bought by Autodesk GmbH) in Potsdam. A special database interface for LandXPlorer
was provided by 3DGeo / Autodesk. Later on, a first version of the Java based CityGML
Importer/Exporter was developed [Stadler et al. 2009].

In August 2008, CityGML 1.0.0 became an adopted standard of the Open Geospatial
Consortium (OGC). In the follow-up project Digitaler Gestaltplan Potsdam starting in 2010
the 3DCityDB version 2 was developed which brought support for all CityGML 1.0.0 feature
types. The KML/COLLADA exporter was added as well as a ‘Matching’ plugin. This project



24 3D Geodatabase for CityGML 2019

was carried out by IGG of TU Berlin on behalf of and in collaboration with the company
virtualcitySYSTEMS (VCS) in Berlin. In 2012 the developer team at TU Berlin received the
Oracle Spatial Excellence Award for Education and Research from Oracle USA for our work
on 3DCityDB. Also in 2012 3DCityDB was ported to PostgreSQL/PostGIS by Felix Kunde, a
master student from the University of Potsdam, who did his master thesis in collaboration
with IGG [Kunde 2013].

In August 2012, CityGML 2.0.0 became an adopted standard of the Open Geospatial Consor-
tium (OGC). In September 2012, Prof. Kolbe moved from IGG, TU Berlin to the Chair of
Geoinformatics at Technische Universitdét Minchen (TUM). The companies virtualcity-
SYSTEMS GmbH in Berlin and M.O.S.S. Computer Grafik Systeme GmbH in Taufkirchen
(near Munich) have also been using the 3D City Database in their commercial projects for a
number of years. In this context, the Chair of Geoinformatics at TUM and the companies
virtualcitySYSTEMS and M.O.S.S. signed an official collaboration agreement on the joint
further development of 3DCityDB and its tools. The work on the new major release version
3.0.0 began in 2013 when Dr. Nagel finished his PhD and joined the company VCS. In
Version 3.3.0 the new 3D web client was being added. The webclient was developed by
Zhihang Yao with contributions from Kanishk Chaturvedi and Son Nguyen. In 2015 Zhihang
Yao and Kanishk Chaturvedi were awarded the first price in the '‘Best Students Contribution'
of the 'Web3D city modeling competition' under the annual ACM SIGGRAPH Web3D
Conference for the 3DCityDB-Web-Map-Client.

The work on version 4.0.0 — especially the support of CityGML ADEs — began in 2015 in the
course of the PhD work of Zhihang Yao. One part of his PhD thesis is focusing on the model
transformation of CityGML ADEs onto spatial relational databases using pattern matching
and graph transformation rules. Support of CityGML ADEs in the Importer/Exporter required
a substantial rewriting of the citygml4j Java library, the Importer/Exporter and WFS source
code performed by Dr. Nagel starting from 2016. Felix Kunde worked, among others, on
performance improvements and restructuring of the PL/(pg)SQL scripts. Son Nguyen added
support for mobile devices in the 3DCityDB-Web-Map-Client in 2017. Docker support was
added by Bruno Willenborg in 2018. Starting from 2017 all partners worked on updating
diverse functionalities, scripts, documentation, and on testing.

1.5 Acknowledgements

The 3D City Database project team is grateful and appreciative for the financial assistance
and support we received from partners that contributed to the development of version 4.0 and
the work on the ADE support.

Government Technology Agency of Singapore

The Government Technology Agency of Singapore (GovTech Singapore) has been
developing a 3D city standard for Singapore based on CityGML, to establish a common 3D
representation of the city-state. GovTech wanted to extend the representation to include other
city features through the ADE approach, and had worked with virtualcitySYSTEMS GmbH to
start the development of the ADE support on 3DCityDB. The intent is to open source the



3D Geodatabase for CityGML 2019 25

3DCityDB ADE support to the international community, so as to encourage wider adoption
and implementation of the CityGML standard and ADEs.

CADFEM International GmbH

Founded in 1985, CADFEM is one of the pioneers of numerical simulation based on the
Finite Element Method and one of the largest European suppliers of Computer-Aided
Engineering. Through the Leonard Obermeyer Center of the Technical University Munich,
CADFEM supports the research on digital methods for the design, creation and maintenance
of the built environment and the work on the 3D City Database. Bridging the gap between
simulation systems and 3D GIS / BIM is a key requirement for enabling multi-physics Urban
Simulations and for building Digital Twins of the urban space. The CityGML ADE
mechanism supports this in two ways: 1) city features can be enriched with data that is
relevant for simulations, and 2) simulation results can be brought back into the city model,
turning it into a dynamic knowledge base. CADFEM is supporting the 3D City Database
project to leverage the adoption and usage of CityGML ADEs in the field of Urban
Simulations.

Climate-KIC of the EIT

Climate-KIC is a so-called ‘Knowledge and Innovation Community’ about Climate Change
and Mitigation. It is one of three Knowledge and Innovation Communities (KICs) created in
2010 by the European Institute of Innovation and Technology (EIT). The EIT is an EU body
whose mission is to create sustainable growth. Most 3DCityDB developments at TU Munich
were done in the context of the projects Energy Atlas Berlin, Modeling City Systems (MCS),
Smart Sustainable Districts (SSD), and Smart District Data Infrastructure (SDDI), all
financially supported by Climate-KIC.



26

3D Geodatabase for CityGML 2019




3D Geodatabase for CityGML 2019 27

2 Data Modelling and Database Design

In this section the slightly simplified data model with respect to CityGML is described at the
conceptual level using UML class diagrams. These diagrams form the basis for the
implementation-dependent realization of the model with a relational database system which is
presented in section 2.3. However, UML diagrams may also form the basis for other
implementations e.g. for the definition of an exchange format based on XML or GML. The
UML diagrams of the 3D city model are depicted in section 2.2.

2.1 Simplification compared to CityGML 2.0.0

CityGML is a common information model for 3D urban objects and provides a
comprehensive and extensible representation of the objects. It is explained in detail in the
CityGML specification [Groger et al. 2008, Groger et al. 2012] and [Kolbe 2009]. An analysis
of the previous versions of the 3D City Database indicated that for the data collected and
processed a less complex schema is sufficient. Using a simplified schema usually allows
improving system performance. Therefore, the first task was related to database design
aspects with respect to adjusting the comprehensive CityGML features. As result a simplified
database schema was generated, allowing an optimized workflow and guaranteeing efficient
processing time. The related UML-diagrams were discussed and coordinated with the project
partners and translated into the relational schema. Based on this work the SQL scripts for
setting up the Oracle and PostgreSQL database schema were generated. Please note, that all
test CityGML datasets (versions 1.0.0 and 2.0.0) from the CityGML homepage (and others)
can be stored and managed without restrictions with this simplified database schema.

2.1.1 Multiplicities, cardinalities and recursions
Simplifications with respect to the CityGML specification were made as follows:

e Multiplicities of attributes
Attributes with a variable amount of occurrences (*) are substituted by a data type
enabling the storage of arbitrary values (e.g. data type String with a predefined
separator) or by an array with a predefined amount of elements representing the
number of objects that participate in the association. This means that object attributes
can be stored in a single column.

e Cardinalities and types of relationships
n:m relations require an additional table in the database. This table consists of the
primary keys of both elements’ tables which form a composite primary key. If the
relation can be restricted to a 1:n or n:1 relationship the additional table can be
avoided. Therefore, all n:m relations in CityGML were checked for a more restrictive
definition. This results in simplified cardinalities and relations.

e Simplified treatment of recursions
Some recursive relations are used in the CityGML data model. Recursive database
queries may cause high cost, especially if the amount of recursive steps is unknown. In
order to guarantee good performance, implementation of recursive associations
receive two additional columns which contain the ID of the parent and of the root



28 3D Geodatabase for CityGML 2019

element. For example, if all building parts related to a specific building are queried,
only those tuples containing the 1D of the building as root element have to be selected.
Thus, typical queries concerning object geometry remain high-performance.

2.1.2 Data type adaptation

Data types specified in CityGML were substituted by data types which allow an effective
representation in the database. Strings for example are used to represent code types and
number vectors; GML geometry types were changed to the database geometry data type.
Matrices are stored each one as String data type, with values listed in a row-major sequence
separated by spaces.

2.1.3 Project specific classes and class attributes

The 3D city database may contain some classes for representation of project specific
metadata, version control and attributes for representation of additional project specific
information. Since this information is represented in the CityGML specification differently or
even not at all, appropriate classes and class attributes are added or respectively adopted.

2.1.4 Simplified design of GML geometry classes

Spatial properties of features are represented by objects of GML3’s geometry model based on
the ISO 19107 standard ‘Spatial Schema’ [Herring 2001], representing 3D geometry
according to the well-known Boundary Representation (B-Rep, cf. [Foley et al. 1995]).
Actually only a subset of the GML3 geometry package is used. Moreover, for 2D and 3D
surface-based geometry types a simpler but equally powerful model is used: These geometries
are stored as polygons, which are aggregated to MultiSurfaces, CompositeSurfaces,
TriangulatedSurfaces, Solids, MultiSolids, as well as CompositeSolids.

2.2 UML class diagram

The following pages cite several parts of the CityGML specification [Groger et al., 2012]
which are necessary for a better understanding. Main focus is put on explaining the
customization and the differences to the CityGML standard.

Design decisions in the model are explicitly visualised within the UML diagrams. Following
models are presented in detail:

e Geometric-topological model
e Appearance model
e Thematic Model

o CityGML Core
Building model
Bridge model
City furniture
Digital Terrain Model
Generic objects and attributes
Land use
Transportation objects

O O O O 0O O O



3D Geodatabase for CityGML 2019 29

o Tunnel model
o Water bodies
o Vegetation objects

For intuitive understanding, classes which will be merged to a single table in the relational
schema, are shown as orange blocks in the UML diagrams. n:m relations, which only can be
represented by additional tables, are represented as green blocks.

2.2.1 Geometric-topological Model

The geometry model of CityGML consists of primitives, which may be combined to form
complexes, composite geometries or aggregates. A zero-dimensional object is modelled as a
Point, a one-dimensional as a _Curve. A curve is restricted to be a straight line, thus only the
GML3 class LineString is used.

Combined geometries can be aggregates, complexes or composites of primitives (see
illustration in figure 1). In an Aggregate, the spatial relationship between components is not
restricted. They may be disjoint, overlapping, touching, or disconnected. GML3 provides a
special aggregate for each dimension, a MultiPoint, a MultiCurve, a MultiSurface or a
MultiSolid. In contrast to aggregates, a Complex is topologically structured: its parts must be
disjoint, must not overlap and are allowed to touch, at most, at their boundaries or share parts
of their boundaries. A Composite is a special complex provided by GML3. It can only contain
elements of the same dimension. Its elements must be disjoint as well, but they must be
topologically connected along their boundaries. A Composite can be a CompositeSolid, a
CompositeSurface, or CompositeCurve.

MultiSurface GeometricComplex CompositeSurface

Figure 1: Different types of aggregated geometries [Groger et al., 2012]

The modelling of two-dimensional and three-dimensional geometry types is handled in a
simplified way. All surface-based geometries are stored as polygons, which are aggregated to
MultiSurfaces, CompositeSurfaces, TriangulatedSurfaces, Solids, MultiSolids, as well as
CompositeSolids accordingly. This simplification substitutes the more complex representation
used for those GML geometry classes in grey blocks in Figure 2. Mapping the UML diagram
to the relational schema now requires only one table (SURFACE GEOMETRY), which is
explained in chapter 2.3.3.3.



30 3D Geodatabase for CityGML 2019

<<Geometry>>
gmi::_Geometry

<<Geometry>>
gml::_GeometricPrimitive
interior 0" <G ==
<<Geometry>> <<Geometry>> eometry:
gml::_Solid gmi::_Surface . R eomety2s gmi:Point
solidMember exterior 1 = gmi::_Curve +position : gml::DirectPosition [1]
1 surfaceMember 17 0.2 baseSurface curveMember
) 0.1] | 0.1 %
<<Geometry>> <<Geometry=> <<Geometry>> <<Geometry>>
gml::CompositeSolid gml::Solid gml::GompositeGurve gml::LineString
| ‘ 1 +paosition : gml::DirectPosition [2..%]
<<Geomelry>> <<Geometry>> <<Geometry>> <<Geometry>>
mi::Compositesurface mii.surface mi:iFol on mi::Urnental urface
gml::CompositeSurf: gmi::Surf gml::Polyg gml::OrientableS urf;
ﬁ}‘ : +orientation : gml::SignType [0..1]
| 1.7 paichies exterior |
<<Geometry>> <<Geometry>> <<Geometry>>
gml::TriangulatedSurface 1 gml::_SurfacePatch - gml::_Ring
intenor *
trianglePatches
lﬁ exterior 4
<<Geometry>> . .
gml:TIN <<Geometry>> <<Geometry>> exterior 74
+stopLines : gml:LineStringSegment [0..7] gml::Triangle gml::Rectangle
+breakLines : gml::LineStringSegment [0..7] <<Geometry>>

+maxLength : gml::LengthType [1] gml::LinearRing

+controlPoint : gml::posList [1]

+position : gml::DirectPosition [4..%]

gml geometry classes containend in the gray box above a simplified to following structure:

<<Geomelry>>
_BRepGeometry
+isXLink : boolean [1]
bRepMember |+sReverse : boolean [1]
. |-isSolid : boolean [1]
+isComposite : boolean [1]
+isTriangulated : boolean [1]

0.1 | 4)
<<Geometry>>
<<Geometry>> Polygon
BRepAggregate +geometry : SDO_GEOMETRY [1]

The whole generalisation relation is realised in the database as one table named SURFACE_GEOMETRY

Figure 2: Geometrical-topographical model.
For simplification the geometry classes in the grey block are substituted by the construct in the orange block

In order to implement topology, CityGML uses the XML concept of XLinks provided by
GML. Each geometry object that should be shared by different geometric aggregates or
different thematic features is assigned a unique identifier, which may be referenced by a GML
geometry property using a href attribute. The XLink topology is simple and flexible and
nearly as powerful as the explicit GML3 topology model. However, a disadvantage of the
XLink topology is that navigation between topologically connected objects can only be
performed in one direction (from an aggregate to its components), not (immediately)
bidirectional, as it is the case for GML’s built-in topology.

2.2.2 Implicit Geometry
The concept of implicit geometries is an enhancement of the GML3 geometry model.

An implicit geometry is a geometric object, where the shape is stored only once as a
prototypical geometry, for example a tree or other vegetation objects, a traffic light or traffic
sign. This prototypic geometry object is re-used or referenced many times, wherever the



3D Geodatabase for CityGML 2019 31

corresponding feature occurs in the 3D city model. Each occurrence is represented by a link to
the prototypic shape geometry (in a local Cartesian coordinate system), by a transformation
matrix that is multiplied with each 3D coordinate of the prototype, and by an anchor point
denoting the base point of the object in the world coordinate reference system. The concept of
implicit geometries is similar to the well-known concept of primitive instancing used for the
representation of scene graphs in the field of computer graphics [Foley et al. 1995].

=<Object=> referencePoint

<<Geometry>>
ImplicitGeometry

] gml::Point <<PrimitiveType>>
+mimeType : gmi::CodeType TransformationMatrix4x4Type
-l.ransfonnatlonMatrlx : TransformationMatrix4x4Type o +gml::doubleList[16]

+libraryObject : xs::anyURI - = <<Geometry>>

gmi::_Geometry

relativeGMLGeometry

Figure 3: Implicit Geometry model

Implicit geometries may be applied to features from different thematic fields in order to
geometrically represent the features within a specific level of detail (LOD). Thus, each
CityGML thematic extension module (like Building, Bridge, and Tunnel etc.) may define
spatial properties providing implicit geometries for its thematic classes.

The shape of an implicit geometry can be represented in an external file with a proprietary
format, e.g. a VRML file, a DXF file, or a 3D Studio MAX file. The reference to the implicit
geometry can be specified by an URI pointing to a local or remote file, or even to an
appropriate web service. Alternatively, a GML3 geometry object can define the shape. This
has the advantage that it can be stored or exchanged inline within the CityGML dataset.
Typically, the shape of the geometry is defined in a local coordinate system where the origin
lies within or near to the object’s extent. If the shape is referenced by an URI, also the MIME
type of the denoted object has to be specified (e.g. “model/vrml” for VRML models or
“model/x3d+xml” for X3D models).

The implicit representation of 3D object geometry has some advantages compared to the
explicit modelling, which represents the objects using absolute world coordinates. It is more
space-efficient, and thus more extensive scenes can be stored or handled by a system. The
visualization is accelerated since 3D graphics hardware supports the scene graph concept.
Furthermore, the usage of different shape versions of objects is facilitated, e.g. different
seasons, since only the library objects have to be exchanged.

2.2.3 Appearance Model

Information about a surface’s appearance, i.e. observable properties of the surface, is
considered an integral part of virtual 3D city models in addition to semantics and geometry.
Appearance relates to any surface-based theme, e.g. infrared radiation or noise pollution, not
just visual properties and can be represented by — among others — textures and georeferenced
textures. Appearances are supported for an arbitrary number of themes per city model. Each
LoD of a feature can have individual appearances. Each city object or city model respectively
may store its own appearance data. Therefore, the base CityGML classes _CityObject and
CityModel contain a relation appearance and appearanceMember respectively.



32 3D Geodatabase for CityGML 2019

<<Fealure>>
gmi.:_Feature

<<Feature>>
gmi::_FeatureCollection
=<<Fealure>> =<Fealure>>
core::CityModel core::_CityObject

<<Feature>>
appearanceMember Appearance appearance
+theme : xs::string [0..1]

<<Feature>>
SurfaceData surfaceDatalMember
+isFront : xs::boolean [0.1] = true 7
<<Feature>> <<Feature>>
X3DMaterial _Texture
—_———————————— -~ — — — — — — — ———— —— — — = ~
+ambientintensity : core::doubleBetweenland1 [0..1] | |+imageURI : xs::anyURI [1] This part will be stored 1
+diffuseColor : Color [0..1] +mimeType : gml::CodeType [0.1] I::> ] ] ]
in a single table
+emissiveColor : Color [0..1] +textureType : Texture TypeType [0..1] 9 |
T L R L L L -
+specularColor : Coler [0..1] +wrapMode : WrapMoede Type [0..1]
+shininess : core::doubleBetweenOand1 (0..1] +borderColor : ColorPlusO pacity [0..1]
+iransparency : core::doubleBetweenOand1 [0..1]
+isSmooth : xs::boolean [0.1] ‘ﬁ'&
+target : xs::anyURI[D..*]
<<Featura>> =<Feature>>
ParameterizedTexture GeoreferencedTexture

+preferWerldFile : xs:boolean [0.1] = true
+orientation : core: TransformationMatrix2x2Type [0..1]

<<Object=> +target : xs::anyURI[0.*]
_ _ | TextureA iation
+uri : xs::anyURI [1]
target . referencePoint <<Geomelry>>
ml::Point
<<Object>> 0.1 9
_ TextureParameterization
<<Object>> <<Dbject>>
TexCoordGen TexCoordList

+worldTeTexture : core:TransformationMatrix3x4Type [1] | |+exture Coordinates : gml::deubleList [1..*]
+ring @ xszanyURl [1..Y]

Figure 4: Appearance model

Themes are represented by an identifier only. The appearance of a city model for a given
theme is defined by a set of objects of class Appearance, referencing this theme through the
attribute theme. All appearance objects belonging to the same theme compose a virtual group.
An Appearance object collects surface data relevant for a specific theme through the relation
surfaceDataMember. Surface data is represented by objects of the abstract class
_SurfaceData. Its only attribute is the Boolean flag isFront, which determines the side (front
and back face of the surface) a surface data object applies to.

A constant surface property is modelled as material. A surface property, which depends on the
location within the surface, is modelled as texture. Each surface object can have both a
material and a texture per theme and side. This allows for providing both a constant
approximation and a complex measurement of a surface’s property simultaneously. If a
surface object is to receive multiple textures or materials, each texture or material requires a
separate theme. The mixing of themes or their usage is not explicitly defined but left to the
application.



3D Geodatabase for CityGML 2019 33

Materials define light reflection properties being constant for a whole surface object. The
definition of the class X3DMaterial is adopted from the X3D and COLLADA specification
(cf. X3D, COLLADA specification):

o diffuseColor defines the colour of diffusely reflected light.
e specularColor defines the colour of a directed reflection.
e emissiveColor is the colour of light generated by the surface.

All colours use RGB values with red, green, and blue chanels, each defined as value between
0 and 1. Transparency is stored separately using the transparency element where 0 stands for
fully opaque and 1 for fully transparent. ambientIntensity specifies the minimum percentage
of diffuseColor that is visible regardless of light sources. shininess controls the sharpness of
the specular highlight. 0 produces a soft glow while 1 results in a sharp highlight. isSmooth
gives a hint for normal interpolation. If this Boolean flag is set to true, vertex normals should
be used for shading (Gouraud shading). Otherwise, normals should be constant for a surface
patch (flat shading). Target surfaces are specified using target elements. Each element
contains the URI of one target surface geometry object.

The base class for textures is _AbstractTexture. Here, textures are always raster-based 2D
textures. The raster image is specified by imageURI using a URI and may contain an arbitrary
image data resource, even a preformatted request for a web service. The image data format
can be defined using standard MIME types in the mimeType element. Textures can be
qualified by the attribute textureType, differentiating between textures, which are specific for
a certain object (specific) and prototypic textures being typical for that object surface
(typical). Textures may also be classified as unknown. The specification of texture wrapping
is adopted from the COLLADA standard. Possible values of the attribute wrapMode are none,
wrap, mirror, clamp and border.

_AbstractTexture is further specialised according to the texture parameterisation, i.e. the
mapping function from a location on the surface to a location in the texture image. Texture
parameterisation uses the notion of texture space, where the texture image always occupies of
the region [0,1]? regardless of the actual image size or aspect ratio. The lower left image
corner is located at the origin. To receive textures, the mapping function must be known for
each surface object.

The class GeoreferencedTexture describes a texture that uses a planimetric projection. Such a
texture has a unique mapping function which is usually provided with the image file (e.g.
georeferenced TIFF) or as a separate ESRI world file. The search order for an external
georeference is determined by the Boolean flag preferWorldFile. Alternatively, inline
specification of a georeference similar to a world file is possible. This internal georeference
specification always takes precedence over any external georeference. referencePoint defines
the location of the centre of the upper left image pixel in world space and corresponds to
values 5 and 6 in an ESRI world file. Since GeoreferencedTexture uses a planimetric
projection, referencePoint is two-dimensional and the orientation defines the rotation and
scaling of the image in form of a 2x2 matrix (a list of 4 doubles in row-major order
corresponding to values 1, 3, 2, and 4 in an ESRI world file). The CRS of this transformation
is identical to the referencePoint’s CRS. If neither an internal nor an external georeference is



34 3D Geodatabase for CityGML 2019

given, the GeoreferencedTexture is invalid. Target surfaces are specified using target
elements. Each element contains the URI of one target surface geometry object. All target
surface objects share the mapping function defined by the georeference.

The class ParameterizedTexture describes a texture with a target-dependent mapping
function. Each target surface geometry object is specified as URI in the uri attribute of a
separate target element. The mapping is defined by associated classes of
_TextureParameterization:

e TexCoordList for the concept of texture coordinates, defining an explicit mapping of a
surface’s boundary points to points in texture space, and

e TexCoordGen when using a common 3x4 transformation matrix from world space to
texture space, specified by the attribute worldToTexture.

2.2.4 Thematic model

The thematic model consists of the class definitions for the most important types of objects
within virtual 3D city models. Most thematic classes are (transitively) derived from the basic
classes Feature and FeatureCollection, the basic notions defined in 1ISO 19109 and GML3 for
the representation of features and their aggregations. Features contain spatial as well as non-
spatial attributes, which are mapped to GML3 feature properties with corresponding data
types. Geometric properties are represented as associations to the geometry classes described
in chapter 2.2.1 The thematic model also comprises different types of interrelationships
between Feature classes like aggregations, generalizations, and associations.

The aim of the explicit modelling is to reach a high degree of semantic interoperability
between different applications. By specifying the thematic concepts and their semantics along
with their mapping to UML and GML3, different applications can rely on a well-defined set
of Feature types, attributes, and data types with a standardised meaning or interpretation. In
order to allow also for the exchange of objects and/or attributes that are not explicitly
modelled in CityGML, the concepts of GenericCityObjects and GenericAttributes have been
introduced.

2.2.4.1 Core Model

The base class of all thematic classes within CityGML’s data model is the abstract class
_CityObject. _CityObject provides a creation and a termination date for the management of
histories of features as well as generic attributes and external references to corresponding
objects in other data sets. _CityObject is a subclass of the GML class Feature, thus it may
inherit multiple names from Feature, which may be optionally qualified by a codeSpace. This
enables the differentiation between, for example, an official name from a popular name or
names in different languages (c.f. the name property of GML objects, Cox et al., 2004). The
generalisation property generalizesTo of _CityObject may be used to relate features, which
represent the same real-world object in different LoD, i.e. a feature and its generalized
counterpart(s). The direction of this relation is from the feature to the corresponding
generalised feature.



3D Geodatabase for CityGML 2019 35

Features of _CityObject and its specialized subclasses may be aggregated to a CityModel,
which is a feature collection with optional metadata. Generally, each feature has the attributes
class, function, and usage, unless it is stated otherwise. The class attribute can occur only
once, while the attributes usage and function can be used multiple times. The class attribute
describes the classification of the objects, e.g. road, track, railway, or square. The attribute
function contains the purpose of the object, like national highway or county road, while the
attribute usage defines whether an object is e.g. navigable or usable for pedestrians. The
attributes class, function and usage are specified as gml:CodeType. The values of these
properties can be enumerated in code lists. Furthermore, for each feature the geographical
extent can be defined using the Envelope element. Minimum and maximum coordinate values
have to be assigned to opposite corners of the feature’s bounding box.

<<Geometry>>
gmi::Evelope

0..1 2 envelope
1

<<Feature>>
gml::_Feature

+name : gml:CodeType [0.."] <<Feature>>
City ObjectGroup
A +class : gml::CodeType [0..1] + geomet <<Geometry>>
J = Hunction : gml::CodeType [0..*] 0.1 gml:: _Geometry
+usage : gml::CodeType [0.."]
<<Feature>>

gmi::_FeatureCollection

?

<<Feature>>
CitvMode!
Y

,,,,,,,, Role
+role : xsz:string [1]

parent
0.1 groupMember
= 0.4

<<Feature>>

CityObject ¢1 <<DataType>>
+creationDate : xs::date [0..1] extemnalReference ExternalReference
*eminationDate : xs-date [..1] +informationSystem : xs::anyURI [0..1]
cityObjectMember | +relativeToTerrain : RelativeToTemainType [0..1]
+relativeToWater : RelativeToWaterType [0..1] generalizesTo 1
L |
externalObject 1
I <<Union>>
<<Fealure>> <<Feature>> <<Fealure>> <<Feature>> <<Fealure>> ExternalObjectReference
dem:: ReliefFeature luse::LandUse veg::_VegetationObject fn::CityFurniture wir::_WaterObject +name : xs:string [1]
+uri : xs:anyURI [1]
<<Feature>> <<Feature>> <<Feature>>
gen::GenericCityObject _Site tran::_TransportationObjcet
[ [ ]
<<Feature>> <<Feature>> <<Feature>>
bidg::_AbstractBuilding tun::_AbstractTunnel brdg::_AbstractBridge

Figure 5: Core Model and thematic top level classes

The subclasses of _CityObject comprise the different thematic fields of a city model, in the
following covered by separate thematic models: building model (_AbstractBuilding), tunnel
model (_AbstractTunnel), bridge model (_AbstractBridge), city furniture model
(CiyFurniture), digital terrain model (ReliefFeature), land use model (LandUse),
transportation model (TransportationObject), vegetation model (_VegetationObject), water
bodies model (WaterObject) and generic city object model (GenericCityObject). The latter
one allows for the modelling of features, which are not explicitly covered by one of the other
models. The separation into these models strongly correlates with CityGML’s extension
modules, each defining a respective part of a virtual 3D city model.



36 3D Geodatabase for CityGML 2019

3D objects are often derived from or have relations to objects in other databases or data sets.
For example, a 3D building model may have been constructed from a two-dimensional
footprint in a cadastre data set. The reference of a 3D object to its corresponding object in an
external data set is essential, if an update must be propagated or if additional data is required
(like the name and address of a building’s owner in a cadastral information system). In order
to supply such information, each _CityObject may have External References to corresponding
objects in external data sets. Such a reference denotes the external information system and the
unique identifier of the object in this system.

CityObjectGroups aggregate CityObjects and furthermore are defined as special CityObjects.
This implies that a group may become a member of another group realizing a recursive
aggregation schema. Since CityObjectGroup is a feature, it has the optional attributes class,
function and usage. The class attribute allows a group classification with respect to the stated
function and may occur only once. The function attribute is intended to express the main
purpose of a group, possibly to which thematic area it belongs (e.g. site, building,
transportation, architecture, unknown etc.). The attribute usage can be used, if the object’s
usage differs from its function. The attributes class, function and usage are specified as
gml:CodeType. The values of these properties can be enumerated in code lists.

Each member of a group may be qualified by a role name, reflecting the role each CityObject
plays in the context of the group. Furthermore, a CityObjectGroup can optionally be assigned
an arbitrary geometry object. This may be used to represent a generalised geometry generated
from the member’s geometries. The parent association linking a CityObjectGroup to a
CityObject allows for the modelling of generic hierarchical groupings. This concept is used,
for example, to represent storeys in buildings. See Figure 5 for the simplified UML diagram.

2.2.4.2 Building model

Buildings can be represented in five levels of detail (LoDO to LoD4). The building model
allows the representation of simple buildings that consist of only one component, as well as
the representation of complex relations between parts of a building, e.g. a building consisting
of three parts — a main house, a garage and an extension. The parts can again consist of parts
etc. The subclasses Building and BuildingPart of _AbstractBuilding enable these modelling
options.

LU T hmn N ‘
LN TN

LN B D
R K

LLalLerRslet

Building with two
building parts
(represented as
one Building
feature and one
included Build-
ingPart feature)

Building consist-
ing of one part
(represented as
one Building
feature)

Figure 6: Example of buildings consisting of one and two building parts [Groger et al., 2008]



3D Geodatabase for CityGML 2019

In the case of a simple, one-piece house there is only one Building which inherits all attributes
and relations from _AbstractBuilding (cf. Fehler! Verweisquelle konnte nicht gefunden
werden.). However, such a Building can also comprise BuildingParts which likewise inherit
all properties from _AbstractBuilding: the building’s class, function (e.g. residential, public,
or industry), usage, year of construction, year of demolition, roof type, measured height, and
the number and individual heights of all its storeys above and below ground (cf. Figure 7).

<<F
core::_CityObjfect

0.1
lod3ImplicitRepresentation
IoddlmzlicﬂRczrcScnt:ltion

jod4imolicitReoresentation 0..1 -_;
0.1

<<Object=>
core::implicitGeometry

0.1
lod2IimplicitRepresentation

lod3ImplicitRepresentation

<<F
core::_Site

lod4implicitRepresentation lod4imolicitRecresentation
0.1
loddGeometry | 0.1 lod2Geometry 5 FC‘IQTU re==
<<Geometry==> Bulldi
gmi::_ y lod3Geometry *|+class : gml:CodeType [0..1] a
0.1 lod4Geometry « [#function : gml::CodeType [0..%] <>
+usage : gml:CodeType [0..°]
* /houterBuidinglnstallation
<<Feature>> <>
interiorBuildi llation
+class : gmi:CodeType [0..1] -
« |+function : gmi::CodeType [0.%] <>
. gml:CodeType [0..]
tusage - om Typa [0.7] <<Feature>>
_AbstractBullding
roominstallation * +class : gml:CodeType [0..1]
+function : gmi: CodeType [0..7] |
+usage ;| gml:CodeType [0..%]
+yearOfConstruction : xs:.gYear [0.1]
. <<Faature>> +yearOfDemcolition : xs::gYear [0..1]
= BuildingFurniture +roofType : gmi:CodeType [0..1] K>—
1 . gml::CodeType [0..1] +measuredHeight : gml:LengthType [0..1]
. nclic.)n g}r‘l CodcTypc. '[0 4 +storeysAboveGround : xs:nonNegativelnteger [0..1]
+usage : g‘n‘l"[‘l‘odeTypc [o. .]' +storeysBelowGround : xs::nonNegative Integer [0..1]
T N +storeyHeights AboveGround : gml: MeasureOrNullListType [0..1]
D +storeyHeightsBelowGround : gml:MeasureOmNullListType [0..1] =
0.1
ccFeatura>> <<Feature>> <<Feature>> .
Raom Building BuildingPart
+class | gml:CodeType [0..1] S consists OfB uildingPart)
function : gmi:CodeType [0.] interiorRoom
+usage . gml::CodeType [0..%] 7 i r
lod1Solid lod1MultiSurface lod1 Temrainintersection
0.1 <> e lod2Solid lod2MultiSurface lod2Temainintersection
lod3Solid lod3MultiSurface | [290Fo0tPrint | iy 43Terainintersection
01 log4solia lodaultiSurface lod4Tenainlntersection
lod2MultiCurve
lod4Solid <<Geometry>> <<Geometry>> -
lod3MultiC:
01 gmi::_Solid gml:MultiSurface Wb
- lod4MultiCurve
0 1/|\ 0.1 01 Wo.1 0.1
. ; lod4MultiSurface lod2MultiSurface <<Geomain>>
N <<Featura>> A . s
o = lod3MultiSurface lod3MultiSurface gml::MultiCurve
lodd4MultiSurface loddMultiSurface
<< Faature>> <<Feature=> boundedBy . bl b * boundedBy
Koo jiinclow <<Feafra>> . boundedBy
* 0.2
_BoundarySurface *boundedBy
[ I I I I I 1
<<F e<F <<F <<F <<Faature>> <<Feaature>> <<Feature>>
RoofSurface WallSurfaces GroundSurface ClosureSurface CellingSurface InteriorWall Surface FlearSurface
<<Feature>> <<Feature>>
QuterCeilingSurface QuterFloorSurface

Figure 7: UML diagram of Building model

Furthermore, Addresses can be assigned to Buildings or BuildingParts.
BuildingParts may again comprise BuildingParts as components, because the composition

In particular,



38 3D Geodatabase for CityGML 2019

relation is inherited. This way a tree-like hierarchy can be created whose root object is a
Building and whose non-root nodes are BuildingParts. The attribute values are generally filled
in the lower hierarchy level, because basically every part can have its own construction year
and function. However, the function can also be defined in the root of the hierarchy and
therefore span the whole building. The individual BuildingParts within a Building must not
penetrate each other and must form a coherent object.

The geometric representation of an _AbstractBuilding is successively refined from LODO to
LODA4. Therefore, a single building can have multiple spatial representations in different
levels of detail at the same time by Solid, MultiSurface, and/or MultiCurve (cf. Figure 7).

In LoDO, the building can be represented by horizontal, 3-dimentional surfaces describing the
footprint and the roof edge. In LoD1, a building model consists of a geometric representation
of the building volume. Optionally, a MultiCurve representing the TerrainintersectionCurve
can be specified. This geometric representation is refined in LoD2 by additional MultiSurface
and MultiCurve geometries, used for modelling architectural details like a roof overhang,
columns, or antennas. In LoD2 and higher LoDs the outer facade of a building can also be
differentiated semantically by the classes _BoundarySurface and Buildinglnstallation. A
_BoundarySurface is a part of the building’s exterior shell with a special function like wall
(WallSurface), roof (RoofSurface), ground plate (GroundSurface), or closing surface
(ClosureSurface) as shown in Figure 8. Closure surfaces can be used to virtually seal open
buildings as for example hangars, allowing e.g. volume calculation. The Buildinglnstallation
class is used for building elements like balconies, chimneys, dormers, or outer stairs, strongly
affecting the outer appearance of a building. A Buildinglnstallation is used for the
representation of chimneys, stairs, balconies etc. and optionally has the attributes class,
function, and usage.

Roof surface

Exterior Shell

Wall
surface

Wall \\ InteriorWall

Ceiling %
Surface Surface
/

surface
Room

Opening
(Window)

InteriorWall
Surface

Opening

Floor surface (Door)

LN Opening
= Door

R T AN TR
~

Ground surface

Figure 8: Boundary surfaces

In LoD3, the openings in _BoundarySurface objects (doors and windows) can be represented
as thematic objects. In LoD4, the highest level of resolution, also the interior of a building,
composed of several rooms, is represented in the building model by the class Room. The
aggregation of rooms according to arbitrary, user-defined criteria (e.g. for defining the rooms
corresponding to a certain storey) is achieved by employing the general grouping concept
provided by CityGML. Interior installations of a building, i.e. objects within a building which



3D Geodatabase for CityGML 2019 39

(in contrast to furniture) cannot be moved, are represented by the class
IntBuildinglnstallation. If an installation is attached to a specific room (e.g. radiators or
lamps), they are associated with the Room class, otherwise (e.g. in case of rafters or pipes)
with _AbstractBuilding. A Room may have the attributes class, function, and usage referenced
to external code lists. The class attribute allows a classification of rooms with respect to the
stated function, e.g. commercial or private rooms, and occurs only once. The function
attribute is intended to express the main purpose of the room, e.g. living room, kitchen. The
attribute usage can be used if the object’s usage differs from its function. Both attributes can
occur multiple times.

The visible surface of a room is represented geometrically as a Solid or MultiSurface.
Semantically, the surface can be structured into specialised _BoundarySurfaces, representing
floor (FloorSurface), ceiling (CeilingSurface), and interior walls (InteriorWallSurface) (cf.
Figure 8). Room furniture, like tables and chairs, can be represented in the CityGML building
model with the class BuildingFurniture. A BuildingFurniture may have the attributes class,
function, and usage.

2.2.4.3 Bridge Model

The bridge model was developed in analogy to the building model (cf. section 2.2.4.2) with
regard to structure and attributes [Groger et al., 2008]. The bridge model allows for the
representation of the thematic, spatial and visual aspects of bridges and bridge parts in four
levels of detail, LOD 1 — 4. A (movable or unmovable) bridge can consist of multiple
BridgeParts. Like Bridge, BridgePart is a subclass of _AbstractBridge and hence, has the
same attributes and relations. The relation consistOfBridgePart represents the aggregation
hierarchy between a Bridge (or a BridgePart) and it’s BridgeParts. By this means, an
aggregation hierarchy of arbitrary depth can be modelled. The semantic attributes of an
_AbstractBridge are class, function, usage and is_movable. The attribute class is used to
classify bridges, e.g. to distinguish different construction types (cf. Figure 9). The attribute
function allows representing the utilization of the bridge independently of the construction.
Possible values may be railway bridge, roadway bridge, pedestrian bridge, aqueduct, etc. The
option to denote a usage which is divergent to one of the primary functions of the bridge
(function) is given by the attribute usage. Each Bridge or BridgePart feature may be assigned
zero or more addresses using the address property.

BridgePart

|

BridgeConstructionElement

BridgePart /
\L BridgePart

|

BridgeConstructionElement

Bridge

Figure 9: Example of bridge consisting of bridge parts



40 3D Geodatabase for CityGML 2019

The spatial properties are defined by a solid for each of the four LODs (relations lod1Solid to
lod4Solid). In analogy to the building model, the semantical as well as the geometrical
richness increases from LOD1 (blocks model) to LOD3 (architectural model). Interior
structures like rooms are dedicated to LOD4. To cover the case of bridge models where the
topology does not satisfy the properties of a solid (essentially water tightness), a multi-surface
representation is allowed (lod1MultiSurface to lod4MultiSurface). The line where the bridge
touches the terrain surface is represented by a terrain intersection curve, which is provided for
each LOD (relations lod1TerrainIntersection to lod4Terrainintersection). In addition to the
solid representation of a bridge, linear characteristics like ropes or antennas can be specified
geometrically by the lod1MultiCurve to lod4MultiCurve relations.

The thematic boundary surfaces of a bridge are defined in analogy to the building module.
_BoundarySurface is the abstract base class for several thematic classes, structuring the
exterior shell of a bridge as well as the visible surfaces of rooms, bridge construction elements
and both outer and interior bridge installations. From _BoundarySurface, the thematic classes
RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface,
ClosureSurface, FloorSurface, InteriorWallSurface, and CeilingSurface are derived.

RoofSurface

Window

WallSurface

OuterFloorSurface

OuterCeilingSurface

Figure 10: Different BoundarySurfaces of a bridge

Bridge elements which do not have the size, significance or meaning of a BridgePart can be
modelled either as BridgeConstructionElement or as Bridgelnstallation. Elements which are
essential from a structural point of view are modelled as BridgeConstructionElement, for
example structural elements like pylons, anchorages etc. (cf. Figure 9, Figure 11). A general
classification as well as the intended and actual function of the construction element are
represented by the attributes class, function, and usage. The visible surfaces of a bridge
construction element can be semantically classified using the concept of boundary surfaces
representing floor (FloorSurface), ceiling (CeilingSurface), and interior walls
(InteriorWallSurface) (cf. Figure 10). Whereas a BridgeConstructionElement has structural
relevance, a Bridgelnstallation represents an element of the bridge which can be eliminated
without collapsing of the bridge (e.g. stairway, antenna, and railing) (cf. Figure 11).
Bridgelnstallations occur in LOD 2 to 4. The class Bridgelnstallation contains the semantic



3D Geodatabase for CityGML 2019 41

attributes class, function and usage. The attribute class gives a classification of installations of
a bridge. With the attributes function and usage, nominal and real functions of the bridge
installation can be described.

BridgeConstructionElement

/ Bridgelnstallation

|

/\

BridgePart

T

Bridge
Figure 11: Example of bridge consisting of BridgeConstructionElement and Bridgelnstallation

In LOD3 and LOD4, a _BoundarySurface may contain _Openings like doors and windows.
The classes BridgeRoom, IntBridgelnstallation and BridgeFurniture allow for the
representation of the bridge interior. They are designed in analogy to the classes Room,
IntBuildinglnstallation and BuildingFurniture of the building module and share the same
meaning. The bridge interior can only be modelled in LODA4.



42 3D Geodatabase for CityGML 2019

<<Feature: <<Feature
core::_CityO core::_Site
———————
<<Feature>>
T e Bridgelnstallation
o e TRenresAmATn ! : gml:CodeType [0..1] *
Ind3mnlicitRenresantation * |+unction : gmi::CodeType [0..] >
lod3implicitRepresentation 0! <<Objact> 01| jogaimplicitRepreseniaion - [*usage : gml:CodeType [0.7] *outerBri
lod4ImplicitReprese ntation core::ImplicitGeomeatry
o1 lod1ImplicitRepresentation
loddimplicitRepresentation - lod2implicitRepresentation
inddimnlicitRanresantation?-! lod3implicitRepresentation
lod4implicitReprese ntation
[
lod2Geometry
?__1 0.1 lod3Geometry
lnddGrnmatriy << Geometry=>
gmi_Geometry lod4Geometry o o] of +
lod4Geometry lod1Geometry - =<Feature=>
01 0.1 |lod2Geometry . BridgeConstructionE lemant
+class : gml:CodeType [0..1] - lod1 Temrainintersection
lod3Geometry e R
function : gmi::CodeType [0.."] H lod2 Temrainintersection
lod4Geometry - : gml::CodeT 0..*
. Husaga: gmi:CodaType [0.7) z lodaTenaininiarsection
<<Feature>> - O - lod4Temrainintersection
IntBridgel llation outerBridgeConstruction Q
— lass | gml:CodeType [0..1] '<>
+function : gmi::CodeType [0..7]
+usage : gml:CodeType [0.."] address <<Feature>> address
T "’ core::Address | T+
-~ interiorBridgelnstallation é o
bridge Roominstallation . hl <>' :
=<Feature>>
hd <<Featura>> _AbstractBridge
BridgeF urniture +class : gml:CodeType [0..1]
* |+class : gmiCodeType [0..1] +function : gml::CodeType [0..]
+function : gmi::CodeType [0..*] +usage | gml::CodeType [0.°]
+usage | gmli::CodaType [0..*] +yearOfConstruction : xs:.gYear [0..1] -
+yearOfDemolition : xs::gYear [0..1] <>
. inteforFurniture +isMovable : xs:boolean [0..1]
0.1
<<Feature=> <<Featura>> <<Feature>>
BridgeRoom Bridge BridgePart
+class : gml:CodeType [0..1] =— — consistsOfBridgePart
+function : gml::CodeType [0..7] IR
+usage | gml::CodeT, 0..*
LR yeel0.7] P lod MultSurace a1 Temainintersacton lodZMultiCurve
0.1 <> =" lod2Solid lod2MultiSurface lod2Temainintersection lod3MultiCurve
lod3Solid lod3MultiSurface lod3TemainIntersection lod4MultiCurve
0.1 lod4Solid lod4MultiSurface . 4 lod4Temainintersection .
- 0.1 0.1
lod4Solid <<Gaometry>> <<Geometry>> <<Geometry>>
= gmi:_Solid gmlzMultiSurface gmlz:MultiCurve
0. 0.1 0.1
. [ <<Feature>> L sy lod2MultiSurface
= _Opening lod3MultiSurface lod3MultiSurface
L — |
- lod4MultiSurface loddMultiSurface
e * ODenina —‘
- “P1" - boundedB
<<Feature>> <<Feature>> bound edBy <<Feature>> . .
Door <> _BoundarySurface --boundedBy
+ 0.2 * boundedBy
boundedBv
[ [ I I | I 1
<<F <<F <<F c<F <<F << <<Feature=>
RoofSurface WallSurfacee face [+ face C: face Inte riorWall Surface FloorSurface
<<Feature>> <<Feature>>
QuterCellingSurface QuterFloorSurface

Figure 12: UML diagram of bridge model

2.2.4.4 CityFurniture Model

City furniture objects are immovable objects like lanterns, traffic lights, traffic signs, flower
buckets, advertising columns, benches, delimitation stakes, or bus stops. The class
CityFurniture may have the attributes class, function and usage (cf. UML-diagram, Figure
13). Their possible values are explained in detail in the CityGML specification. The class
attribute allows an object classification like traffic light, traffic sign, delimitation stake, or
garbage can, and can occur only once. The function attribute describes, to which thematic area



3D Geodatabase for CityGML 2019 43

the city furniture object belongs to (e.g. transportation, traffic regulation, architecture etc.),
and can occur multiple times. The attribute usage denotes the real purpose of the city object,
and can occur multiple times as well.

<<Feature>>
core::_CityObject

lod1Geometry & * lod1Terrainintersection
<<Feature>>
lod2Geometry * CityFurniture * lod2TerrainIntersection
Geometry>>
<<Geometry>> +class : gml::CodeType [0..1] . q = -
gml::_Geometry (0.1 oSG GIe +function : gml::CodeType [0.."] lod3Terrainintersection 0.4 9ml:MultiCurve
lod4Geometry «|*usage : gml::CodeType [0.."] +  lod4Terrainintersection

lod1implicitRepresentation

lod2ImplicitRepresentation

<<Object>>
core:mplicitGeometry

lod3ImplicitRepresentation

lod4implicitRepresentation

Figure 13: City furniture model

Since CityFurniture is a subclass of CityObject and hence is a feature, it inherits the attribute
gml:name. As with any CityObject, CityFurniture objects may be assigned
ExternalReferences and GenericAttributes. For ExternalReferences city furniture objects can
have links to external thematic databases. Thereby, semantical information of the objects,
which cannot be modelled in CityGML, can be transmitted and used in the 3D city model for
further processing, for example information from systems of power lines or pipelines, traffic
sign cadastre, or water resources for disaster management.

City furniture objects can be represented in city models with their specific geometry, but in
most cases the same kind of object has an identical geometry. The geometry of CityFurniture
objects in LoD 1-4 may be represented by an explicit geometry (lodXGeometry where X is
between 1 and 4) or an ImplicitGeometry object (lodXImplicitRepresentation with X between
1 and 4). In the concept of ImplicitGeometry the geometry of a prototype city furniture object
is stored only once in a local coordinate system and referenced by a number of features.
Spatial information of city furniture objects can be taken from city maps or from public and
private external information systems. In order to specify the exact intersection of the DTM
with the 3D geometry of a city furniture object, the latter can have a TerrainlIntersectionCurve
(TIC) for each LoD. This allows for ensuring a smooth transition between the DTM and the
city furniture object.

2.2.4.5 Digital Terrain Model

CityGML includes a very adaptable digital terrain model (DTM) which permits the
combination of heterogeneous DTM types (grid, TIN, break lines, mass points) available in
different levels of detail.



44 3D Geodatabase for CityGML 2019

A DTM fitting to a certain city model is represented by the class ReliefFeature. This is a
CityObject having the LoD step that fits the DTM as attribute. A relief consists of several
ReliefComponents. Each of these components that are likewise CityObjects also comprises a
LoD step. Individual geometrical types of the components are defined by the four subclasses
of ReliefComponent: breaklines, triangular networks (TINs), mass points, and grids (raster).
Geometrically, the corresponding ISO 19107 or GML classes define these types: breaklines
by a single MultiCurve, TINs by TriangulatedSurfaces, mass points by MultiPoint, and raster
by RectifiedGridCoverage.

<<Feature>>
core::_CityObject

T

<<Feature>> <<Feature>> * 0.1
ReliefFeature - 1.8 _ReliefComponent H <<Geometry>>
+lod : core:integerBetweenOand4 [1] reliefComponent +lod : core:integerBetweenOand4 [1] extent gml::Polygon
<<Feature>> <<Feature>> <<Feature>> <<Feature>>
TINRelief MassPointRelief BreaklineRelief RasterRelief
tin reliefPoints ridgeOrVallelyLines | breaklines 1| grid
1 1 0..1 0.1
<<Geometry=> <<Geometry>> <<Geometry>> <<Feature>>
gml::TriangulatedSurface gml::MultiPoint gml::MultiCurve gml::RectifiedGridCoverage
<<Geometry>>
gml::Tin

+stopLines : gml:LineStringSegment [0..*]
+breakLines : gml::LineStringSegment [0..*]
+maxLength : gml::LengthType [1]
+controlPoint : gml::posList [1]

Figure 14: UML diagram representing the digital terrain model

A relief can contain ReliefComponents of heterogeneous type and different LoDs. A relief in
LoD2, for example, can contain some LoD3-TIN-ReliefComponents beside a LoD2-Raster-
ReliefComponent. In some cases even a LoD1 grid may exist in some regions of the relief.

In order to geometrically separate the individual components of a grid, which can exist in
different LoD, the validity polygon of a component (extent) is used. This polygon defines the
scope in which the component is valid. A grid with three components is shown in Figure 15.
It depicts a coarse raster containing two high-resolution TINs (TIN 1 and 2). The validity
polygon of the raster is represented by the blue line, while the validity polygons of the TINs
are bordered in green and red. In this case, the validity polygon of the raster (grid) has two
holes where the raster (grid) is not valid, although it does exist. Instead, the high-resolution
TINs are used for the representation of the terrain in these regions. That means the validity
polygons of the TINs exactly fit the two holes in the validity polygon of the raster (grid).



3D Geodatabase for CityGML 2019 45

Figure 15: A relief, consisting of three components and its validity polygons
(from: [PlUmer et al., 2005])

In the simplest and most frequent case, the validity polygon of a grid corresponds exactly with
its Bounding box, i.e. the spatial extent of the grid.

2.2.4.6 Generic Objects and Attributes

The concept of generic objects and attributes has been introduced to facilitate the storage and
exchange of 3D objects, which are not covered by explicitly modelled classes within
CityGML or which requires additional attributes. These generic extensions are realised by the
class GenericCityObject and the data type genericAttribute (cf. Figure 16).

A GenericCityObject may have the attributes class, function, and usage are specified as
gml:CodeType. The class attribute allows an object classification within the thematic area
such as bridge, tunnel, pipe, power line, dam, or unknown. The function attribute describes to
which thematic area the GenericCityObject belongs (e.g. site, transportation, architecture,
energy supply, water supply, unknown etc.). The attribute usage can be used, if the object's
usage differs from its function. Each _CityObject and all thematic subclasses can have an
arbitrary number of genericAttributes. Data types may be String, Integer, Double (floating
point number), URI (Unified Resource Identifier), Date, and gml:MeasureType. The attribute
type is defined by the selection of the particular subclass of _genericAttribute (stringAttribute,
intAttribute etc.). In addition, generic attributes can be grouped using the genericAttributeSet
class which is derived from _genericAttribute and thus is also realized as generic attribute. Its
value is the set of contained generic attributes.



46 3D Geodatabase for CityGML 2019

<<Geometry>> <<Feature>> . ST <<DataType>>
gml::MultiCurve core::_CityObject 1 & ffenarfcAttributs
+name : xs:string [1]
0.1 A
: : 1.*

_genericAttribute <<DataType>>
lodOTerrainlntersection — stringAttribute
lod 1 Temrainlntersection n Ge:;l:;a:t;m;;ec‘ 0.1 +value : xs:string [1]

yOb) <<DataType>>
lod2Terrainintersection 3| rolass - gmi::CodeType [0.1] genericAttributeSet ] <<DataType>>
*function : gmi::CodeType [0.] +codeSpace : xs::anyURI [0..1] | intAttribute
lod3Terrainintersection +|+usage : gml::CodeType [0..%] +value : xszinteger [1]
lod4Terrainlntersection <<DataType=>
bl b A — doubleAttribute
lodOImplicitRepresentation lod0Geometry +value : xs::double [1]
lod 1lmplicitRepresentation lod1Geometry <<DataType>>
lod2ImplicitRepresentation lod2Geometry dateAttribute
+value : xs::date [1]
lod3ImplicitRepresentation lod3Geometry
lod4ImplicitRepresentation lod4Geometry <:Eiit:;iﬁ:>
0.1 0.1 +value : xs:anyURI [1]
<<Object>> <<Geometry>> <<DataType>>
core::ImplicitGeometry gml::_Geometry [ measureAttribute
+value : gml::MeasureType [1]

Figure 16: GenericCityObject model

The geometry of a GenericCityObject can either be an explicit GML3 geometry or an
ImplicitGeometry. In the case of an explicit geometry, the object can have only one geometry
for each LoD, which may be an arbitrary 3D GML geometry object (class _Geometry, which
is the base class of all GML geometries, lodXGeometry, X in 0...4). Absolute coordinates
according to the reference system of the city model must be given for the explicit geometry.
In the case of an ImplicitGeometry, a reference point (anchor point) of the object and
optionally a transformation matrix must be given. In order to compute the actual location of
the object, the transformation of the local coordinates into the reference system of the city
model must be processed and the anchor point coordinates must be added. The shape of an
ImplicitGeometry can be given as an external resource with a proprietary format, e.g. a
VRML or DXF file from a local file system or an external web service. Alternatively, the
shape can be specified as a 3D GML3 geometry with local Cartesian coordinates using the
property relativeGeometry.

In order to specify the exact intersection of the DTM with the 3D geometry of a
GenericCityObject, the latter can have TerrainintersectionCurves for every LoD. This is
important for 3D visualization but also for certain applications like driving simulators. For
example, if a city wall (e.g., the Great Wall of China) should be represented as a
GenericCityObject, a smooth transition between the DTM and the road on the city wall would
have to be ensured (in order to avoid unrealistic bumps).



3D Geodatabase for CityGML 2019 47

2.2.4.7 LandUse Model

LandUse objects describe areas of the earth’s surface dedicated to a specific land use. They
can be employed to represent parcels in 3D. Figure 17 shows the UML diagram of land use
objects.

Every LandUse object may have the attributes class (e.g. settlement area, industrial area,
farmland etc.), function (purpose, e.g. cornfield), and usage which can be used, if the way the
object is actually used differs from the function. Since the attributes usage and function may
be used multiple times, storing them in only one string requires a single white space as unique
separatorRelational database schema.

<<Feature>>
core::_CityObject

lod0MultiSurface

<<Feature>> N
LandUse lod 1MultiSurface

poasspami=GodaType]ICE] lod2MultiSurface -1 <<Geometry>>
+function : gml::CodeType [0..%] = gml::MultiSurface
+usage : gml:CodeType [0..7] lod3MultiSurface

lod4MultiSurface

Figure 17: LandUse model

The LandUse object is defined for all LoD 0-4 and may have different geometries for each
LoD. The surface geometry of a LandUse object is required to have 3D coordinate values. It
must be a GML3 MultiSurface, which might be assigned appearance properties like material
(X3DMaterial) and texture (_AbstractTexture and its subclasses).

2.2.4.8 Transportation Model

The transportation model of CityGML is a multi-functional, multi-scale model focusing on
thematic and functional as well as geometrical/topological aspects. Transportation features are
represented as a linear network in LoDO. Starting from LoD1, all transportation features are
geometrically described by 3D surfaces.

The main class is TransportationComplex (cf. Figure 19) which represents, for example, a
road, a track, a railway, or a square. It is composed of the parts TrafficArea and
AuxiliaryTrafficArea. Figure 18 depicts an example for a LoD2 TransportationComplex
configuration within a virtual 3D city model. The Road consists of several TrafficAreas for
the sidewalks, road lanes, parking lots, and of AuxiliaryTrafficAreas below the raised flower
beds.



48 3D Geodatabase for CityGML 2019

Auxiliary
traffic
areas

Figure 18: LoD2 representation of a transportation complex
(from: [Groger et al., 2008])

The road itself is represented as a TransportationComplex, which is further subdivided into
TrafficAreas and AuxiliaryTrafficAreas. The TrafficAreas are those elements, which are
important in terms of traffic usage, like car driving lanes, pedestrian zones and cycle lanes.
The AuxiliaryTrafficAreas are describing further elements of the road, like kerbstones, middle
lanes, and green areas.

<<Feature>>
core::_CityObject

1

<<Feature>>

_TransportationObject
<<Feature>> <<Feature>> - . <<Feature>>
TrafficArea trafficArea TransportationComplex auxiliaryTrafficArea AuxiliaryTrafficArea
+class : gml::CodeType [0..1] M +class : gml::CodeType [0..1] O. ? +class : gml::CodeType [0..1]
+function : gml::CodeType [0.."] > * | +function : gml:CodeType [0.."] +function : gml::CodeType [0..]
+usage : gml::CodeType [0..*] +usage : gml::CodeType [0..*] +usage : gml:CodeType [0.."]
+ ial : G + ial : A
surfaceMaterial : gml::CodeType [0..1] Tl " l lodONetwork surfaceMaterial : gml::CodeType [0..1]
[ 1 ’
lod 1MultiSurface <<Feature>> <<Feature>> <<Geomelry>>
lod2MultiSurface Track Railway gml::GeometricComplex
lod3MultiSurface <<Feature>> <<Feature>>
lod2MultiSurface lod4MultiSurface Road Square
q 0.1
lod3MultiSurface lod2MultiSurface
0.1 Ll
lod4MultiSurface <<Geometry>> lod3MultiSurface
gml::MultiSurface lod4MultiSurface

Figure 19: UML model for transportation complex

TransportationComplex objects can be thematically differentiated using the subclasses Track,
Road, Railway, and Square. Every TransportationComplex has the attributes class, function
and usage, referencing to the external code lists. The attribute class describes the
classification of the object. The attribute function describes the purpose of the object like, for
example national motorway, country road, or airport, while the attribute usage can be used, if
the actual usage differs from the function.



3D Geodatabase for CityGML 2019 49

In addition, both TrafficArea and AuxiliaryTrafficArea may have the attributes class, function,
usage, and surfaceMaterial. The attribute class describe the classification of the object. For
TrafficArea, the attribute function describes whether the object is a car driving lane, a
pedestrian zone, or a cycle lane, while the usage attribute indicates which modes of
transportation can use it (e.g. pedestrian, car, tram, roller skates). The attribute
surfaceMaterial specifies the type of pavement and may also be wused for
AuxiliaryTrafficAreas (e.g. asphalt, concrete, gravel, soil, rail, grass etc.). The function
attribute of the AuxiliaryTrafficArea defines, among others, kerbstones, middle lanes, or green
areas. The possible values are specified in external code lists.

TransportationComplex is a subclass of _TransportationObject and of the root class
_CityObject. The geometrical representation of the TransportationComplex varies through the
different levels of detail. In the coarsest LoDO, the transportation complexes are modelled by
line objects establishing a linear network. Starting from LoD1, a TransportationComplex
provides an explicit surface geometry, reflecting the actual shape of the object, not just its
centreline. In LoD2 to LoD4, it is further subdivided thematically into TrafficAreas, which are
used by transportation, such as cars, trains, public transport, airplanes, bicycles, or pedestrians
and in AuxiliaryTrafficAreas, which are of minor importance for transportation purposes, for
example road markings, green spaces or flower tubs.

2.2.4.9 Tunnel Model

The tunnel model is closely related to the building model. It supports the representation of
thematic and spatial aspects of tunnels and tunnel parts in four levels of detail, LOD1 to
LODA4. The UML diagram of the tunnel model is shown in Figure 21. The pivotal class of the
model is _AbstractTunnel, which is a subclass of the thematic class _Site (and transitively of
the root class _CityObject). _AbstractTunnel is specialized either to a Tunnel or to a
TunnelPart. Since an _AbstractTunnel consists of TunnelParts, which again are
_AbstractTunnels, an aggregation hierarchy of arbitrary depth may be realized. Both classes
Tunnel and TunnelPart inherit the attributes of _AbstractTunnel: the class of the tunnel, the
function, the usage, the year of construction and the year of demolition. In contrast to
_AbstractBuilding, Address features cannot be assigned to _AbstractTunnel.

Figure 20: Example of a tunnel modelled with two tunnel parts



50 3D Geodatabase for CityGML 2019

The geometric representation and semantic structure of an _AbstractTunnel is shown in
Figure 21. The model is successively refined from LOD1 to LODA4. Therefore, not all
components of a tunnel model are represented equally in each LOD and not all aggregation
levels are allowed in each LOD. An object can be represented simultaneously in different
LODs by providing distinct geometries for the corresponding LODs.

<<Feature>> <1 <<Feature>> L
core::_CityObject core::_Site
 —————— ——

0.1 <<Object>>

core::ImplicitGeometry

lod3ImplicitRepresentation

loddimplicitRepresentation ‘
0.1

Ind2ImnliritRe nresantation

lod4l mphcwlRepresematian"“

lod4ImplicitRe prese ntation

led3ImnlicitRe nresantatinn

Ind4ImplicitRe nresentation

0.1
lod4Geometry 0.1 0.1
=) <<Geomelry>> | lod2Geometry <<Feature>>
lod4Geometry gmi::_Geometry ‘ lod3Geometry Tunnellnstallation
———
0.1 Iod4Geometry + |+class : gmi:CodeType [0.1]

+function : gml::CodeType [0..%]

+usage : gmi:CodeType [0..%]

<<Feature>>

Int T tallation

*|+class : gmi:CodeType [0.1]

+function : gml::CodeType [0..*]

+usage : gml:zCodeType [0..%]

outerTunnellnstallation

.~ interierTunnellnstallation

hollowSpacelnstalation

<<Feature>>
TunnelFurniture

+class : gml:CodeType [0..1]

<<Feature>>
_Abstract Tunnel

+class : gmizCodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml:CodeType [0..]

VAR 8 (LSOl SR | D +yearOfConstruction : xs:gYear [0..1] .
pusasciomiiocelnalOg +yearOfDemolition : xs:gYear [0..1] %
* /\interiorFurniture
0.1 0.1
<<Feature>> <<Feature>>
<<Feature>>
HollowSpace <>— Tunnel TunnelPart
N L
+class : gmlzCodeType [0..1] consistsOfTunnelPart
+function : gml::CodeType [0..*] interiorHollowSpace
+usage : gml:CodeType [0..*
98:9 ype [0-7] T8 lod TMultiSurface lod 1Termainintersection ledZMultiCurve
0.1 Ind?Snlid lod2MultiSurface lod2Terrainintersection lod 3MultiCurve
Ind3Snlid lod3MultiSurface lod3Terrainintersection lod4MultiCurve
0.1 IndaSnlid loddaMultiSurface [0-1  [lod4Terrainintersection
0.1 0.1
<<Geometry>> <<Geometry=> <<Geometry=>
L e it gml:;_Solid gml:: MultiSurface gml::MultiCurve
0.4
D..'\/P 0.1 0.1
<<Fealure>> lodaMultiSurface lod2MultiSurface
_Opening lod3MUltiSurface lod 3MultiSurface
— I—mmmnsmace lod4MultiSurface
<<Feature>> <<Feature>> .
q > boundedBy
Window Door boundedBy <<Fealure>>
_Bot ySurface boundedB
0.2 * -boundedBy

x

[ I I I 1 I 1
<<Feature>> <<Feature>> <<Feature>> =<<Feature>> <=<Feature>> <<Fealure>> <<Feature>>

RoofSurface WallSurfacee GroundSurface c rface CeilingSurface InteriorWallSurface FloorSurface

<<Feature>>
OuterFloorSurface

<<Feature>>
OuterCeilingSurface

Figure 21: UML diagram of tunnel model

Similar to the building and bridge models (cf. chapters 2.2.4.2 and 2.2.4.3), only the outer
shell of a tunnel is represented in LOD1 — 3, which is composed of the tunnel’s boundary
surfaces to the surrounding earth, water, or outdoor air. The interior of a tunnel may only be

modelled in LODA.



3D Geodatabase for CityGML 2019 51

In LOD1, a tunnel model consists of a geometric representation of the tunnel volume.
Optionally, a MultiCurve representing the TerrainintersectionCurve can be specified. The
geometric representation is refined in LOD2 by additional MultiSurface and MultiCurve
geometries. In LOD2 and higher LODs the outer structure of a tunnel can also be
differentiated semantically by the classes _BoundarySurface and Tunnellnstallation. A
boundary surface is a part of the tunnel’s exterior shell with a special function like wall
(WallSurface), roof (RoofSurface), ground plate (GroundSurface), outer floor
(OuterFloorSurface), outer ceiling (OuterCeilingSurface) or ClosureSurface (see Figure 22).
The Tunnelinstallation class is used for tunnel elements like outer stairs, strongly affecting
the outer appearance of a tunnel. A Tunnelinstallation may have the attributes class, function
and usage.

RoofSurface / OuterCeilingSurface

i @ rfac 3 fac
o CeilingSurface s g;. o b\\S\‘ 9 E.,‘J {\’\\S\“ °
2 E o N ) 3 &
g 5 g 2 F g/ /$
] 7] @ ] & T &
T 3 s 5 = E | |E
& % | |=
3 8 S| |2
= H g FloorSurface
= FloorSurface —
GroundSurface
Rectangular Cross Section Circular Cross Section Circular Cross Section
wrtace / Oute
1
& o\\sudace s oé\\-\“gs Urfac, t%'}- &
§“ § \% §‘ CeilingSurface
2 ¥ f \* @
3 [ (3 N, & |8 3
= @ | @ = ==
g -] 2 8 = s
T s s - 2 =2
3 = = 7] E E
FloorSurface = £ FloorSurface = = FloorSurface
= =
e GroundSurface
Circular Cross Section Arbitrary Cross Section Arbitrary Cross Section

Figure 22: Different BoundarySurfaces of a tunnel

In LOD3, the openings in _BoundarySurface objects (doors and windows) can be represented
as thematic objects. In LOD4, the highest level of resolution, also the interior of a tunnel,
composed of several hollow spaces, is represented in the tunnel model by the class
HollowSpace. This enlargement allows a virtual accessibility of tunnels, e.g. for driving
through a tunnel, for simulating disaster management or for presenting the light illumination
within a tunnel. The aggregation of hollow spaces according to arbitrary, user defined criteria
(e.g. for defining the hollow spaces corresponding to horizontal or vertical sections) is
achieved by employing the general grouping concept provided by CityGML (cf. chapter
2.2.4.1). Interior installations of a tunnel, i.e. objects within a tunnel which (in contrast to
furniture) cannot be moved, are represented by the class IntTunnellnstallation. If an
installation is attached to a specific hollow space (e.g. lamps, ventilator), they are associated
with the HollowSpace class, otherwise (e.g. pipes) with _AbstractTunnel. A HollowSpace
may have the attributes class, function and usage whose possible values can be enumerated in



52 3D Geodatabase for CityGML 2019

code lists. The class attribute allows a general classification of hollow spaces, e.g. commercial
or private rooms, and occurs only once. The function attribute is intended to express the main
purpose of the hollow space, e.g. control area, installation space, and storage space. The
attribute usage can be used if the way the object is actually used differs from the function.
Both attributes can occur multiple times. The visible surface of a hollow space is represented
geometrically as a Solid or MultiSurface. Semantically, the surface can be structured into
specialized _BoundarySurfaces, representing floor (FloorSurface), ceiling (CeilingSurface),
and interior walls (InteriorWallSurface). Hollow space furniture, like movable equipment in
control areas, can be represented in the CityGML tunnel model with the class
TunnelFurniture. A TunnelFurniture may have the attributes class, function and usage.

2.2.4.10 Vegetation Model

The vegetation model of CityGML distinguishes between solitary vegetation objects like trees
and vegetation areas, which represent biotopes like forests or other plant communities. Single
vegetation objects are modelled by the class SolitaryVegetationObject, while for areas filled
with specific vegetation the class PlantCover is used.

PlantCover
(MultiSolid)

Figure 23: Image illustrates objects of the vegetation model
(from: [Groger et al., 2008])

The geometry representation of a PlantCover feature may be a MultiSurface or a MultiSolid,
depending on the vertical extent of the vegetation. For example, regarding forests, a
MultiSolid representation might be more appropriate (cf. Figure 23).

The UML diagram of the vegetation model is depicted in Figure 24. A SolitaryVegetation-
Object may have the attributes class (e.g. tree, bush, grass), species (species’ name, e.g. Abies
alba), usage, and function (e.g. botanical monument), height, trunkDiameter and
crownDiameter. A PlantCover feature may have the attributes class (plant community),
usage, function (e.g. national forest) and averageHeight. Since both SolitaryVegetationObject
and PlantCover are CityObjects, they inherit all attributes of a city object, in particular its
name (gml:name) and an ExternalReference to a corresponding object in an external
information system, which may contain botanical information from public environmental
agencies.



<<Feature>>
core::_Ci ject
<<Feature>>
VegetationObject
lod1Geometry [ | * lod1
<<Feature>> <<Feature>>
<<Geometry>> 0.1 | lod2G: Yy SolitaryVegetationObject PlantCover iSurf: 0.1 [ <<Geometry>> |
gml::_Geometry TN +class : gml::CodeType [0..1] +class : gml::CodeType [0..1] - . ml::MultiSurface
3 function : gml::CodeType [0.."] +function : gmi::CodeType [0..*] R RS iach J
lod4Geometry +|+usage : gml::CodeType [0.."] +usage : gml::CodeType [0..] + lod4MultiSurface
+species : gmi::CodeType [0..1] +averageHeight : gml::LengthType [0..1]
lod1implicitRepresentation _+| *height : gml:LengthType [0..1] + __lod1MultiSolid
+trunkDiameter : gml::LengthType [0..1] lo..1 <<G e
0..1| lod2implicitRepresentation _+|+crownDiameter : gmi::LengthType [0..1] +___lod2MultiSolid mlf':::‘s”;“d
lod3ImplicitRepresentation  +| * lod. iSoli
loddimplicitRepresentation  +| & lodd4MultiSolid

Figure 24: Vegetation Model

The geometry of a SolitaryVegetationObject may be defined in LoD 1-4 by absolute
coordinates, or prototypically by an ImplicitGeometry. Season dependent appearances may be
mapped using ImplicitGeometries. For visualisation purposes, only the content of the library
object defining the object’s shape and appearance has to be swapped.

A SolitaryVegetationObject or a PlantCover may have a different geometry in each LoD.
Whereas a SolitaryVegetationObject is associated with the _Geometry class representing an
arbitrary GML geometry (by the relation lodXGeometry), a PlantCover is restricted to be
either a MultiSolid or a MultiSurface.

22411 WaterBodies Model

The water bodies model represents the thematic aspects and 3D geometry of rivers, canals,
lakes, and basins. In LoD 2-4 water bodies are bounded by distinct thematic surfaces. These
surfaces are the obligatory WaterSurface, defined as the boundary between water and air, the
optional WaterGroundSurface, defined as the boundary between water and underground (e.g.
DTM or floor of a 3D basin object), and zero or more WaterClosureSurfaces, defined as
virtual boundaries between different water bodies or between water and the end of a modelled
region (cf. Figure 25Fehler! Verweisquelle konnte nicht gefunden werden.). A dynamic
element may be the WaterSurface to represent temporarily changing situations of tidal flats.

WaterSurface

—<> waterBody

WaterClosure
Surface

-—

WaterGroundSurface

Figure 25: Definition of waterbody attributes (from: [Groger et al., 2012])



54 3D Geodatabase for CityGML 2019

Each WaterBody object may have the attributes class (e.g. lake, river, or fountain), function
(e.g. national waterway or public swimming) and usage (e.g. navigable) referencing to
external code lists. Since the attributes usage and function may be used multiple times, storing
them in only one string requires a unique delimiter.

WaterBody is a subclass of the root class _CityObject. The geometrical representation of the
WaterBody varies for different levels of detail. The WaterBody can be differentiated
semantically by the class _WaterBoundarySurface. A _WaterBoundarySurface is a part of the
water body’s exterior shell with a special function like WaterSurface, WaterGroundSurface or
WaterClosureSurface. As with any _CityObject, WaterBody objects as well as WaterSurface,
WaterGroundSurface, and WaterClosureSurface objects may be assigned ExternalReferences
and GenericAttributes.

Both LoDO and LoD1 represent a low level of illustration and high grade of generalisation.
Here the rivers are modelled as MultiCurve geometry and brooks are omitted. Seas, oceans,
and lakes with significant extent are represented as MultiSurfaces. (cf. Figure 26)

<<Feature>>
core::_CityObject

[
0-1 jocoMultisurface EFfa‘;’e_»t
<<Geometry>> i = WaterOhiec
gml:MultiSurface lod1MultiSurface
<<Feature>> b X «  lod2Surface
lod1Solid * WaterBo - |
P —— e;)yﬂ boundedBy| <<Feature>> *  lod3Surface i <<Geometry>>
0..1| lod2Solid * X gm:-: ype . _WaterBoundarySurface gml::_Surface
<<Geometry>> +function : gml::CodeType [0.."] »  lod4Surface
gmi::_Solid lod3Solid + |+usage : gml:CodeType [0.."]
lod4Solid
lodOMUltiC: <<Feature>>
odOMultiCurve  +|] =
WaterSurface
<<Gemm?try>> 0.1 ] <<Feature>> <<Feature>> waterLevel : gml::CodeType [0.1]
gmiSMUItICHve JodiMETEAVS WaterClosureSurface | | WaterGroundSurface -gmk: ype [0..

Figure 26: Waterbody model

Starting from LoD1, water bodies may also be modelled as volumes filled with water,
represented by Solids. If a water body is represented by a Solid in LoD2 or higher, the surface
geometries of the corresponding thematic WaterClosureSurface, WaterGroundSurface, and
WaterSurface objects must coincide with the exterior shell of the Solid. This can be ensured,
if for one LoD X the respective lodXSurface elements (where X is between 2 and 4) of
WaterClosureSurface, WaterGroundSurface, and WaterSurface reference the corresponding
polygons (using XLink) within the CompositeSurface that defines the exterior shell of the
Solid. Furthermore, every _WaterBoundarySurface must have at least one associated surface
geometry attached.

The water body model implicitly includes the concept of TerrainintersectionCurves (TIC),
e.g. to specify the exact intersection of the DTM with the 3D geometry of a WaterBody or to
adjust a WaterBody or WaterSurface to the surrounding DTM. The rings defining the
WaterSurface polygons implicitly delineate the intersection of the water body with the terrain
or basin.



3D Geodatabase for CityGML 2019 55

2.3 Relational database schema

2.3.1 Mapping rules, schema conventions

2.3.1.1 Mapping of classes onto tables

Generally, one or more classes of the UML diagram are mapped onto one table; the name of
the table is identical to the class name (a leading underscore indicating an abstract class is left
out). Classes are combined into a single table according to the class relations as shown in the
UML diagrams by using orange coloured boxes. The scalar attributes of the classes become
columns of the corresponding table with identical name.

The types of the attributes are customized to corresponding database (Oracle/PostgreSQL)
data types (see Table 1). Some attributes of the data type date were mapped to TIMESTAMP
WITH TIME ZONE to allow a more accurate storage of time values.

Data type mapping (excerpt)

UML Oracle PostgreSQL / PostGIS
String, anyURI VARCHAR2, CLOB VARCHAR, TEXT
Integer NUMBER NUMERIC
Double, gml:LengthType BINARY_DOUBLE DOUBLE PRECISION
Boolean NUMBER(1,0) NUMERIC
Date DATE, DATE,
TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE
Primitive Type (Color,
TransformationMatrix, VARCHAR?2 VARCHAR
CodeType etc.)
Enumeration VARCHAR2 VARCHAR
Gk (CEEmEy, SDO_GEOMETRY GEOMETRY

textureCoordinates

GML RectifiedGridCoverage | SDO_GEORASTER & SDO_RASTER RASTER

Texture (only reference of
type anyURI in CityGML) BLOB BYTEA

Table 1: Data type mapping

2.3.1.2 Explicit declaration of class affiliation

In the (meta) table OBJECTCLASS, all class names (attribute CLASSNAME) of the schema
are managed. The relation of the subclass to its parent class is represented via the attribute
SUPERCLASS_ID in the subclass as a foreign key to the ID of the parent class (see Fehler!
Verweisquelle konnte nicht gefunden werden.).

The table OBJECTCLASS is used to efficiently determine the affiliation to a class in the
superclass tables. In addition, the table CITYOBRJECT contains the attribute

OBJECTCLASS ID which refers to the respective table OBJECTCLASS. This way, while
looking at a tuple in CITYOBJECT, the subclass and — if needed — the name of the class can
be determined directly. This mechanism has also been adopted in other tables that are used to
store different CityGML features, e.g. THEMATIC SURFACE (for all different
BoundarySurfaces of a Building feature) or BUILDING INSTALLATION (outer or interior)
etc. Please consider that using CityGML ADEs could lead to additional OBJECTCLASS _IDs
in this table (please also refer to 2.3.3.1 Metadata Model).




56

3D Geodatabase for CityGML 2019

OBJECTCLASS

ID CLASSNAME SUPERCLASS_ID
0 Undefined

1 _GML

2 _Feature 1
3 _CityObject 2
4 LandUse 3
5 GenericCityObject 3
6 _VegetationObject 3
7 SolitaryVegetationObject 6
8 PlantCover 6
9 WaterBody 105
10 _WaterBoundarySurface 3
11 WaterSurface 10
12 WaterGroundSurface 10
13 WaterClosureSurface 10
14 ReliefFeature 3
15 _ReliefComponent 3
16 TINRelief 15
17 MassPointRelief 15
18 BreaklineRelief 15
19 RasterRelief 15
20 _Site 3
21 CityFurniture 3
22 _TransportationObject 3
23 CityObjectGroup 3
24 _AbstractBuilding 20
25 BuildingPart 24
26 Building 24
27 Buildinglnstallation 3
28 IntBuildinglnstallation 3
29 _BuildingBoundarySurface 3
30 BuildingCeilingSurface 29
31 InteriorBuildingWallSurface 29
32 BuildingFloorSurface 29
33 BuildingRoofSurface 29
34 BuildingWallSurface 29
35 BuildingGroundSurface 29
36 BuildingClosureSurface 29
37 _BuildingOpening 3
38 BuildingWindow 37
39 BuildingDoor 37
40 BuildingFurniture 3
41 BuildingRoom 3
42 TransportationComplex 22
43 Track 42
44 Railway 42
45 Road 42
46 Square 42
47 TrafficArea 22
48 AuxiliaryTrafficArea 22
49 FeatureCollection 2
50 Appearance 2
51 _SurfaceData 2
52 _Texture 51
53 X3DMaterial 51
54 ParameterizedTexture 52




3D Geodatabase for CityGML 2019

S7

55 GeoreferencedTexture 52
56 _TextureParametrization 1
57 CityModel 49
58 Address 2
59 ImplicitGeometry 1
60 OuterBuildingCeilingSurface 29
61 OuterBuildingFloorSurface 29
62 _AbstractBridge 20
63 BridgePart 62
64 Bridge 62
65 Bridgelnstallation 3
66 IntBridgelnstallation 3
67 _BridgeBoundarySurface 3
68 BridgeCeilingSurface 67
69 InteriorBridgeWallSurface 67
70 BridgeFloorSurface 67
71 BridgeRoofSurface 67
72 BridgeWallSurface 67
73 BridgeGroundSurface 67
74 BridgeClosureSurface 67
75 OuterBridgeCeilingSurface 67
76 OuterBridgeFloorSurface 67
77 _BridgeOpening 3
78 BridgeWindow 77
79 BridgeDoor 77
80 BridgeFurniture 3
81 BridgeRoom 3
82 BridgeConstructionElement 3
83 _AbstractTunnel 20
84 TunnelPart 83
85 Tunnel 83
86 Tunnellnstallation 3
87 IntTunnellnstallation 3
88 _TunnelBoundarySurface 3
89 TunnelCeilingSurface 88
90 InteriorTunnelWallSurface 88
91 TunnelFloorSurface 88
92 TunnelRoofSurface 88
93 TunnelWallSurface 88
94 TunnelGroundSurface 88
95 TunnelClosureSurface 88
96 OuterTunnelCeilingSurface 88
97 OuterTunnelFloorSurface 88
98 _TunnelOpening 3
99 TunnelWindow 98
100 TunnelDoor 98
101 TunnelFurniture 3
102 HollowSpace 3
103 TexCoordList 56
104 TexCoordGen 56
105 _WaterObject 3
106 _BrepGeometry 0
107 Polygon 106
108 BrepAggregate 106
109 TexImage 0
110 ExternalReference 0
111 GridCoverage 0
112 _genericAttribute 0




58 3D Geodatabase for CityGML 2019

| 113 | genericAttributeSet | 112 |

2.3.2 Conceptual database structure

Starting from version 4.0.0, the 3DCityDB database schema has been slightly modified to
support the handling of CityGML ADEs (Application Domain Extensions). With this
enhancement, user-defined database schemas can be dynamically created and attached to a
3DCityDB instance for storing ADE data contents. In addition, every existing CityGML class
table is now equipped with an OBJECTCLASS ID column which allows to distinguisch the
stored data contents of different CityGML and ADE classses having inheritance relationships.
Moreover, a set of new metadata tables are introduced in addition to the existing
OBJECTCLASS table, for holding the relevant meta-information of the registered CityGML
ADEs. In general, all 3DCityDB tables now logically belong to one of the three modules
Metadata Module, Core Data Module, and Dynamic Data Module, whose relations are shown
in the following figure.

I
RN 7
______________________ NS £ S S A

\ \\x\ ’,” RN d :

i L——_—__—__—_——_—\'\_:_—’—J' _______________ = _‘:: ——————— 7/— _______________ o ———
. ~ So 1
Dynamic Data Module % JPLah Y LS !
/’ ~ \\\ 1
. S 1
CityGML ADE 1 CityGML ADE 2 RN

Modules = = =

Many More ADEs |

Figure 27: New conceptual 3DCityDB database structure for handling CityGML ADEs

The green tables enclosed in the Core Data Module represent those database tables that are
responsible for storing the standard CityGML models such as Building, Transportation,
Tunnel, CityFurniture, CityObjectGroup, Generic, Appearance etc. This module comprises
basically the tables of the database schema of previous versions of the 3DCityDB (cf. the next
section for more details). For a given CityGML ADE, an additional group of database tables
forming a separate module belonging to the Dynamic Data Module (pink tables in the figure)
can be created and attached to the 3DCityDB database schema. In addition, the relationships
(e.g. generalization/specialization and associations) among the model classes of CityGML and
CityGML ADEs are adequately reflected using database foreign key constraints which allow
to ensure the data integrity and consistency within the database system. The Metadata Module
associated with the Dynamic Data Module is utilized for storing the relevant meta-
information (e.g. the XML namespaces, schema files, and class affiliations etc.) about ADES



3D Geodatabase for CityGML 2019 59

as well as the referencing relations among the ADE and CityGML application schemas. This
way, the dependencies between the registered ADE application schemas can be directly read
from the 3DCityDB database schema to facilitate the database administration process, i.e. the
registration and deregistration of multiple CityGML ADEs within a 3DCityDB instance.

2.3.3 Database schema

In the following paragraph, the tables of the relational schema are displayed graphically and
described in detail. The description is based on the remarks on UML charts in chapter 2.2.
Focus is put on situations where the conversion into tables leads to changes in the model.

The figures are taken from Oracle JDeveloper, which allows to design different diagrams and
reuse already defined tables. JDeveloper (v12.2.1) was used to design the database schema
and extract SQL DDL scripts automatically for Oracle databases. It is a freeware IDE by
Oracle and can be downloaded at: http://www.oracle.com/technetwork/developer-tools/jdev.

For PostgreSQL databases the Open Source tool pgModeler (v0.8.2) has been used to
maintain the schema. Packed installers can be purchased at http://pgmodeler.com.br/ or the
user compiles the software from the source code available at GitHub
(https://github.com/pgmodeler/pgmodeler).

Starting from version 3.0.0 of the 3DCityDB the corresponding schema modelling projects
are shipped with the release and can be edited by the user to create customized SQL scripts.
However, the 3DCityDB Import/Export tool only supports the default schema, unless it is not
reprogrammed against the user’s new database schema.

2.3.3.1 Metadata Model

An overview of the relational structure of the Metadata Module is shown in Figure 28. The
table ADE serves as a central registry for all the registered CityGML ADEs each of which
corresponds to a table row and the relevant ADE metadata attributes are mapped onto the
respective columns. For example, each registered ADE shall own a globally unique 1D value
for identification purpose. This ID value could be a UUID (Universally Unique Identifier)
which can be automatically generated and stored in the column ADEID while registering the
ADE. The columns NAME and DESCRIPTION are mainly used for storing the basic
description information of each ADE. The column VERSTION denotes the version number of
an ADE and allows to distinguish different release versions. In the 3DCityDB database
schema, the database objects like tables, indexes, foreign key constrains, and sequences of a
certain ADE shall be named by starting with a unique prefix. This allows applications to
rapidly fetch out the database schema of a certain ADE using a wildcard filter. In this way, it
is possible to automatically perform some kinds of statistics on the ADE data contents stored
in the individual tables. In addition, the column XML SCHEMAMAPPING FILE is used to
store the XML-formatted schema mapping information of each ADE and is henced defined
with the CLOB data type. Another CLOB-typed column is DROP DB SCRIPT where the
SQL statements for dropping the individual ADE database schema is saved and can be easily
retrieved and carried out at the database side. Moreover, the CREATION DATE and
CREATION PERSON are two application-specific attribute columns for providing the



60 3D Geodatabase for CityGML 2019

information about who and when have operated the ADE registration process. This meta-
information is typically helpful for 3DCityDB users to accomplish the administration work
e.g. searching and cleaning up those ADEs that are outdated or registered by certain database
users.

= SCHEMA_REFERENCING
REFEREMCING _ID : NUMBER ] DATABASE_SRS
REFEREMCED_ID : NUMBER SRID - NUMBER(38, 0)
GML_SRS_MAME : VARCHAR2(1000)
UNVERSIONED TABLE

«PK=SCHEMA_REFEREMCING _PK: REFERENCING _ID, REFERENCED_ID
«FK=SCHEMA_REFEREMCING _FK1: REFERENCING _ID
«FK=SCHEMA_REFERENCING _FK2: REFERENCED_ID

«PK=DATABASE_SRS_PK: SRID

ol ol ] ADE
D - NUMBER
ADEID : VARCHAR2{2586)
NAME : VARCHAR2(1000)
ApE o | DESCRIPTION : VARCHAR2(4000)
~ o VERSION : VARCHAR2(50)
0.4 |DBPREFIX: VARCHAR2(10)
¥ML_SCHEMAMAPPING _FILE : CLOB
DROP_DB_SCRIPT : CLOB
CREATION_DATE : TIMESTAMP WITH TIME ZONE
CREATION_PERSON : VARCHAR2{256)
=PHsADE_PK: ID
REFERENCED ID | 1 | REFERENCING_D
4 $
B SCHEME ADED $ 0.1
ID : NUMBER -
IS_ADE_ROOT : NUMBER{1, 0)
CITYGML_VERSION : YARCHAR2(50)
¥ML_NAMESPACE_URI : VARCHAR2(4000)
XML_NAMESPACE_PREFIX : VARCHAR2(50)
XML_SCHEMA_LOCATION : \VARCHAR2(4000) D . . .
MML_SCHEMAFILE : BLOB D D ]
I-(ML_SC.HEMAFILE_T‘V'PE | VARCHARZ2(256) . ] AL
ADE_ID : NUMBER D - NUMEER
IS_ADE_CLASS : NUMBER(1, 0)
<PK»>SCHEMA_PK: ID IS_TOPLEVEL : NUMBER(1, 0) 0.4
<FKSCHEMA_ADE FIt: ADE_ID CLASSNAME : VARCHAR2(256) |
TABLEMAME : VARCHARZ{30) SUPERCLASS ID
SUPERCLASS _ID : NUMBER -
4 BASECLASS_ID : NUMBER
1 SCHEMA_ID ADE_ID : NUMBER 0.1

OBJECTCLASS 1D «PH=0BJECTCLASS _PK: ID

——*# :FK>0BJECTCLASS_ADE_FK: ADE_D
1 |«FKsOBJECTCLASS_BASECLASS_FK: BASECLASS_ID
<FK>0BJECTCLASS _SUPERCLASS_FK: SUPERCLASS D

BASECLASS_ID

* o]

5] SCHEMA_TO_OBJECTCLASS
SCHEMA_ID : NUMBER
OBJECTCLASS_ID : NUMBER

=PH=SCHEMA_TO_OBJECTCLASS_PK: SCHEMA_ID, OBJECTCLASS_ID
«FK=SCHEMA_TO_OBJECTCLASS_FK1: SCHEMA_ID
«FK=SCHEMA_TO_CBJECTCLASS _FKZ: OBJECTCLASS_ID

CHILD_ID$ 1 PARENT_ID 1

.

D +| ID

AGGREGATION_INFO
CHILD_ID : NUMBER

PARENT_ID : NUMBER

JOIN_TABLE_OR_COLUMN_MAME : VARCHAR2(30)

MIN_OCCURS : NUMBER

MAX_OCCURS : NUMBER

15 COMPOSITE : NUMBER{1, 0)
<P AGGREGATION_NFO_PK: CHILD_ID, PARENT_ID, JOIN_TABLE_OR_COI
<FK3AGGREGATION_INFO_FK1: CHILD_ID

«FH=AGGREGATION_INFO_FKZ: PARENT_ID

Figure 28: Technical implementation of the 3DCityDB Metadata Module in a relational diagram

A CityGML ADE may consist of multiple application schemas one of which should be the
root schema referencing the others. Such dependency information along with the meta-
information of the individual schema are stored in two tables, namely SCHEMA and
SCHEMA REFERENCING. The SCHEMA REFERENCING table is an associative table which



3D Geodatabase for CityGML 2019 61

contains two foreign key columns REFERENCED ID and REFERENCING ID to link the
respective referencing and referenced schemas. In the table SCHEMA, the flag attribute
IS ADE ROOT is used for denoting the root schema that directly or indirectly references all
the other ADE schemas of an ADE. In this way, the dependency hierarchy of the ADE
schemas can be fully represented in a relational model to facilitate the reconstruction of the
original schema relations through user applications. For each schema, its meta-information
such as the schema location, namespace, namespace prefix, source XML schema definition
file, as well as the file type (e.g. plain XML text or archived) of the schema can also be stored
in the further columns of the SCHEMA table. The column CITYGML VERSION refers to the
consideration that an ADE schema may have two different versions, because they can be
defined based on both CityGML version 1.0.0 and 2.0.0 at the same time.

The table OBJECTCLASS is a central registry for enumerating not only the standard
CityGML classes but also the classes of the registered ADEs. Each class is assigned with a
globally unique numeric ID for querying and accessing the class-related information. As
explained in the section 2.3.1.2, the ID values ranging from 0 to 113 have already been
reserved for the standard CityGML classes. Thus, the ID values of the registered ADE classes
must be larger than 113. Concerning the situation that more additional feature classes might
be introduced into the future versions of the CityGML standard, a certain range of integer
values must be preserved and shall not be used for ADEs. Therefore, for each ADE, it is
recommended to assign its classes with a set of relatively large integer values which can be
incrementally sequenced with an initial value of 10000. In order to avoid the class ID conflict,
each ADE shall own a certain large value range which can be centrally maintained and
organized by an official community like the 3DCityDB group. The OBJECTCLASS table also
contains a few additional columns like the IS ADE CLASS which is a flag attribute to
denote which classes are belonging to ADEs. Another column named TABLENAME refers to
the table name of a CityGML or ADE class and provides the basic information about model
mapping. The last two columns SUPERCLASS ID and BASECLASS ID are two foreign
key columns of the ID column for representing the inheritance hierarchy of all the CityGML
and ADE classes in a relational structure.

In addition to the inheritance relationship, the aggregation relationship between CityGML and
ADE classes can also be represented within a 3DCityDB instance by means of the table
AGGREGATION_ INFO. Its first two columns CHILD ID and PARENT ID are two foreign
key columns which point to the primary key column of the table OBJECTCLASS to reflect
the two related classes. The aggregation or composition relationship between each pair of
classes can be distinguished by using the flag attribute IS COMPOSITE whose value can
either be O (aggregation) or 1 (composition). In 3DCityDB, each aggregation/composition is
logically mapped onto a foreign key column or an associative table for joining the two
respective class tables. This meta-information can also be stored in the table
AGGREGATION INFO using its column JOIN TABLE OR COLUMN NAME. In addition,
the multiplicity of the individual aggregation/composition are stored in the two numeric
columns MIN OCCURS and MAX OCCURS. In case of a 0..* relationship where the value of
the multiplicity end is unbounded, the value in the column MAX OCCURS shall be set NULL.



62 3D Geodatabase for CityGML 2019

2.3.3.2 Core Model
CITYOBJECT, CITYOBJECT_SEQ

All CityObjects (and instances of the subclasses like Buildings etc.) are represented by tuples
in the table CITYOBJECT. The fields are identical to the attributes of the corresponding
UML class, plus additional columns for metadata like LAST MODIFICATION DATE,
UPDATING PERSON, REASON FOR UPDATE and LINEAGE.

The bounding box (gml:Envelope) is stored as rectangular geometry using five points, that
join the minimum and maximum X, y and z coordinates of the bounding box and define it
completely. For backwards compatibility reasons (to Oracle 10g), the envelope cannot be
stored as a volume.

Figure 29: The CityObject’s envelope specified by two points with minimum and maximum coordinate values
(left: black points) is stored as a 3D rectangle (right: black polygon using five points)

In order to identify each object, a unique identifier is essential. Therefore, the column GMLID
stores the gml:id value of every city object. But since gml:ids cannot be guaranteed to be
unique over different CityGML files, the column GMLID CODESPACE is provided in
addition. It may contain, for instance, the full path to the imported CityGML file containing
the object. The combination of GMLID and GMLID CODESPACE should be ensured to be
unique for each CityObject.

The attributes NAME or NAME CODESPACE can contain more than one gml:name property.
In this case they have to be separated by the string ' —-/\—-- ' (more details on the following
page). The CityGML exporter will then create multiple occurrences of <gml:name>
elements.

The attribute OBJECTCLASS ID provides information on the class affiliation of the
CityObject. This helps to identify the proper subclass tables.

The next free ID value for the table CITYOBJECT is provided by the database sequence
CITYOBJECT SEQ. This ID is also reused in the separate tables for the different thematic
features.



3D Geodatabase for CityGML 2019 63

CITYMODEL, CITYMODEL_SEQ

CityObject features may be aggregated to a single CityModel. A CityModel serves as root
element of a CityGML feature collection. In order to provide a unique identifier in table
CITYMODEL, the next available ID value is provided by the sequence CITYMODEL SEQ.

EXTERNAL_REFERENCE, EXTERNAL_REF_SEQ

The table EXTERNAL REFERENCE is used to store external references; the foreign key
CITYOBJECT ID refers to the associated CityObject. The sequence EXTERNAL REF SEQ
provides the next available ID value for EXTERNAL REFERENCE.

CITYOBJECTGROUP, GROUP_TO_CITYOBJECT

The aggregation concept described in paragraph 2.1.1 is realized by two tables. The n:m
relationship between an object group (table CITYOBJECTGROUP) consisting of city objects
contained in CITYOBJECT is realized by the table GROUP_TO CITYOBJECT, which
associates the 1Ds of both tables. Table 2 shows an example, in which two buildings are
grouped to a hotel complex.

CITYOBJECTGROUP (excerpt)

CLASS_ FUNCTION_ USAGE_
B bss copespace | TUNCTION 1 copEspacE JBCE CODESPACE
1 NULL NULL Building group | NULL Hotel NULL
GROUP_TO_CITYOBJECT
CITYOBJECT_ID CITYOBJECTGROUP_ID ROLE
2 1 Main building
4 1 Annex
CITYOBJECT (excerpt)
ID | OBJECTCLASS_ID| GML_ID | ENVELOPE CREATION_DATE TERM&':#E'ON—
7 76 Build1632 | GEOMETRY | 2015-02-02 09:26:07.441+01 | NULL
4 26 Build1633 | GEOMETRY | 2015-02-02 09:26:07.441+01 | NULL
1 23 Group1700 NULL 2015-02-02 09:26:07.441+01 | NULL

Table 2: Cityobjectgroup tables

For attributes CLASS, FUNCTION and USAGE there is an additional CODESPACE column
in order to specify the source of code lists used for values (e.g. by a globally unique URL). As
a CityGML feature like CityObjectGroup can have multiple instances of attributes class,
function and usage but only one target column exist in the table, values are separated by the
string sequence '--/\-- ". The CityGML exporter will then create multiple occurrences of
corresponding elements. Normalization rules were not applied in this case in order to avoid
many joins when querying all information of building objects. Array types weren’t used either
as their implementation varies between different database systems.

This concept applies to all CityGML features and can therefore be found in every object table
(except for boundary surfaces of buildings, bridges and tunnels). They do not appear once in



64 3D Geodatabase for CityGML 2019

the CITYOBJECT table, because they are belonging to the namespace of a certain thematic
module and should be stored along with other attributes of that feature.

=]

atables

CITYWODEL
D : NUWBER
GLID : VARCHAR2(256) = atables
(GILID_CODESPACE : VARCHAR2(1000) CITYOBJECT_WENBER
NANE | VARCHAR2(1000) CITYMODEL D : NUMBER
NANE_CODESPAGE: VARCHAR2(4000) CITYOBJECT 1D NUMBER:

DESCRIPTION: VARCHAR2{4000)

ENVELOPE : MDSYS.SDO_GEOMETRY

CREATION_DATE : TIMESTAMP WITH TIME ZONE 1
TERMNATION_DATE : TIMESTAMP WITH TIME ZONE
LAST_MODIFICATION_DATE : TIMESTAMP WITH TIME ZONE
UPDATING_PERSCN : VARCHAR2(256)

REASON_FOR_UPDATE : VARCHAR2(4000)

LINEAGE : VARCHAR2(258)

* eI CITYOBJECT_MEMBER _PIC: CITYMODEL D, CITYOBJECT_ID
(<FIGCITYOBUECT_MEMBER_FIC: CITYOBJECT_ID
(<FIECITYOBJECT_MEMBER_FIc1: CITYMODEL_D

<PIG>CITYMODEL PI: D
=]
ID : NUMBER

(OBJECTCLASS D : NUMBER
(CLASS : VARCHAR2(256)

atables
CITYOBJECTGROUP

1
(CLASS_CODESPACE : VARCHAR2(4000)

FUNCTION : VARCHAR2(1000) (5] CIT“%‘S@?ECT
FUNCTION_CGDESPACE : VARGHAR2(4000)

USAGE : VARCHARZ(1000) ID: NUMBER

USAGE_CODESPACE : VARCHAR2(4000) g;ﬁ;’iﬁzﬂ%ﬁgfﬁ
[BREP D NUMBER ]

' § . 3pciyDB GHLD_CODESPACE | VARCHAR2(1000
(OTHER_GEOM : MDSYS.SD0_GECMETRY GROUP_TO. ATYoBMECT e 200001 o1
PARENT_CITYOBLECT_ID: NUNBER

- - NAME_CODESPACE : VARCHARZ4000)

DESCRPTION : VARCHAR2(4000)
ENVELOPE : MDSYS.SDO_GEOMETRY

(CITYOBJECT_ID:: NUMBER
(CITYOBJECTCROUP_D : NUMBER
IROLE : VARCHAR2(256)

. | CREATION DATE : TWESTAUR WITH TIVE ZONE
- TERNINATION_DATE: TMESTAVP WITH TIVE ZONE \
- = = RELATIVE_TO_TERRAIN: VARCHAR2(256) | S
|<PK» GROL_TO_CITYOBUECT_PK: CITYOBJECT_D, CITYOBJECTGROLP_D
|<PKs CITVOB.ECTGROLP_PK: D gt il dneMausdd = RELATIVE_TO_WATER : VARCHAR2(256)
(it GROLP_BREP_Fi: BFEP_D il NS AR I L LAST_HODFICATION_DATE : TMESTAWR WITH TIVE ZONE
\<FIG>GROUP_CITYOBJECT FI: D [ = = - UPDATING_PERSON : VARCHAR2(256)
(t GROLP_OBUECTCLASS K OBJECTCLASS D REASON_FOR_UPDATE : VARCHARZ(4000)
|<FK» GROL_PARENT_CITYOB_FI: PARENT_CITYOBJECT_ID LINEAGE : VARCHAR2(256)
XML_SOURCE: CLOB
0.1
'
<PHaCITYOBUECT PI: D
FKaCIT YOBJECT_OBUECTCLASS FI< OBIECTCLASS_D
x o1 o1 |4
0.1
= atables.
SURFACE_GEONETRY
D NUMBER
GHLID : /ARCHAR2(258)
(GNLID_CODESPACE : VARCHARZ(1000)
PARENT_ID : NUMBER
ROOT_D: NUWBER
w0 i} stables =] tables
[S-SOLID: NUMBER(1, 1) EXTERNAL_REFERENCE GENERALIZATION
[ oomaSTEHNNAE (1) ID: NUMBER CITYOBJECT D : NUMBER
IS _TRIANGULATED : NUMEER(, 0) IMEER -
o XU NMEERCT prosts. varcrdi) GENERALIZES_TO_ID : HUMBER
IS _REVERSE: NUMBER(1, 0) : (4000)
GEOWETRY : MDSYS.SD0_GEOMETRY e
SOLID_GEONETRY : NDSYS SDO_GEOMETRY B
a3 SD0_GEONETRY <PKAGENERALIZATION_PI: CITYOBUECT_ID, GENERALIZES_TO_D
B <FHaGENERAL_CITYOBJECT_FK: CITYOBJECT_D
<FKoGENERAL_GENERALLZES TO_FK: GENERALIZES_TO_ID
I ReSURPACE GEOWETAY P B . (PKAEXTERNAL _REFERENCE_PIC D

««FK»SURFACE_GEOM_CITYOBJ_FK: CITYOBJECT_D [¢FHEXT_REF_CITYOBJECT_FK: CITYORECT I

\<FIK>SURF ACE_GEOM_PARENT_FI<: PARENT_ID

FISURFACE GEOU_RO0T_Fic ROOT_D
. o1 o

Figure 30: Database schema of the CityGML core elements
2.3.3.3 Tables for geometry representation

The representation of the geometry stored in table SURFACE GEOMETRY differs

substantially from the UML chart explained in the CityGML specification; nevertheless, it
offers about the same functionality.

SURFACE_GEOMETRY, SURFACE_GEOMETRY_SEQ

In the database schema the geometry consists of planar surfaces which correspond each to one
entry in the table SURFACE GEOMETRY. The surface-based geometry is stored as attribute
GEOMETRY (in each case exactly one planar polygon, possibly including holes). The implicit
geometry is stored as attribute IMPLICIT GEOMETRY. The volumetric geometry is stored
as attribute SOLID GEOMETRY and its boundary surfaces (outer shell) will be stored as
attribute GEOMETRY as well. Any surface may have textures or a colour on both sides.

Textures are stored within the tables which implement the appearance model (cf. chapter
2.2.3).



3D Geodatabase for CityGML 2019 65

The geometry information in the fields GEOMETRY and IMPLICIT GEOMETRY of the table
SURFACE GEOMETRY is limited as follows:

Geometry storage in Surface Geometry - polygonal geometry

Oracle PostGIS

e SDO GTYPE must have the type e Only POLYGON 7 is allowed, i.e. a
Polygon, i.e. a polygon with 3D polygon with 3D coordinates
coordinates (SDO GTYPE = 3003), « Polygons might have holes

e SDO ETYPE must be 1003/2003 e The IMPLICIT GEOMETRY column
with SDO INTERPRETATION = 1 has no SRID defined. Thus, entries
(i.e. po[ygon with 3D coordinates in in that column will have the SRID 0
the boundary, bounded just by line automatically

segments, possibly including holes)

e In addition Oracle allows the
representation of a rectangle by
two corner points
(sbo_ETYPE=1003/2003, with
SDO_INTERPRETATION = 3)

e SDO SRID of implicit geometries
can be any SRID Oracle supports. No
spatial index is defined on the
column by default.

Table 3: Storage of polygonal geometry

A solid is the basis for 3-dimensional geometry. The extent of a solid is defined by the
boundary surfaces (outer shell). A shell is represented by a composite surface, where every
shell is used to represent a single connected component of the boundary of a solid. It consists
of a composite surface (a list of OrientableSurfaces) connected in a topological cycle. Unlike
a ring, a shell's elements have no natural sort order. Like rings, shells are simple. The
geometry in the field SOLID GEOMETRY of the table SURFACE GEOMETRY is limited as
follows:



66 3D Geodatabase for CityGML 2019

Geometry storage in Surface Geometry - 3D geometry

Oracle PostGIS

Only POLYHEDRALSURFACE is
allowed, i.e. the outer shell of a
solid with 3D coordinates

A simple polyhedral surface can be
represented by using several
polygons as its boundary

e SDO GTYPE must have the type | e
Solid, i.e. a solid with 3D
coordinates (SDO_GTYPE = 3008)

e SDO ETYPE must be 1007 (simple | *
solid) or 1008 (composite solid).

e A simple solid can be represented
by using several polygons as its
boundary (SDO ETYPE=1007, with
SDO_INTERPRETATION =1).

e The composite solid can be
constructed with a number of
simple solids, e.g. a composite
solid with 4 simple solids
(Sbo_ETYPE=1008, with
SDO INTERPRETATION =4)

Table 4: Storage of 3D geometry

Surfaces can be aggregated to form a complex of surfaces or the boundary of a volumetric
object. The aggregation of multiple surfaces, e.g. F1to Fs, (IDs 6 to 10 in Figure 31 / Figure
32) is realized the way that the newly created surface tuple Fn+1 (ID 2) is not assigned a geo-
metry (cf. Table 5). Instead, the PARENT 1D of the surfaces F; to Fn refer to the ID of Fn.1.

Geometry Root
ID=1
ROOT_ID=1
IS_SOLID=1
IS_COMPOSITE=0

LoD1 Surface
ID=2
PARENT_ID=1
ROOT_ID =1
IS_SOLID=0
IS_COMPOSITE=1

[———----

Surface 3 Surface 4 Surface 5 Surface 6 Surface 7
ID=6 ID=7 ID=8 ID=8 ID=10
PARENT_ID=2 PARENT_ID=2 PARENT_ID=2 PARENT_ID=2 PARENT_ID=2
ROOT ID =1 ROOT_ID =1 ROOT ID =1 ROOT_ID =1 ROOT_ID =1
IS_SOLID=0 IS_SOLID=0 IS_SOLID=0 IS_SOLID=0 IS_SOLID=0
IS COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0

Figure 31: Geometry hierarchy for the solid geometry shown in Figure 32

In addition, a further tuple (ID 1) is introduced, which represent the solid and defines the root
element of the whole aggregation structure. Each surface references to its root, using the
ROOT_ID attribute. This information has big influence on the system performance, as it
allows to avoid recursive queries. If e.g. the retrieval of all surface elements forming a
specific building is of importance, simply those tuples have to be selected which contain the



3D Geodatabase for CityGML 2019 67

related ROOT ID. On the downside there also follows the limitation that each tuple in
SURFACE GEOMETRY can only belong to one aggregate.

Various flags characterise the type of aggregation: IS TRIANGULATED denotes a
TriangulatedSurface, IS SOLID distinguishes between surface (0) and solid (1), and
IS COMPOSITE defines whether this is an aggregate (e.g. MultiSolid, MultiSurface) or a
composite (e.g., CompositeSolid, CompositeSurface).

Based on these flags the geometry types listed in 5 can be distinguished. To distinguish a
MultiSolid from a MultiSurface its child elements have to be analysed: In case the child is a
Solid, the geometry can be identified as MultiSolid.

et . . o SOLID_

isSolid | isComposite | isTriangulated | Geometry GEOMETRY
E‘;lcyti‘;g’lg”a”gle’ O O O GEOMETRY WELE
MultiSurface O O O NULL NULL
CompositeSurface O 4| O NULL NULL
TriangulatedSurface O O 4| NULL NULL
Solid 4} O O NULL GEOMETRY
MultiSolid O O O NULL NULL
CompositeSolid 4} 4} O NULL GEOMETRY

Table 5: Attributes determining aggregation types

Aggregated surfaces can be grouped again with other (compound) surfaces, by generating a
common parent. This way, arbitrary aggregations of Surfaces, CompositeSurfaces, Solids,
CompositeSolids can be formed. Since all tuples in an aggregated geometry refer to the same
ROOT ID all tuples can be retrieved efficiently from the table by selecting those tuples with
the same ROOT ID.

The aggregation schema allows for the definition of nested aggregations (hierarchy of
components). For example, a building geometry (CompositeSolid) can be composed of the
house geometry (CompositeSolid) and the garage geometry (Solid), while the house’s
geometry is further decomposed into the roof geometry (Solid) and the geometry of the house
body (Solid).

In addition, the foreign key CITYOBJECT ID refers directly to the CityGML features to
which the geometry belongs. In order to select all geometries forming the city object one only
has to select those with the same CITYOBJECT ID.

In order to provide a unique identifier in table SURFACE GEOMETRY, the next available ID
value is provided by the sequence SURFACE GEOMETRY SEQ.



68 3D Geodatabase for CityGML 2019

Example: The geometry shown in the figure below consists of seven surfaces which form a
volumetric object. In the table it is represented by the following rows:

Surface Number @

Figure 32: LoD 1 building - closed volume bounded by a CompositeSurface which consists of single polygons

SURFACE_GEOMETRY

PARENT_ | ROOT_ IS_ IS_ SOLID_
i Calkl ID ID | SOLID | COMPOSITE CEO R GEOMETRY
1 | UUID_lod1 NULL 1 1 0 NULL GEOMETRY

for Solid

2 | lod1Surface 1 1 0 1 NULL NULL
3 Left1 2 1 0 0 GEOMETRY for surface 3 NULL
4 Front1 2 1 0 0 GEOMETRY for surface 4 NULL
5 Right1 2 1 0 0 GEOMETRY for surface 5 NULL
6 Back1 2 1 0 0 GEOMETRY for surface 6 NULL
7 Roof1 2 1 0 0 GEOMETRY for surface 7 NULL

Table 6: Excerpt of table SURFACE GEOMETRY representing the example given in Figure 32

In addition, two further attributes are included in SURFACE_GEOMETRY: IS XLINK and
IS _REVERSE.

IS_XLINK

CityGML allows for sharing of geometry objects between different geometries or different
thematic features using the XLink concept of GML3. For this purpose, the geometry object to
be shared is assigned an unique gml:id which may be referenced by a GML geometry
property element through its xlink:href attribute. This concept allows for avoiding data
redundancy. Furthermore, CityGML does not employ the built-in topology package of GML3
but rather uses the XLink concept for the explicit modelling of topology (see [Groger et al.
2008], p. 25).

Although an XLink can be seen as a pointer to an existing geometry object the
SURFACE GEOMETRY table does not offer a foreign key attribute which could be used to
refer to another tuple within this table. The main reason for this is that the referenced tuple
typically belongs to a different geometry aggregate, e.g. a different gml:Solid object, and thus
contains different values for its ROOT ID and PARENT ID attributes. Therefore, foreign
keys would violate the aggregation mechanism of the SURFACE GEOMETRY table.

The recommended way of resolving of XLink references to geometry objects requires two
steps: First, the referenced tuple of the SURFACE GEOMETRY table has to be identified by



3D Geodatabase for CityGML 2019 69

searching the GMLID column for the referenced gml:id value. Second, all attribute values of
the identified tuple have to be copied to a new tuple. However, the ROOT ID and
PARENT ID of this new tuple have to be set according to the context of the referencing
geometry property element.

Please note:

1. If the referenced tuple is the top of an aggregation (sub)hierarchy within the
SURFACE GEOMETRY table, then also all nested tuples have to be recursively
copied and their ROOT IDand PARENT ID have to be adapted.

2. Copying existing entries of the SURFACE GEOMETRY table results in tuples sharing
the same GMLID. Thus, these values cannot be used as a primary key.

When it comes to exporting data to a CityGML instance document, XLink references can be
rebuilt by keeping track of the GMLID values of exported geometry tuples. Generally, for
each and every tuple to be exported it has to be checked whether a geometry object with the
same GMLID value has already been processed. If so, the export routine should make use of
an XLink reference.

However, checking the GMLID of each and every tuple may dramatically slow down the
export process. For this reason, the IS XLINK flag of the SURFACE GEOMETRY has been
introduced. It may be used to explicitly mark just those tuples for which a corresponding
check has to be performed. The IS XLINK flag should be used in the following manner. The
Importer/Exporter provides a corresponding reference implementation.

1. During import

a. By default, the IS XLINK flag is set to “0”.

b. If existing tuples have to be copied due to an XLink reference, IS XLINK has to
be set to “1” for each and every copy. Please note, that this rule comprises all
copies of nested tuples.

c. Furthermore, IS XLINK has to be set to “1” on the original tuple addressed by
the XLink reference. If this tuple is the top of an aggregation (sub)hierarchy,
IS XLINK remains “0” for all nested tuples.

2. During export

a. The export process just has to keep track of the GMLID values of those geometry
tuples where IS XLINK is set to “1”.

b. When it comes to exporting a tuple with IS XLINK set to “1”, the export process
has to check whether it already came across the same GMLID and, thus, can make
use of an XLink reference in the instance document.

c. Foreach tuple with IS XLINK=O0 no further action has to be taken.

Especially due to (2c), the IS XLINK attribute helps to significantly speed up the export
process when rebuilding XLink references. Please note, that this is the only intended purpose
of the IS XLINK flag.



70 3D Geodatabase for CityGML 2019

IS_REVERSE

The Is REVERSE flag is used in the context of gml:OrientableSurface geometry objects.
Generally, an OrientableSurface instance cannot be represented within the
SURFACE GEOMETRY table since it cannot be encoded using the flags IS SOLID,
IS COMPOSITE, and IS TRIANGULATED (cf. Table 5). However, the IS REVERSE flag
is used to encode the information provided by an OrientableSurface and to rebuild
OrientableSurfaces during data export.

According to GML3, an OrientableSurface consists of a base surface and an orientation. If the
orientation is “+”, then the OrientableSurface is identical to the base surface. If the orientation
is “-*“, then the OrientableSurface is a reference to a surface with an up-normal that reverses
the direction for this OrientableSurface.

During import, only the base surfaces are written to the SURFACE GEOMETRY table. The
following rules have to be obeyed in the context of OrientableSurface:

1. If the orientation of the OrientableSurface is “-, then

a. The direction of the base surface has to be reversed prior to importing it (generally,
this means reversing the order of coordinate tuples).

b. The IS REVERSE flag has to be set to “1” for the corresponding entry in the
SURFACE _GEOMETRY table.

c. If the base surface is an aggregate, then steps (a) and (b) have to be recursively
applied for all of its surface members.

2. If the OrientableSurface is identical to its base surface (i.e., if its orientation is “+”),
then the base surface can be written to the SURFACE GEOMETRY table without
taking any further action. The IS REVERSE flag has to be set to “0” (which is also
the default value).

3. Please note, that it is not sufficient to just rely on the gml:orientation attribute of an
OrientableSurface in order to determine its orientation since OrientableSurfaces may
be arbitrarily nested.

Flipping the direction of the base surface in step (1a) is essential in order to guarantee that the
objects stored within the GEOMETRY column are always correctly oriented. This enables
applications to just access the GEOMETRY column without having to interpret further
attributes of the SURFACE GEOMETRY table. For example, in the case of a viewer
application this allows for a fast rendering of a virtual 3d city scene.

When exporting CityGML instance documents, the IS REVERSE flag can be used to rebuild
OrientableSurface in the following way:

1. If the IS REVERSE flag is set to “1” for a table entry, the exporter routine has to
reverse the direction of the corresponding surface object prior to exporting it (again,
this means reversing the order of coordinate tuples).

2. The surface object has to be wrapped by a gml:OrientableSurface object with
gml:orientation="-".



3D Geodatabase for CityGML 2019 71

3. If the surface object is an aggregate, its surface members having the same value for
the IS REVERSE flag may not be embraced by another OrientableSurface. However,
if the IS REVERSE value changes, e.g., from “1” for the aggregate to “0” for the
surface  member, also the surface member has to be embraced by a
gml:OrientableSurface according to (2). Since there might be nested structures of
arbitrary depth this third rule has to be applied recursively.

Like with the IS XLINK flag, the Importer/Exporter tool provides a reference
implementation of the IS REVERSE flag.

2.3.3.4 Appearance Model
APPEARANCE, APPEARANCE_SEQ

The table APPEARANCE contains information about the surface data of objects (attribute
DESCRIPTION), its category is stored in attribute THEME. Since each city model or city
object may store its own appearance data, the table APPEARANCE is related to the tables for
the base classes CityObject and CityModel by two foreign keys which may be used
alternatively. The classes Appearance and _SurfaceData represent features, which can be
referenced by GML identifiers. For this reason, the attributes GMLID and
GMLID CODESPACE were added to the corresponding tables.



72

3D Geodatabase for CityGML 2019

= dables
CITYMODEL

D NUMBER

SMLID : VARCHAR2(258)

SMLID_CODESPACE : VVARCHAR2(1000)

NAME : VARCHAR2(1000)

MAME_CODESPACE : \/ ARCHAR2(4000)

JESCRPTION : VARCHAR2(4000)

ENVELOPE : MDSY'S SDO_GEQMETRY

CREATION_DATE : TMESTAMP VTH TIME ZONE
TERMINATION_DATE : TMESTAMP VWITH TIME ZONE
_AST_MODIFICATION_DATE : TIMESTAMP WITH TME ZONE
UPDATING_PERSON : VVARCHARZ2(258)
REASON_FOR_UPDATE : \/ARCHAR2(4000)

INEAGE : VARCHAR2(258)

PICSCITYMODEL_PK: ID

=] <tablen
SURFACE_DATA
D: NUVBER
SHLID : VARCHAR2(256)
3WLID_CODESPACE : VARCHARZ(1000)
MAME VARCHAR2(1000)
NAME_CODESPACE : VARCHAR2(4000)
OESCRPTION : VARCHAR2(4000)
S_FRONT - NUMBER(1, 0)
BJECTCLASS_ID - NUMBER:
X3D_SHININESS : BINARY_DOUBLE
X3D_TRANSPARENCY : BNARY_DOUBLE
¥3D_AMBEENT_INTENSITY : BINARY _DOUBLE
3D_SPECULAR_COLCR : VARCHAR2(258)
X3D_DIFFUSE_COLOR : VARCHAR2(256)
X3D_EMISSIVE_COLOR : VARCHAR2(256)
¥3D_JS_SMOOTH : NUMBER(1,0)
TEX_MAGE_D : NUMBER
TEX_TEXTURE TYPE : VARCHAR2(256)
TEX_WRAP_ODE : VARCHAR2(256)
TEX_BORDER_COLOR : VARCHAR2(256)
GT_PREFER_WORLDFLE : NUMBER(1, 0}
ST_ORENTATION : VARCHAR2(256)
GT_REFERENCE_POINT : DSYS.SDO_GEOMETRY

PISURFACE_DATA_PK: ID
FKsSURFACE_DATA_OBJCLASS FK: OBJECTCLASS_ID
FK>SURFACE_DATA_TEX_MAGE_FI: TEX_MAGE_ID

0.1

[=] <ables
TEX_MAGE

D: NUVBER

TEX IMAGE_URI: VARCHAR2(4000)

TEX_IMAGE DATA : BLOB

TEX_MIME _TYPE : VARCHAR2(256)

TEX_MIME_TYPE_CODESPACE : VARCHAR2(4000)

SPICSTEX_IMAGE_PIC: ID

=] aables.
CITYOBJECT_MEMBER
CITYMODEL D : NUMBER
CITYOBJECT_ID : NUMBER

I ———

‘4PKsCITYOBJECT_MEMBER_PIC CITYMODEL D, CITYOBJECT_D
«FKsCITYOBJECT_MEMBER_FIC CITYOBJECT_ID
<FIGCITYOBJECT_MEMBER_FIK1: CITYMODEL D

= ables
cIryoBIECT

D: NUVEER
OBJECTCLASS 1D NUMBER
GILID : VARCHARZ(256)
GILID_CODESPACE : VARCHARZ(1000)
MANE - VARCHAR2(1000)
NANE_CODESPACE | VARCHAR2(4000)

1 4 DESCRPTION : VARCHAR2(4000)
ENVELOPE : MDSY5 5D0_GEOMETRY
CREATION_DATE - TIMESTAMP WITH TIVE ZONE
TERMINATIGN_DATE : TRESTAMP WITH TIVE ZONE
RELATIVE_TO_TERRAI : VARCHAR2(258)
RELATIVE_TO_WATER : VARCHAR2(256)
LAST_MODIFICATION_DATE : TWESTAWP ITH THE ZONE
UPDATING_PERSON : VARCHAR2(256)
REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)
XIML_SOURCE: CLOB

0.4

= <tablen
APPEAR_TO_SLRFACE_DATA

SURFACE_DATA_D : NUMBER

APPEARANCE_ID': NUMBER:

. <PKsAPPEAR_TO_SURFACE_DATA_PK: SURFACE_DATA_ID, APPEARANCE_D
‘<FI»APPEAR_TO_SURF ACE_DATA_FK: SURFACE_DATA_ID

‘<FIC»APPEAR_TO_SURF ACE_DATA_FK1: APPEARANCE D

(=] «tables

TEXTUREPARAM
SURFACE_GEOMETRY_ID : NUMBER

1 + |1S_TEXTURE_PARAMETRIZATION : NUWIBER(1,0)

@ WORLD TO_TEXTLRE: VARCHAR2(1000)
TEXTURE_COORDINATES : MDSYS.5D0_GEOMETRY
SURFACE_DATA _ID : NUMBER

‘<PKTEXTUREPARAM_PK: SURFACE_GEOMETRY_ID, SURFACE_DATA_ID
<FITEXPARAM_GEOM_FK: SURFACE_GEOMETRY_ID
<FITEXPARAM_SURFACE_DATA_FH: SURFACE_DATA_ID

<PHCITYOBJECT_PH: ID
<FICITYOBJECT_OBJECTCLASS_FK: OBJECTCLASS_D

0.4

L] stablen
APPEARANCE
D NUVBER
* |GHLID : VARCHAR2(256)
(GILID_CODESPACE : VARCHARZ(1000)
MANE - VARCHAR2(1000)
NANE_CODESPACE | VARCHAR2(4000)
DESCRPTION : VARCHAR2(4000)
THEME : VARCHAR2(256)
CITYMODEL D : NUMBER
4 |amvosiect_o: numBer

[

<PI»APPEARANCE _PI: D
<FIC» APPEARANCE _CITYMODEL_FI: CITYMCDEL D
<FKs APPEARANCE_CITYOBJECT_FI: CITYOBJECT_D

] atables
SURFACE_GEOMETRY.

D NUMBER

GILID : VARCHAR2(256)

(GIMLID_CODESPACE : VARCHAR2(1000)
PARENT_ID: NUVBER

ROOT_ID: NUMBER

I5_SOLID : NUMBER(!, D)

IS_COMPOSITE : NUMBER(1,0)
1S_TRIANGULATED : NUMBER(1, O}

IS_XLINK: NUVEER(1, 0)

I5_REVERSE : NUMBER(1,0)

GEOMETRY : MDSY'S.SD0_GECHETRY
SOLID_GEOWETRY : MDSYS.SD0_GEOMETRY
IMPLICIT_GEOMETRY : MDSYS SDO_GEOMETRY
CITYOBJECT_D : NUMBER

s

«PHSURFACE_GEOMETRY_PK: ID

aFISURFACE_GECM_CITYCB._FI: CITYOBJECT_D
\aFIC»SURFACE_GEOM_PARENT_Fit: PARENT_D
<FIsSURFACE_GECM_ROOT_FK: ROOT_ID

01 |0

Figure 33: Appearance database schema

SURFACE_DATA, TEX_IMAGE, APPEAR_TO_SURFACE_DATA

An appearance is composed of data for each surface geometry object. Information on the data
types and its appearance are stored in table SURFACE DATA.

IS FRONT determines the side a surface data object applies to (IS FRONT=1: front face
IS_FRONT=0: back face of a surface data object). The OBJECTCLASS ID column denotes
if materials or textures are used for the specific object (values: X3DMaterial, Texture or
GeoreferencedTexture). Materials are specified by the attributes X3D xxx which define its
graphic representation. Details on using georeferenced textures, such as orientation and
reference point, are contained in attributes GT xxx. See chapter 2.2.3 for more information
on SURFACE DATA attributes or the CityGML specification [Gréger et al. 2012, p. 33-45]
which explains the texture mapping process in detail.

Raster-based 2D textures are stored in table TEX IMAGE. The name of the corresponding
images for example is specified by the attribute TEX IMAGE URI. The texture image can be
stored within this table in the attribute TEX IMAGE DATA using the BLOB data type under
Oracle and the BYTEA data type under PostgreSQL.



3D Geodatabase for CityGML 2019 73

Table APPEAR TO SURFACE DATA represents the interrelationship between appearances
and surfaces for different themes.

TEXTUREPARAM

Attributes for mapping textures to objects (point list or transformation matrix) which are
defined by the CityGML classes _TextureParameterization, TexCoordList, and TexCoordGen
are stored in the table TEXTUREPARAM.

0,0 roof.png 1,0

Figure 34: Simple example explaining texture mapping using texture coordinates

TEXTUREPARAM
SURFACE_ | IS_TEXTURE

WORLD_TO TEXTURE SURFACE
GEOMETRY _PARAME = =
D TRIZATION _TEXTURE COORDINATES _DATA_ID
7 1 NULL GEOMETRY 20

Table 7: Example for table TEXTUREPARAM

Texture coordinates are applicable to polygonal surfaces, whose boundaries are described by a
closed linear ring (last coordinate is equal to first). Coordinates are stored with a geometry
data type. The WORLD TO TEXTURE attribute defines a transformation matrix from a
location in world space to texture space. For more details see the CityGML Implementation
Specification [Groger et al. 2012].

Figure 35: Visualisation of a simple building in LoD1 and LoD2 using the appearance model. Two themes are
defined for the building and the surrounding terrain: (a) building in summertime and (b) building in wintertime



74 3D Geodatabase for CityGML 2019

Six surface representations are listed in table SURFACE DATA (cf. Table 10). First of all, a
homogeneous material is defined (ID=1), represented by a 3-component (RGB) colour value
which will be used for both appearances (summer and winter). This also applies to a general
side facade texture (ID=3, Figure 36 right) which is repeated (wrapped) to fill the entire
surface. For each of the front side, the back side and the ground two images are available:
parameterized ones for the sides (Figure 36 left and middle) and georeferenced ones for the
ground and the roof surfaces (Figure 38). The information of textures is stored in a separate
table TEX IMAGE. The coordinates for mapping the textures to the object are stored in table
TEXTUREPARAM. For the general side texture (SURFACE DATA ID=3) five coordinate
pairs are needed to define a closed ring (here: rectangle). Table SURFACE GEOMETRY
contains the information of all geometry parts that form the building and its appropriate 3D
coordinates (cf. tables on the next page).

See the following page for an example of the storage of appearances in the city database.
Figure 36 and Figure 38 show the images used for texturing a building in LoD2. In LoD1, a
material definition is used to define the wall colors of the building.

Table 8 to Table 11 show a combination of tables representing the building’s textures. There
are different images available for summer and winter resulting in two themes: Summer and
Winter. The tuples within the tables are color-coded according to their relation to the
respective theme:

e Green: only summer related data
e Light-grey: only winter related data
e Orange: both summer and winter related data

Figure 37 shows the LoD2 representation of summer appearances (theme Summer).



3D Geodatabase for CityGML 2016

75

APPEARANCE
ID |GMLID| THEME CITYMODEL_ID CITYOBJECT_ID
2 |App2 |Winter 1000

Table 8: Excerpt of table APEARANCE

The relation to the building feature is given by the foreign key CITYOBJECT ID

summer.png

SURFACE_DATA_ID = 4

Figure 36: Images for parameterized textures

b

SURFACE_DATA_ID = 6

front_back
winter.png
SURFACE_DATA_ID =3

APPEAR_TO_SURFACE_DATA

APPEARANCE_ID | SURFACE_DATA_ID

Table 9: APPEAR TO SURFACE table

facade.png
summer & winter

COMMENTS

LoD1 S

LoD1 W

LoD2 ground/roof S
LoD2 facade S
LoD2 front/back S
LoD2 ground/roof
W

LoD2 facade W
LoD2 front/back W

Figure 37: Surface geometries for the building in LoD2 (the I1Ds for LoD1 are

SURFACE_DATA

the same as in Figure 31)

ID | IS_FRONT OBJECTCLASS_ID

X3D_DIFFUSE_COLOR | TEX_IMAGE_ID

TEX_WRAP_MODE

GT_ORIENTATION

GT_REFERENCE_POINT

TEX_IMAGE

Table 10: Excerpt of table SURFACE DATA and table TEX IMAGE

TEXTUREPARAM
SURFACE_ IS TEXTURE_ WORLD_TO_ SURFACE_
GEOMETRY_ID PARA-METRIZATION TEXTURE TEXTURE_COORDINATES DATA_ID

COMMENTS

LoD 2 ground S
LoD 2 roof left S
LoD 2 roof right S
LoD 2 front S

LoD 2 back S

LoD 2 facade left S/W

LoD 2 facade right S/W

LoD2 ground W

LoD 2 roof left W

LoD 2 roof right W

LoD 2 front W

Table 11: Table TEXTUREPARAM

30 0 NULL NULL 5
16 0 NULL NULL 5
17 0 NULL NULL 5
13 1 NULL GEOMETRY 6
15 1 NULL GEOMETRY 6

LoD 2 back W
LoD1 walls S/W
LoD1 roof S/W

TEX_IMAGE_DATA TEX_IMAGE_URI

Ground_
winter.png

SURFACE_DATA ID=5

Ground_
summer.png

SURFACE_DATA_ID =8

Figure 38: Images for georeferenced textures (The
image round_winter.png is assigned to the terrain and
the roof surfaces of the building both in LoD1 and
LoD2 within the winter theme (a),
ground_summer.png within the summer theme (b))



3D Geodatabase for CityGML 2016

76

2.3.3.5 Building Model

L] “tabin
cmYCeECT

D NuvBER
CEECTELASS 10 MAGER
GULD : VARCHAR2(258)
GHLD CCOESPACE : VARCHARZI1000)
HAME . VARCHARZ(10C0)
HAME_CODESPACE : VARCHARY 400}
DESCRETICN | VARCHARI400)

4.1 BIVELORE | MDSYS SDO_GEONETRY
(CREATION_DATE : TMESTAM WITH THE Z0NE

REFERENCE ]
el aLBRARY_OBJECT:BLCB
1 RELATIVE BREP.

ctobies
MPLCT_GECHETRY

D: HMEER
MISE TPE | VARCHARY(258)
TO_LERARY - VARCHARZIADOD)

MvEER
FELATIVE_OTHER_GECH - WDS S SD0_GEOMETRY

TERMMATION DATE | TMESTAP WITH THE ZGHE
RELATIVE_TO_T + VARCHAR2(256)
RELATIVE_TO_WATER ; VARCHARD(2%)

3 LAST_MCORICATION_DATE : TIMESTAMP ViTH THE ZONE

; pERSON

LFDATHG.
REASGN_FCF_UPDATE
LIMEAGE : VARCHAR(256)
XML_SOLRCE : CLCB
L] tstier 1
;_FURNTURE
0]
OBUECTOLASS D : MUMBER LX)
CLASS  VARCHAR; <PHaCITYOBLECT.

FLUCTION : VARCHAR2(1000)
FLMCTION_CODESPACE - VARCHAR2{4000)
ISAGE | VARCHAR2(1000)
USAGE_CODESPAGE : VARCHAR{400D)
00N 1D HMEER

LED4_MELICIT_TRAHSFORMATICN  VARCHAR2(1003)

P D
«FKaOITVOBECT_OBIECTCLASS Fri OBECTOLASS D

L=} e

0 HugER
GHUD - WARCHARX258)
GMUD_CODESPACE | VARCHARI(I003)
'STREET : VARCHARZ(1000)
MUVEER : VARCHAR2(256)
255)

<PIRADDRESS.
<K= ADDRESS_TO_BLLDING FI ADORESS 1D
<FKaADDAESS TO_BLILONG_FK1: BULDNG 1D

\4PHSURFACE_GEOWETRY_PK. I

(<F¥» SURFAACE_GEOM_CITVDE_FIE CITYOSIECT D
|<FKaSURFACE_GEOW_PARENT_F¥: PARENT_D
(<P SURF ACE_GEOM_ROOT_FI: ROOT_D

0.1

IsFHAROOM_CITYORUECT_FIC D

. (X}

1]
[i] ctables

‘ e
=
S

CLASS : VARCHAR(256)

LOD2_MPLICIT_TRANSFORMATION : VARCHAR2(1090)
LOD3_MPLEIT_TRANSFORMATION : ARCHARZ(1000)
LD _MPLICIT_TRANSFORMATION : VARCHAR2(1000)

PN _ISTALLATION 71 0
|{PKSBLDG ST _BLLOMNS_FK: BULDNG 0

|eFHBLDG INST_CTYORLECT_Fic D

B INST_ROOM_Fi: ROCH

i-

ARCHAR2(256)

CLASS_CODESPACE | VARCHAR2(4000)

FUNCTION : VARCHARZI1000)

FUNCTION_CODESPACE - VARCHARZI4CC0)
000}

STOREY_HEIGHTS_ABOVE_GRCUND - VARCHAR(A000)

ISTORE ¥_HEIGHTS_AG_UNIT - ARCHARI(4000)

STORE Y¥_HEIGHTS:_EELOW_GRCLND - VARCHARIA000)

STOREY_HEIGHTS,_BG_UNIT - VARCHARZ(4000)
TERRAM_MTERSEC

|ePHABLLDRG P D

FRBULERG OTYOBECT Pt D

HABLLERIG_LOCOFODTPRINT_FF LODD FOOTRRHT_D

|FHEULDING _LOCCROGFPRINT_Fid: LODO_ROGFPRINT_D

FHGBLLORNG_LODTHSRF_FK: LODT_MULTI SURFACE
,|<FwaBULORG L001S0UD 7K LODY_SCLID_ID

|€FHRBULOIG_LODIMSRF F): LOD2 MULT|_SURFACE D

3BULDING_LOCZSCUID_FK: LOD2_SCLID_ID

|4Fs OPENNG_OBJECTCLASS_FIC OB.ECTCLASS D

PHaTHEMATIC_SURF ACE_PY: B
P THEM_SLRFACE_ELDO_INST_FIC GLLDING_ISTALLATION 0
HFHaTHEN_SLRFACE_BULDMG Fic BLLDNG B

K THEM _SLRFACE_CITYOBUECT_Fic 1D

ks THEM _SLRFACE_LODIMSRF K LOCZ JALLTL_SURFACE D
F¥sTHEM_SLRFACE_LODIMSRF FI: LO3 MLLTI_SURFACE_D

(<PHs ADDRESS_FIC D

Figure 39: Building database schema



3D Geodatabase for CityGML 2019 77

BUILDING

The building model, described in paragraph 2.2.4.2 at the conceptual level, is realised by the
tables shown in Figure 39. The three CityGML classes AbstractBuilding, Building and
BuildingPart are merged into the single table BUTILDING. They can be distinguished on
behalf of the OBJECTCLASS ID. The subclass relationship with CITYOBJECT arises from
using identical 1Ds, i.e. for each tuple in BUILDING there must exist a tuple within
CITYOBJECT with the same ID.

The component hierarchy within a building is realized by the foreign key
BUILDING PARENT ID which refers to the superordinate building (aggregate) and
contains NULL, if such does not exist. This way, a tree-like structure arises also for building
aggregates. BUILDING PARENT ID points at the predecessor in the tree. The foreign key
BUILDING ROOT 1ID refers directly to the top level (root) of a building tree. In order to
select all parts forming a building one only has to select those with the same
BUILDING ROOT ID (cf. Table 12).

BUILDING
D BUILDING_ | BUILDING_ LODO_FOOT | LODO_ROOF | LOD1_MULTI_ LOD4_
PARENT_ID ROOT_ID " | PRINT_ID PRINT_ID SURFACE_ID | *** | SOLID_ID

1 NULL 1 10 NULL NULL NULL
2 1 1 NULL NULL 20 NULL

3 1 1 NULL NULL 30 NULL

4 2 1 NULL NULL NULL 400

5 2 1 NULL NULL NULL 500

6 3 1 NULL NULL NULL 600

7 3 1 NULL NULL NULL 700

Table 12: Tree-like structure for recursive decomposition of buildings

The meaning and the name of most fields are identical to those of the attributes in the UML
diagram (cf. Figure 7). Like for CityObjectGroups there are additional CODESPACE
columns for the attributes class, function and usage. A CODESPACE column is also added
for the roofType attribute as it is specified as gml:CodeType in CityGML. For every attribute
including measure information like measuredHeight or storeyHeightsAboveGround etc. an

additional UNIT column is provided to specify the unit of measurement.

Geometry is  represented by several foreign keys LODO FOOTPRINT ID,
LODO_ROOFPRINT ID, LODx MULTI SURFACE ID (I<x<4),and LODx SOLID ID
(1 < x < 4) which refer to entries in the SURFACE GEOMETRY table and represent each
LoD’s surface geometry.

Optionally the geometry of the terrain intersection curve is stored in the attribute
LODx TERRAIN INTERSECTION (1 < x < 4) using database geometry type (see Table
13). Additional line-typed building elements such as antennas are optionally modelled by the
attribute LODx MULTI CURVE (1 < x <4, using the same database geometry like for terrain
intersection curves).



78 3D Geodatabase for CityGML 2019

Geometry storage in Building table - Intersection curves

Oracle PostGIS
e SDO GTYPE must have the type| o Only MULTILINESTRING % is
MultiCurve / MultiLine, i.e. a allowed, i.e. a composite
composite geometry of different geometry of different line string
line string segments with 3D segments with 3D coordinates
coordinates (SDO_GTYPE = 3006) e The geometry type MULTICURVE is
e SDO ETYPE must be 1 (straight not used as CityGML does not allow
line segments) as curved geometry with arcs
geometries are not allowed in
CityGML and
SDO INTERPRETATION must be 2

Table 13: Storage of composite line string geometry

THEMATIC_SURFACE

The table THEMATIC SURFACE represents thematic boundary features. CityGML class
_BoundarySurface has a number of concrete subclasses representing different types of
surfaces. One possibility would be to represent each of these classes by its own table. Here,
we choose the approach to create one table representing all those classes. No own tables for
the subclasses of _BoundarySurface were created in the relational schema; instead, the type of
the boundary surface is given by the foreign key OBJECTCLASS ID in the table
THEMATIC_ SURFACE. Allowed integer values:

e 30 (CeilingSurface)

e 31 (InteriorWallSurface)
e 32 (FloorSurface)

o 33 (RoofSurface)

e 34 (WallSurface)

e 35 (GroundSurface)

e 36 (ClosureSurface)

e 60 (OuterCeilingSurface)
e 61 (OuterFloorSurface)

If a CityGML ADE is used that extends any of the classes named above, further values for
OBJECTCLASS ID may be added by the ADE manager. Their concrete numbers depend on
the ADE registration (cf. section 6.3.3.1).

The aggregation relation between buildings and the corresponding boundary surfaces results
from the foreign key BUILDING_ID of the table THEMATIC SURFACE Which refers to the
1D of the respective building. The same applies to references between surfaces of building
installations (BUILDING INSTALLATION ID) and rooms (ROOM ID). Thematic surfaces
and the corresponding parent feature should share their geometry: the geometry should be
defined only once and be used conjointly as XLinks. The SURFACE GEOMETRY, Which for
example geometrically defines a roof, should at the same time be a part of the volume
geometry of the parent feature the roof belongs to.



3D Geodatabase for CityGML 2019 79

Example:

In Figure 40, a building geometry is shown consisting of several surface geometries enclosing
the outer building shell. Please note that the left wall (1D 5) is composed of two polygons
(1Ds 11 and 12) and that the roof is split into a left and a right part (I1Ds 20 and 21) each of
which again consists of two polygons, the roof surface and an overhanging part. In the
SURFACE GEOMETRY table (cf. Table 14), the attribute IS COMPOSITE is set to 1 for the
tuples with IDs 5, 20 and 21 characterising them as composite surfaces. The surface geo-
metries are semantically classified as roof, wall or ground surface by adding an entry into the
THEMATIC SURFACE table and linking this entry with the corresponding geometry tuple in
SURFACE GEOMETRY. In Table 15, an excerpt of the THEMATIC SURFACE table is
depicted. The tuple with ID 70 represents a RoofSurface by setting the OBJECTCLASS ID
attribute to the value 33. For its geometry, the tuple references ID 21 in the
SURFACE GEOMETRY table viathe LOD2 MULTI SURFACE ID attribute (cf. Table 15).

Figure 40: LoD2 building with roof overhangs, highlighted in red

SURFACE_GEOMETRY (excerpt)

PARENT_ | ROOT IS IS IS
ol D ID | soLiD | coMPOSITE | XLINK | CEOMETRY
3 | UUID_LoD2 NULL 3 0 0 0 NULL
5 | Left_Wall 3 3 0 1 0 NULL
11 | Left_Wall_1 5 3 0 0 0 Geometry comp (5-1) surface 11
12 | Left_Wall_2 5 3 0 0 0 Geometry comp (5-2) surface 12
13 | Front 3 3 0 0 0 Geometry surface 13
14 | Right_Wall 3 3 0 0 0 Geometry surface 14
15 | Back 3 3 0 0 0 Geometry surface 15
16 |Roof_part_1 21 3 0 0 1 Geometry surface 16
17 |Roof_part_2 20 3 0 0 1 Geometry surface 17
18 | Overhang_1 21 3 0 0 0 Geometry of overhang 18
19 | Overhang_2 20 3 0 0 0 Geometry of overhang 19
20 | Roof_right 3 3 0 1 0 NULL
21 | Roof_left 3 3 0 1 0 NULL
30 | UUID_Solid NULL 30 1 0 0 NULL
31 UUID_CS 30 30 0 1 0 NULL
32 | Roof_part_1 31 30 0 0 1 Geometry surface 16
33 | Roof_part_2 31 30 0 0 1 Geometry surface 17

Table 14: Excerpt of table SURFACE GEOMETRY. Geometry objects are stored as database geometry datatype




80 3D Geodatabase for CityGML 2019

THEMATIC_SURFACE (excerpt)

ID OBJECTCLASS_ID | BUILDING_ID ROOM_ID LOD2_MULTI_SURFACE_ID

70 || ooooo00oc 33 1 NULL 20 | coooooc

Table 15: Excerpt of table THEMATIC SURFACE

In addition to thematic boundary surfaces, assume that we also want to represent the building
volume as separate solid geometry that is stored with the building itself. For this purpose,
another tuple with ID 30 is added to the SURFACE GEOMETRY table whose IS SOLID
attribute is set to 1. This tuple is referenced from BUILDING using the LOD2 SOLID ID
attribute (cf. Table 16).

According to the CityGML specification, the surface geometries forming the solid geometry
shall reference the geometries of the thematic boundary surfaces using GML’s XLink
mechanism. Therefore, the referenced geometries have to be copied and inserted as new
tuples into SURFACE GEOMETRY. Moreover, the IS XLINK flag has to be set to 1 for the
referenced geometries and their copies (see chapter 2.3.3.3 for details). In Table 15, this is
illustrated for the geometries with ID 32 and 33, which are copies of the tuples with ID 16
and 17 respectively. Note, that the overhanging roof parts (IDs 18 and 19) are not referenced
by the solid geometry, because they are dangling surfaces and not part of the volume.

BUILDING (excerpt)

ID BUILDING_ROOT_ID | ... LOD1_SOLID_ID LOD2_SOLID_ID

1| || .ooo000000 1 Jccooooce NULL 30

Table 16: Excerpt of table BUILDING

BUILDING_INSTALLATION

The UML classes BuildingInstallation and IntBuildinglInstallation are realized by the single
table BUILDING INSTALLATION. Internal and external objects are distinguished by the
attribute OBEJCTCLASS ID (external 27, internal 28). The relation to the corresponding
parent feature arises from the foreign key BUILDING ID or ROOM ID, whereas the surface
based geometry in LoD 2 to 4 is given via the foreign keys LODx BREP ID (2 < X < 4)
referring to the table SURFACE_GEOMETRY.

Additional point- or line-typed building installation elements such as antennas can be
modelled by the attribute LODx OTHER GEOM (2 < x < 4) using the database geometry type
(any GTYPE, ETYPE etc. in Oracle and GEOMETRY 2 in PostGIS). Since CityGML 2.0.0
building installations can also be represented by using prototypes which are stored as library
objects implicitly. The information needed for mapping prototype objects to buildings
consists of a base point geometry (LODx IMPLICIT REF POINT (2 <x <4)), a transfor-
mation matrix (LODx IMPLICIT TRANSFORMATION (2 < x < 4)), which is stored as a
string, and a foreign key reference to the IMPLICIT GEOMETRY table
(LODx IMPLICIT REP ID (2 <x < 4)) where a reference to an explicit surface based
geometry in LoD 2 to 4 is saved.



3D Geodatabase for CityGML 2019 81

OPENING

Openings (CityGML class Opening) are represented by the table OPENING and are only
allowed in LoD3 and 4. No individual tables are created for the subclasses. Instead, the
differentiation is achieved by the foreign key OBJECTCLASS ID which refers to the
attribute 1D of the (meta) table OBJECTCLASS. Valid integer values are 39 (Door) and 38
(Window). If a CityGML ADE is used that extends any of the two classes Door or Window,
further values for OBJECTCLASS ID may be added by the ADE manager. Their concrete
numbers depend on the ADE registration (cf. section 6.3.3.1).

Table OPENING TO THEM SURFACE associates an opening ID in table OPENING with a
thematic surface ID in table THEMATIC SURFACE representing the m:n relation between
both tables. An address can be assigned to a door (table OPENING) by the foreign key
ADDRESS ID in the table OPENING. Furthermore, addresses may be assigned to buildings
(see table ADDRESS for detailed information).

Like with building installations openings can be modelled via implicit geometry since
CityGML 2.0.0. Thus, the OPENING table does contain the columns
LODx IMPLICIT REP ID, LODx IMPLICIT REF POINT and LODx IMPLICIT -
TRANSFORMATION, too.

ROOM

Room objects are allowed in LoD4 only. Therefore, the only keys
LOD4 MULTI SURFACE ID and LOD4 SOLID ID are referring to the table
SURFACE GEOMETRY. Additionally, the foreign keys to tables BUILDING and
CITYOBJECT are necessary to map the relationship to these tables.

BUILDING_FURNITURE

As rooms may be equipped with furniture (chairs, wardrobes, etc.), a foreign key referencing
to ROOM_ID is mandatory. The geometry of furniture objects can be described explicitly
using the attribute LOD4 OTHER GEOM representing the point- or line-typed entities or
using the foreign key LOD4 BREP ID referring to the table SURFACE GEOMETRY.
Alternatively, the geometry of furniture objects may be represented by using prototypes
(ImplicitGeometry) which are stored as library objects. Again, the information needed for
mapping prototype objects to rooms consists of a base point, a transformation matrix and a
reference to the IMPLICIT GEOMETRY table.

ADDRESS, ADDRESS_TO_BUILDING, and ADDRESS_SEQ

Addresses are realized by the table ADDRESS. The m:n relation with buildings arises from the
table ADRESS TO BUILDING which associates a building ID and an address ID. An
address can also be assigned to a door (table OPENING) by the foreign key ADDRESS ID in
the table OPENING. The same applies to addresses of bridges (incl. a table
ADRESS TO BRIDGE) and bridge openings.

The next available ID for the table ADDRESS is provided by the sequence ADDRESS SEQ.



3D Geodatabase for CityGML 2019

82

2.3.3.6 Bridge Model

nwLOT_EOkETRY Y D
PRAPLCT_GEGH_EREP._fr RELATIVE 1P

|4PsEROGE_ FLRMTLRE i O
APFSEIOGE_FLFN_BRD_FOGH - BRDSE_FT50M_D
|oFHsEROGE LR

Dot oy o€ P S0
FHABROGE_FOOM_CITYOBECT_FK. 0 .
. Lot s s o
eLanD0E 04 L0O4S0LD T LoDA S5L0
e s o
=
-] studes
I BRDGE_CONETR. ELOVENT
3
- o
vty
i N o
. [amerion uamowR0a) .
I = e s
e
=] TELASS D MAMBER
N CLASS: Vi ]
o Tmte pesgcnon s 00 v we oz
oy FLNCTIGN * VARCHARCY
[LoG,_FePmAR. LH it T Lid COESPACE : VARCHARZ4000)
. vieaiien
Lo g o e
i =
Lo 50 teaeen e
| Loow e e e o b s
i R o e m e
e pse s 2w e
oo 112 e e -
Lo o e v Los OV 1075300 GEEY
ol T AR "
ot 01| & OO_MALCT_P 0 1R mmJ;i MUMSER
= — ! T ween i Loy e o e
sy Lo Mevr e o o 50, KR T N
oo Ao poaf iosvs oo peonermy oo oo e
N ncurasmn e Leca e e pot hosvE 00 et
oo L e o hermy YTl ST
. somonce sarca T
- o L ML T CRATY <occrara007 Loz AT AT IO
e . Lo am i e :
Ejuﬁ rneEn, 0 Cr) OO ML TRANSFORMATION - VARCHAR21000) = TR N ]
& _COMPOSITE : 1.0 LOD4 _IMPLICTT_TRANSFORMATION - VARCHARZ(1000)
A e o
R 0 o .
v e, m |
s oo T e cotee BBE PD
oo e o3 T o + erp. e anoet . a0
S [rsormot corst sence e
[FTYOB.EcHp: (FKSBREGE_CONSTR_LODIBREP_FI. LOO_BREP_D PRABFIOGE LNST_D_ROOM._FI: BATGE_ROGM_D
L IIMFL_FK. LOD1_MPLKITREF 0 4F¥aBROCE JNST_BROGE_f. ERDGE O
(<FHABRDGE_CONSTR_LODQBRER FI. LOOZ_BREP 1 mm—m}iﬁ:ﬂ -
anbot coetn L comes oo el o AT Lt 100 5
o i e e . . ¢ .
NoarGeE CORTR L0ORAE P 1003 0 o et e e
Loos et e niancoe aat
Lot e «FHABRDGE_CONSTR LODMBRER FI. LOOA_BREP 1O |wa;m_r;tl.w,)ﬂ.urﬂﬂ
T - ¥ X
eFiaBROGE_CONSTR_OBACLASS Fr CBECTOLASS O ""-"’W-;;TJW LOD4_MPLETT_REP 0
. o .
o
A gEowETE D o I
G ACE Beon Y OmA e GO -
e act o o PR S

AFHoSURTACE_GEOU D01 I FOOT_0

SHERDE P ©
evoBRDGE_GT/ORECT_fI D
|4FHsEOGE LOOIMERF P LOD1_MALTI SURFACE

- pEsTC SRFACE D
14F1BFD_TEna_She_BFD_CONST_Fi:
eFHoRD_ THEM_SRF _BRD BT Fi |
<F6,6FD_THEM SFF_EFIDE I BRDGE,
<FHSBHG_THEM_SR8_GTrOR)_FK ©
M

¢ BROGE_COHSTR_ELENENT_O
X BRLCE HETALLATON D
SFGABAD_THEM SRF_ERD_ROOM K. EFS0GE_ FOCH. 1O

o

PsADERESS P D

Figure 41: Bridge database schema



3D Geodatabase for CityGML 2019 83

The bridge model, described in paragraph 2.2.4.3 at the conceptual level, is realised by the
tables shown in Figure 41. The relational schema is identical to the building schema for the
most parts except for the naming. Please, refer to the explanation of the building schema on
the previous pages for a complete understanding. The main differences to the building schema
are the following:

Bridges cannot be modelled in LoD 0. Therefore, no corresponding columns appear in
the BRIDGE table.
CityGML features belonging to bridges, such as boundary surfaces, installations,
openings, rooms and furniture, are mapped to separate specific tables and are not
stored in already existent ones (e.g. THEMATIC SURFACE, OPENING, ROOM). Thus,
values in OBJECTCLASS_ID columns are different as well. The reason for this is to
provide a schema that is as close to the UML model as possible. There are slight
differences between the building and the bridge model that would lead to ambiguous
references e.g. a boundary surface of the building namespace cannot reference to a
bridge construction element.
OBJECTCLASS_ID of table BRIDGE THEMATIC_SURFACE allows the values:
68 (BridgeCeilingSurface),
69 (InteriorBridgeWallSurface)
70 (BridgeFloorSurface),
71 (BridgeRoofSurface),
72 (BridgeWallSurface),
73 (BridgeGroundSurface),
74 (BridgeClosureSurface),
75 (OuterBridgeCeilingSurface),

o 76 (OuterBridgeFloorSurface).
If a CityGML ADE is used that extends any of the classes named above, further values
for OBUECTCLASS ID may be added by the ADE manager. Their concrete numbers
depend on the ADE registration (cf. section 6.3.3.1).
In the BRIDGE INSTALLATION table external bridge installations can be identified
by the OBEJCTCLASS ID 65 and internal ones by 66.
The CityGML class BridgeConstructionElement is represented by the table
BRIDGE CONSTR ELEMENT. Its  schema is  analogue to  the
BRIDGE INSTALLATION table for the most parts. The relation to the corresponding
bridge results from the foreign key BRIDGE ID. Explicit and implicit geometry or a
decomposition through boundary surfaces is possible. Additionally, terrain
intersections curves of construction elements can also be stored.
The OBJECTCLASS_ID column in table BRIDGE OPENING can be of integer value
79 (BridgeDoor) or 78 (BridgeWindow). They are associated to entries in the table
BRIDGE THEMATIC SURFACE via the BRIDGE OPEN TO THEM SRF link
table. If a CityGML ADE is used that extends any of the two classes BridgeDoor or
BridgeWindow, further values for OBJECTCLASS ID may be added by the ADE
manager. Their concrete numbers depend on the ADE registration (cf. section 6.3.3.1).
Like openings of building, bridge openings can have addresses assigned to it.

0O O O 0O O O O O



84 3D Geodatabase for CityGML 2019

2.3.3.7 CityFurniture Model

The CityGML feature class CityFurniture and its attributes specified in the UML (cf. Figure
13) diagram are directly mapped the CITY FURNITURE table and its corresponding
columns.

= dables ] ddables
CITY_FURNITURE CITYOBIECT

D: NUMBER D : NUMBER

OBJECTCLASS_D : NUMBER OBJECTCLASS D : NUMBER

CLASS : VARCHAR2(256) GMLID : VARCHAR2(256]

CLASS_CODESPACE : VARCHAR2(4000) GMLID_CODESPACE : VARCHAR2(1000)

FUNCTION : VARCHARZ(1000) WAME : /ARCHAR2{1000)

FUNCTION_CODESPACE : VARCHAR2(4000) NAME_CODESPACE | ARCHAR2(4000)

USAGE : VARCHAR2(1000) DESCRIPTION : /ARCHAR2(4000]

USAGE_CODESPACE : VARCHAR2(4000) ENVELOPE : MDSYS . SDO_GECOMETRY
LOD'_TERRAIN_NTERSECTICN : MDS'YS.SDO_GECMETRY CREATION_DATE : TMESTAMP WITH TIME ZONE
LOD2_TERRAIN_NTERSECTION : MDS'YS.SD0_GECMETRY TERMINATION_DATE : TMESTAMP WITH TIVE ZONE
LOD3_TERRAIN INTERSECTION : MDS'YS.SD0_GECMETRY RELATIVE_TO_TERRAIN : VARCHAR2(258)
LOD4_TERRAIN_INTERSECTION : MDSY'S SDO_GECMETRY RELATIVE_TO_WATER : VARCHAR2(256)

LODT_BREP D : NUMBER L AST_MODIFICATION_DATE : TMESTAMP VTH TIME ZONE
LOD2_BREP_D : NUMBER 0. UPDATING PERSON : VARCHARZ2{258)

LOD3 BREP_ID : NUMBER REASON_FOR_UPDATE : ARCHAR2(4000)
LOD4_BREP_ID : NUMBER LINEAGE : VARCHAR2(256)

LOD'1_GTHER_GEON : MDS'¥S SDO_GEOMETRYY ¥WL_SOURCE : CLOB

LOD2_OTHER_GEOM : MDS'YS SDO_GEOMETR'Y
LOD3_OTHER GEOM : MDSYS SDO_GEOMETRY
LOD4_OTHER_GEOM : MDSYS SDO_GEOMETRY

LOD' _IMPLICIT_REP D : NUMBER
LOD2_IMPLICIT_REP_D : NUMBER

LOD3 IMPLICIT_REP_ID : NUMBER
LOD4_IMPLICIT_REP_ID : NUMBER

LODT _IMPLICIT_REF_POINT : MDSYS.5D0_GECMETRY
LODZ2_IMPLICIT_REF_POINT : MDS'YS.5D0_GECMETRY 0.1
LOD3 IMPLICIT REF_POINT : MDS'YS.5D0_GEOMETRY

LOD4_IMPLICIT_REF_POINT : MDSYS SDO_GECOMETRY

LODT _IMPLICIT_TRANSFORMATION : VARCHARZ(1000)

LOD2_IMPLICIT_TRANSFORMATION : ARCHAR2(1000) .

LOD3 IMPLICIT_TRANSFORMATION : VARCHAR2(1000)
LOD4_IMPLICIT_TRANSFORMATION : VARCHAR2(1000)

«PH=CITYOBJECT_PK: ID
«FK=CITYOBJECT_OBJECTCLASS_FK: OBJECTCLASS D

<PKsCITY_FURNITURE_PK: ID .
FIG=CITY_FURN_CITYOBJ_FK: ID
<FRaCITY_FURN_LOD1EREF_FK: LOD1_BREF_D
<FKsCITY_FURN_LOD1IMPL_FK: LOD1_IMPLICIT_REP_ID
<FKsCITY_FURN_LOD2BREP_FK: LODZ_BREP_ID
«FK=CITY_FURN_LOD2IMPL_FI: LODZ_IMPLICIT_REP_D
<FKaCITY_FURN_LOD3EREF_FK: LOD3_BREF_D
<FKsCITY_FURN_LOD3IMPL_FK: LOD3_IMPLICIT_REP_ID
<FKsCITY_FURN_LOD4BREP_FK: LOD4_BREP_ID
«FK=CITY_FURN_LOD4IMPL_FI: LOD4_IMPLICIT_REP_D

FKaCITY_FURN_OBJCLASS FK: OBJECTCLASS_ID 0.1 oa [o1 0 |oa .
= ddables
. . . . SURFACE_GEOMETRY'

D : NUMBER

GILID : VARCHAR2(256)
GMLID_CODESPACE : ARCHAR2{1000)
PARENT_ID : NUMBER

ROQT_ID : NUMBER

1S_SOLID : NUMBER(1 , 0)

0.1 01 0.1 0.1 IS_COMPOSITE : NUMBER(1, 0)
1S_TRIANGULATED : NUMBER(1, 0)
atables
IMPLICIT_GEOMETRY JEL UL DL TR 3

1D : NUMBER IS_REVERSE : NUMBER(1, 0y

MIME_TYPE : VARCHAR2(256)
REFERENCE_TO_LIERARY : VARCHAR2(4000)
LIBRARY_OBJECT : BLOB

RELATIVE_BREP_ID : NUMBER

GEOMETRY : MDSYS SDO_GECMETRY
SOLID_GEOMETRY : MDSY'S SDO_GEOMETRY
IMPLICIT_GEOMETRY : MDSY'S SDO_GEOMETRY
CITYOBJECT_ID : NUMBER

RELATIVE_OTHER_GEOM : MDSY'S SDO_GEOMETRY

«PH=SURFACE_GECWMETRY_PK: ID
«FH=SURFACE_GEOM_CITYOBJ_FK: CITYOBJECT_ID
««FK»SURFACE_GEOM_PARENT_FK: PARENT_ID
«FK3SURFACE_GEOM_ROOT_FK: ROOT_ID *

«PKIMPLICIT_GEOMETRY _PH: ID
«FHsIMPLICIT_GEOM_BREP_FK: RELATIVE_BREP_ID

Figure 42: CityFurniture database schema

The geometry of city furniture objects is represented either as a surface-based geometry object
(LODx_BREP ID, where 1 < x < 4) related to table SURFACE GEOMETRY, as a point- or
line-typed object (LODx OTHER GEOM, where 1 < x < 4) or as implicit geometry
LODx IMPLICIT REP ID, LODx IMPLICIT REF POINT,
LODx IMPLICIT TRANSFORMATION Wwith 1 < x < 4). Optionally terrain intersection
curves can be stored for city furniture objects.



3D Geodatabase for CityGML 2019 85

2.3.3.8 Digital Terrain Model

A tuple in the table RELIEF FEATURE represents a complex relief object, which consists of
different relief components. It has an attribute T.OD that describes the affiliation of the relief
object to a certain level of detail (LoD) of the city model. The individual components of a
complex relief object are stored in the tables BREAKLINE RELIEF, TIN RELIEF,
MASSPOINT RELIEF and RASTER RELIEF. Every relief component has an attribute LOD
that describes the affiliation to a certain level of detail (resolution, accuracy). However,
individual components of a complex relief object may belong to different LoD and may be
heterogeneous, i.e. a mixture of TINs, grids and mass points. Optionally, the geometrical
separation between the individual relief components of a complex relief object can be realized
via polygons (attribute EXTENT), which specify the validity area of the relief component.
Every relief component has an attribute NAME that is used for naming of the component. The
relief as well as every relief component are derived from CITYOBJECT and receive the same
ID as the CityObject. Table RELIEF FEAT TO REL COMP represents the interrelationship
between relief features and relief components.

Figure 43: Digital Terrain Model database schema

A raster relief is the only feature in CityGML that can be described by a grid coverage.
Corresponding database types are SDO_GEORASTER in Oracle Spatial 11g or higher (not
available in Oracle Locator) and RASTER in PostGIS 2.0 or higher. In Oracle for each table



86 3D Geodatabase for CityGML 2019

that stores SDO_ GEORASTER an additional table of type SDO RASTER is mandatory (raster
data table = RDT). It stores the metadata of the SDO  GEORASTER.

In case of that a grid representation is introduced to other features in CityGML in the future,
numerous RDT tables would be created when storing grids along with the thematic tables.
Thus, a central table called GRID COVERAGE is used to register all grid data and to prevent
numerous additional tables in the 3DCityDB schema. This concept is analogue to the storage
of surface-based geometry whereas SURFACE GEOMETRY is the central table.

Since Oracle Spatial 119 the SDO GEORASTER type supports Oracle Workspace Manager.
Therefore, the table GRD COVERAGE RDT can be versioned for history management.
However, Oracle Spatial doesn’t allow user to version-enable the tables, where GeoRaster
objects are stored. Hence, the table GRID COVERAGE cannot be versioned using the Oracle
Workspace Manager.

Geometry attributes for different relief components are limited to these value domains:
BREAKLINE_RELIEF

e BREAK LINESand RIDGE OR VALLEY LINES
o Oracle: MultiLine (GTYPE 3006)
o PostGIS: MultiLineString Z

TIN_RELIEF

e STOP LINES and BREAK LINES
o Oracle: MultiLine (GTYPE 3006)
o PostGIS: MultiLineString Z
e RELIEF POINTS
o Oracle: MultiPoint (GTYPE 3001 or 3005)
o PostGIS: MultiPoint Z
e TIN

o TIN triangles could be stored as triangulated surfaces in table
SURFACE GEOMETRY

MASSPOINT_RELIEF

e RELIEF POINTS
o Oracle: MultiPoint (GTYPE 3001 or 3005)
o PostGIS: MultiPoint Z

RELIEF_COMPONENT

e EXTENT (defines the validity extents of each relief component)
o Oracle: Polygon (GTYPE 3003, ETYPE 1003, SDO_ INTERPRETATION 1
or 3 (optimized rectangle))
o PostGIS: Polygon Z



3D Geodatabase for CityGML 2019 87

2.3.3.9 Generic Objects and Attributes

3D city models will most likely contain attributes, which are not explicitly modelled in
CityGML. Moreover, there may be 3D objects that are not covered by the thematic classes of
CityGML. Generic objects and attributes help to support the storage of such data.

GENERIC_CITYOBJECT

For generic objects the full variety of different geometrical representations known from other
tables is offered. Explicit (LODx BREP ID, LODx OTHER GEOM) and implicit geometry

(LODx_IMPLICIT REP_1ID, LODx IMPLICIT REF POINT,
LODx IMPLICIT TRANS-FORMATION) as well as terrain intersection curves
(LODx TERRAIN INTERSECTION) (all with 0 <x<4).

[

atabies

GENERIC_CITYOBJECT = tabies
D: NUVBER aTYoBUECT
OBUECTCLASS ID : NUMBER 5 NUWBER:
CLASS : VARGHAR2(256) OBUECTCLASS D NUVBER
CLASS_CODESPACE : VARCHAR2(4000) GHLID : VARCHAR2(256)
FLNCTION : ARCHAR2(1000) GHLID_CODESPACE : VARCHAR2(1000)
FUNCTION_CODESPACE : VARCHAR2(4000) NAME | VARCHAR2(1000)
USAGE : VARCHAR2(1000) NAIE_CODESPACE : /ARCHAR2(4000)
USAGE_CODESPACE : VVARCHAR2(4000) DESCRIPTION : VARCHAR2(4000)
LODO_TERRAIN_INTERSECTION : MDS5.5DO_GEONETRY ENVELOPE: MDSYS SDO_GEOWETRY
LOD1_TERRAIN_INTERSECTION : NDS'¥S.5DO_GEONETRY GREATION_DATE | TIESTANP WITH TIVE ZONE
LOD2_TERRAN_INTERSECTION : MDSYS SDO_GEOMETRY TERMINATION DATE : THESTAWP WITH TIVE ZONE
LOD3_TERRAIN_INTERSECTION : MDS¥5.SDO_GEONETRY RELATIVE_TO_TERRAIN: VARCHAR2(256)
LOD4_TERRAIN_INTERSECTION : MDS'YS.SDO_GEONETRY RELATIVE_TO_WATER': VARCHAR( 0.1
LODO_BREP_ID - NUMBER LAST_MODFICATION_DATE - TMESTAVP WITH TINE ZONE
LOD1_BREP_ID : NUMBER UPDATING PERSON: VARCHAR2(255)
LOD2_BREP_ID : NUMBER || REASON_FOR_UPDATE : VARCHAR2(4000)
LOD3 BREP_ID : NUMBER o1 UINEAGE | VARCHAR(256)
LOD4_BREP_ID : NUMBER XML_SOURCE CLOB
LODO_OTHER_GEON : DS VS.SD0_GEOIETRY.

LOD1_OTHER_GEOM : MDSYS.SDO_GEOMETRY

LOD2_OTHER_GEQM : MDS'Y'5.SDO_GEOMETRY

LOD3_OTHER_GEON : MDSYS.S0_GEOMETRY

LOD4_OTHER_GEON : MDSY'S.SDO_GEOMETRY PKeCITYOBIECT PK: D
«FICITYOBJECT_OBJECTCLASS_FIS: OBJECTCLASS_ID

LODO_IMPLICIT_REF_POINT : MDSY'S SDO_GEOMETRY

0.1
LOD1_IMPLICIT_REF _POINT : MDSY'S SDO_GEOMETRY
LOD2_IMPLICIT_REF _POINT : MDSYS SDO_GEOMETRY
LOD3_WPLICIT_REF _POINT : MDSYS.SDO_GEOMETRY
LOD4_WPLICIT_REF POINT : MDSYS.S00_GEOMETRY .
LODO_IMPLICIT_TRANSFORMATION : \VARCHAR2(1000) = e
LOD1_IMPLICIT_TRANSFORMATION : VARCHARZ(1000) N ables
LOD2_IMPLICIT_TRANSFORMATION : VARCHARZ(1000) . OILYOBJECT. GENERICATIR,
LOD3_IMPLICIT_TRANSFORMATION : VARCHAR2(1000) [ CUES
LOD4_IPLICIT_TRANSFORMATION : VARCHAR2(1000) PARENT_GENATTRIB ID - NUWBER

ROOT_GENATTRIB_ID : NUMBER

X ATTRIANE : VARCHARZ(256)

DATATYPE: NUMBER(1)

STRVAL: VARCHARZ(4000)

NTVAL : NUIBER

REALVAL : NUMBER
<PaGENERIC_CITYOBECT_PIc ID : URIVAL : VARCHAR2(4000)
<FK-GEN_OBJECT_CITYOBIECT FI: D DATEVAL : TIMESTANP WITH TIHE ZONE
<FK-GEN_OBUECT_L ODOEREP_FH: LODO_BREP_D UNIT: VARCHAR2(4000)
<FK-GEN_OBUECT LODONPL_Fic: LODO_MPLICT_REP 1D GENATTRIBSET_CODESPACE : VARCHAR2(4000)
<FI{>GEN_OBJECT_LOD1BREP_FH: LOD1_BREP_D . et BT
«FH>GEN_OBJECT_LODTIMPL_FIS; LOD1_INPLICIT_REP_ID | — GEOMVAL : MDSYS.SDO_GEOMETRY!
«FI=GEN_OBJECT L OD2BREP_FK: LOD2_BREP_D SURFACE_GECMETRY_ID : NUMBER
<FKsGEN_OBUECT_LOD2IPL_FIK: LOD2_IPLICT_REP_ID CITYOBIECT_D: NWEER X
<FK-GEN_OBUECT_LOD3EREP_FK: LOD3_BREP_D )
<FK-GEN_OBUECT_LODIMPL_FIk: LOD3_IMPLICT_REP_ID

<PI{CITYOB._GENERICATTRI_PK: D
«FI{2GENERICATTRIB_CITY OB_F: CITYOBUECT_D
Fi>GENERICATTRIE_GEOM _FIt. SURF ACE_GEOMETRY_ID
<Fi<>CENERICATTRIB_PARENT_FI: PARENT_GENATTRIE_D
<Fi>CENERICATTRIB_ROOT_FK: ROCT_GENATTRIE_ID

0.4
]

ID: NUMBER
GIILID : VARCHAR2(256)
GHLID_CODESPACE : VARCHAR2(1000)
0.1 o1 0.1 0.1 0.1 PARENT_ID : NUMBER
0.1 |ROOT ID: NUMBER
1S_SOLID : NUMBER(1, 0)

— 44 [SLCOMOSITE: NUUBER(1, ) .
1S_TRIANGULATED : NLMBER(1,0)
MIE _TYPE : VARCHAR2(256) N

) s LK : NUVBER(, 0)
REFERENCE_TO_LBRARY : VARCHAR2(4000) I _REVERSE : NUMBER(,0)
UEFAFf OBWECT : BLOB 0.1 |GEOMETRY : MDSYS SDO_GEOMETRY
FELATIVE Brep o nuiBen § L S0LD_GEOMETRY:MDSYS.5DO_GEOHETRY
RELATIVE_OTHER GEOM : MDS S SDO_GEOMETRY WPLICT_GEOMETRY : MDSYS S00_GEOMETRY
CITYOBJECT_ID : NUMBER N
01

i

atables
SURFACE_GEOMETRY.

atables
IMPLICIT_GEOMETRY

PIaIMPLICIT_GEOWETRY_PK: D «PI{>SURFACE_GEOMETRY_PI: ID

FIaIMPLICIT_GEOW_BREP_FIs: RELATIVE_BREP_ID «FH>SURFACE_GEOM_CITYOB._FI: CITYOBJECT_ID '
<Fi>SURFACE_GEOM_PARENT_FK: PARENT_ID
<Fi4>SURFACE_GEOM_ROOT_FI: ROOT_ID

Figure 44: GenericCityObject and generic attributes database schema



88 3D Geodatabase for CityGML 2019

CITYOBJECT_GENERICATTRIB, CITYOBJECT_GENERICATT_SEQ

The table CITYOBJECT GENERICATTRIB is used to represent the concept of generic
attributes. However, the creation of a table for every type of attribute was omitted. Instead a
single table CITYOBJECT GENERICATTRIB represents all types and the types are
differentiated via the values of the attribute DATATYPE.

The table provides fields for every data type, but only one of those fields is relevant in each
case. An overview of the meaning of the entries in the field DATATYPE is given in Table 17.
The relation between the generic attribute and the corresponding CityObject is established by
the foreign key CITYOBJECT 1ID.

DATATYPE attribute type

STRING

INTEGER

REAL

URI

DATE

MEASURE

Group of generic attributes
BLOB

Geometry type

0 Geometry via surfaces in the table SURFACE GEOMETRY

= OO NO(UI[DNW|IN| =

Table 17: Attribute type

Please note that the binary and geometric data types (incl. geometry via surfaces) are not
supported by CityGML and cannot be exported using the CityGML Import / Export tool!
But, if a user wants to add additional attributes to thematic tables, he should use the schema of
the CITYOBJECT GENERICATTRIB table rather than adding additional columns to
existing tables, because only in this way the Import / Export tool can automatically write them
to CityGML.

Moreover, generic attributes can be grouped using the CityGML class genericAttributeSet.
Since genericAttributeSet itself is a generic attribute, it may also be contained in a generic
attribute set facilitating a recursive nesting of arbitrary depth. This hierarchy within a
genericAttributeSet is realized by the foreign key PARENT GENATTRIB ID which refers to
the superordinate genericAttributeSet (aggregate) and contains NULL, if such does not exist.
The foreign key ROOT GENATTRIB ID refers directly to the top level (root) of a
genericAttributeSet tree. In order to select all generic attributes forming a genericAttributeSet
one only has to select those with the same ROOT GENATTRIB_ ID.

The next available ID for the table CITYOBJECT GENERICATTRIB is provided by the
sequence CITYOBJECT GENERICATT SEOQ.



3D Geodatabase for CityGML 2019 89

2.3.3.10 LandUse Model

The CityGML feature class LandUse and its attributes specified in the UML (cf. Figure 17)
diagram are directly mapped the LAND USE table and its corresponding columns. The
relation to table SURFACE GEOMETRY is established by the foreign Kkeys

LODx MULTI SURFACE ID, where 0 <x<4.
i)

atables
CITYOBJECT
ID : NUMBER
OBJECTCLASS_ID : NUMBER
GMLID . VARCHAR2(256)
GMLID_CODESPACE : VARCHAR2(1000)
NAME : VARCHARZ(1000)
NAME_CODESPACE : ARCHAR2(4000}
DESCRIPTION  VARCHARZ2(4000)
ENVELOPE : MDSYS.SDO_GEOMETRY
CREATION_DATE : TIMESTAMP WITH TIME ZOME
TERMINATION_DATE : TIMESTAMP VITH TIME ZONE
RELATIVE_TO_TERRAIN . VARCHAR2(258)
RELATIVE_TO_WATER : VARCHAR2(256)
LAST_MODIFICATION_DATE : TIMESTAMP WITH TIME ZONE
UPDATING_PERSOM : VARCHAR2(256)
REASON_FOR_UPDATE . VARCHARZ2(4000)
LINEAGE : VARCHAR2(256)

¥ML_SOURCE: CLOB
0.1

«PK3CITYOBJECT_PK. ID
=FK=CITYOBJECT_OBJECTCLASS I OBJECTCLASS D

1

ot = atables
] atables SURFACE_GEOMETRY
LAND_USE ID: NUMBER
D : NUMBER GILID : VARCHAR2(256)
OBJECTCLASS_ID : NUMBER R 0.1 |GMLID_CODESPACE ; VARCHAR2(1000)
CLASS : VARCHAR2(256) PARENT_ID : NUMBER
CLASS_CODESPACE : VARCHARZ(4000) ROOT_ID : NUMBER
FUNCTION : VARCHAR2(1000) 1S_SOLID : NUMBER(1, 0)
FUNCTION_CODESPACE : VARCHARZ2(4000) X 0.1 |!S_COMPOSITE : NUMBER(1, 0)
USAGE : VARCHAR2(1000) IS_TRIANGULATED : NUMBER(1, 0)
USAGE_CODESPACE : VARCHAR2(4000) IS _XLINK : NUMBER(1, 0y
LODO_MULTI_SURFACE_ID : NUMBER 1S_REVERSE : NUMBER(1, 0)
LOD1_MULTI_SURFACE_ID : NUMBER ' 0.1 |GEOMETRY : MDSYYS.SDO_GEOMETRY
LOD2_MULTI_SURFACE_ID : NUMBER SOLID_GEOMETRY : MDSY'S SDO_GECMETRY
LOD3_MULTI_SURFACE_ID : NUMBER IMPLICIT_GEOMETRY : MDSYS SDO_GECMETRY
LOD4_MULTI_SURFACE_ID : NUMBER B 0.4 |CITYOBJECT_ID : NUMBER
0.1 |&PKsSURFACE_GEOMETRY_PK: ID
<FIGLAND_USE PK: D Fix SURF ACE_GEOM_CITYOBJ_FK: CITYOBJECT_D
<FHaLAND USE_CITYOBJEET Fit ID «F}>SURFACE_GEOM_PARENT_FI: PARENT_ID
«FiaL AND_USE_LODOMSRF _FK: LODO_MULTI_SURFACE_ID <FHaSURFACE_GEOM_ROOT.FI: ROCTID
<FHaL AND_USE_LODIMSRF _FK: LOD1_MULTI_SURFACE_ID
«FHsL AND_USE_| OD2ZMSRF _FK: LOD2_MULTI_SURFACE _ID 04 To
«FHsLAND_USE_LOD3MSRF_FK: LODI_MULTI_SURFACE_ID
«FHsL AND_USE_LODAMSRF_FK: LOD4_MULTI_SURFACE_ID
FiGsL AND_USE_OBJCLASS FK: OBJECTCLASS ID

Figure 45: LandUse database schema
2.3.3.11 Transportation Model

For the realisation of transportation objects two tables are provided: TRAFFIC AREA and
TRANSPORTATION COMPLEX.

TRAFFIC_AREA

Next to the common attribute triple class, function and usage traffic areas can store
information about their surfaceMaterial. In the UML model this attribute is specified as
gml:CodeType which makes an additional CODESPACE column necessary. The
representation of geometry is handled by foreign keys LODx MULTI SURFACE ID (with 2
< x < 4). The aggregation relation between a transportation complex and the corresponding
traffic areas results from the foreign key TRANSPORTATION COMPLEX ID. The foreign
key OBJECTCLASS ID indicates whether a tuple represents a TrafficArea (value 47) or an
AuxiliaryTrafficArea (value 48) feature. If a CityGML ADE is used that extends any of the

two classes TrafficArea or AuxiliaryTrafficArea, further values for OBJECTCLASS ID may



90 3D Geodatabase for CityGML 2019

be added by the ADE manager. Their concrete numbers depend on the ADE registration (cf.
section 6.3.3.1).

TRANSPORTATION_COMPLEX

As shown in the UML diagram, every traffic area object may have the attributes class,
function and usage. For differentiation between the subclasses an OBJECTCLASS ID
column is used again:

e 42 (TransportationComplex)

e 43 (Track)

e 44 (Railway)

e 45 (Road)

e 46 (Square)
If a CityGML ADE is used that extends any of the classes named above, further values for
OBJECTCLASS ID may be added by the ADE manager. Their concrete numbers depend on
the ADE registration (cf. section 6.3.3.1).

In the coarsest level transportation complexes are modelled by line objects. The
corresponding column is called LOD0O NETWORK of geometry type MultiCurve in Oracle and
MultiLineString Z in PostGIS. Starting form LODL1 the representation of object geometry is
handled by foreign keys LODx MULTI SURFACE ID (with 1 <x<4).

=
CITYOBJECT

D NUMBER

OBJECTCLASS_ID : NUMBER

GMLID : VARCHAR2(256)

(GMLID_CODESPACE : VARCHAR2(1000)

NAWVE : VARCHAR2(1000)

WAVE_CODESPACE : \VARCHAR2(4000)

DESCRIPTION : VARCHAR2(4000)

ENVELOPE : MDS'YS.SDC_GEOMETRY

CREATION_DATE : TIMESTANP WITH TIME ZONE
0.4 TERMINATION DATE : TMESTAMP WITH TIME ZONE
RELATIVE_TO_TERRAIN: VARCHAR2(256)
RELATIVE_TO_WATER : VARCHAR2(256)
LAST_MODIFICATION_DATE : TIMESTAMP WITH TIME ZONE
UPDATING _PERSON : VARCHAR2(256)

REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)
¥ML_SOURCE: CLOB

<PKCITYOBJECT_PK: D
<FK=CITYOBJECT_OBJECTCLASS FI<: OBJECTCLASS ID

0.4

(] dables
m aables TRANSPORTATIGN_COMPLEX
TRAFFIC_AREA 1D NUMBER

OBJECTCLASS _ID : NUMBER
OBUECTCLASS ID : NUMBER: CLASS: VARCHAR2(256)
CLASS : VARCHAR2(256) CLASS_CODESPACE : VARCHAR2(4000)
CLASS_CODESPACE: \/ARCHAR2(4000) FUNCTION : VARCHAR2(1000)
FUNCTICN : VARCHAR2(1000) FUNCTION_CODESPACE : VARCHAR2(4000)
FUNCTION_CODESPACE | VARCHAR2(4000) USAGE : VARCHAR2(1000)
USAGE: ARCHARZ(1000)

0.1

D NUMBER

USAGE_CODESPACE : ARCHARZ(4000)

USAGE_CODESPACE : VARCHAR2(4000) LODO_NETWORK : MDSYS SDG_GEOMETRY.

SURFACE_MATERIAL : VARCHAR2(255) LOD1_MULTI_SURFACE_ID : NUMBER

'SURFACE_MATERIAL_CODESPACE : VARCHAR2(4000) LOD2_MULTI_SURFACE_ID : NUMBER

0.1 |LODE_MULTI_SURFACE_ID: NUWEER
LOD_WMULT|_SURFACE_ID : NUMBER

LOD2_MULTI_SURFACE D : NUMBER
LOD3_MULTI_SURFACE_ID : NUMBER
LGDA4_MULTI_SURFACE_ID : NUMBER
TRANSPORTATION_COMPLEX_ID : NUMBER

\«PH>TRANSPORTATION_COMPLEX_PK: D
‘<FKTRAN_COMPLEX_CITYOBJECT_FK: ID

«PI>TRAFFIC_AREA_PI: D \«F K TRAN_COMPLEX_L OD1MSRF_FK: LOD1_MULT|_SURFACE_ID

<P TRAPFIC_AREA_CITYOBUECT.FIC D «FH>TRAN_COMPLEX_LOD2MSRF_FH: LOD2_IULT_SURFACE_ID
«FKTRAFFIC_AREA_LOD2MSRF_FK: LOD2_MULTI_SURFACE ID K2 TRAN_COMPLEX_LODSMSRF _FK. LOD3_MULTLSURFACE.ID
<FIGTRAFFIC_AREA_LODSUSRF_FIC LOD3_MULTI_SURFACE_ID «FK>TRAN_COMPLE)._LOD4MSRF_FK: LOD4_IULT_SURFACE_ID
P TRAFFIC_AREA_LODAMSRF_FI: LOD4_MULT_SURFACE_D e Lo e e e CE T L o
«FITRAFFIC_AREA_OBJCLASS_FK: OBJECTCLASS ID

«FKaTRAFFIC_AREA_TRANCHIPLX_FI: TRANSPORTATION_COMPLEX_ID.

=] dables

SURFACE_GEOWETRY -

D NUMBER

. GMLID: VARCHAR2(256) 0.1
(GILID_CODESPACE : VARCHAR2(1000)
PARENT_ID: NUMBER
ROOT_ID: NUMEER

0.1 5_SOLD:NUMEER(1,0) o1

IS_COMPOSITE  NUMBER(1, 0)

IS_TRIANGULATED : NUMBER(1, 0)
1S _XLINK : NUMBER(1, 0)
1S_REVERSE : NUMBER(1, 0) 0.1

0.1 |GEOMETRY : MDSYS.SDO_GEOMETRY

LID_GEOMETRY : MDSYS SDO_GEOMETRY

IMPLICIT_GEONETRY : WDS 'S SDO_GEOMETRY 0.1

CITYOBJECT_ID : NUMBER

0.4

«PI>SURFACE_GEOMETRY _PI: ID
. |<FI>SURFACE_GEOM_CITYOBU_FIK: CITYOBJECT_ID

FK>SURFACE_GEOM_PARENT_FK: PARENT_ID
01 Tod

Figure 46: Transportation database schema




3D Geodatabase for CityGML 2016

91

2.3.3.12

Tunnel Model

*RELATIVE_BREP_D - NUMBER
[FELATIVE_OTHER_GECH : MDSYS SDO_GEDWETRY

COCESPACE
0.1 DESCRPTION: VARCHARI(000)
ENVELOPE : MDSYS.SD0_GEOMETRY
CREATION_DATE : TMESTANP WITH TE 20HE

L] daties
TUNNEL_FURNITURE

0: HMBER
DBJECTCLASS D NUMBER
SLASS: V. )
CLASS_CODESPACE | VARCHAR2(4003)
FUNCTION : VARCHAR2(1000)
FUNCTION_CODESPACE | VARCHAR2(4000)
USAGE : VARCHAR2(1000)
USAGE_CODESPACE | VARCHARI(4000)
TUNNEL_FOLLOW_SPACE_ID : HUMBER
NUMBER:

TERMIATION_DATE - TRESTAMP WITH THE ZOKE
RELATIVE_TO_TERRAN - ARCHAR(256)

LPDATRG_PERSON : VARCHARZ255)
REASON_FOR_UPOATE | VARCHAR2(4000)
LIEAGE - VARCHAR(256)

ML_SOURCE : ©LOB

PHaSURFACE_GEOVETRY_PH. D

FH»SURF ACE_GEOM_CITYOB_Fi: CITYOBJECT D
F¥HsSURFACE_GEOM_PARENT_Fi: PARENT DD
«FH»SURFACE_GEOM_ROOT_FK: ROOT_D

. 004 BREPD \ePHACITYOBLECT
i |
LOD_OTHER_GECH  MDSYS S50_GEOMETRY FKaCIT VOB.ECT_OBJECTCLASS_FK: DBJECTCLASS_O
0 004 WPLICIT_REP 10 : NLMBER
oo _EF_POINT : MDSS.500_GEOMETRY
O04_MPLICIT_TRANSFCRMATION : VARCHAR{1 000)
P MBLICIT_GEOMETRY P D
|<FHaIMPLICIT_GEOM_BREP_FI: RELATIVE_BREP_D R
<P TUNNEL FURNITURE P 0
CFIGTUMNEL FURN_CITYOB.ECT_FIc D
SFKSTUNEL FURN_HSPACE_FK: TUMWEL_HOLLOW _SPACE D
.
o1 LE] 0.1 (FITUNNEL_FURN_OBJCLASS _Fit OBJECTCLASS 1D
. . 04
= shobies
TURPEL INSTALLATON
. e
0.4 (OBUECTCLASS D : HUMBER.
(CLASS : VARCHARZ(2SS) 01
L] ctables |CLASS_CODESPACE - ARCHARA(4000) a
TUNNEL HOLLOW.
LIPACE IFUNCTION - VARCHAR2(1000) e
0 NUNEER IPUNCTION_COCESPACE ; VARCHAR2(4000) -
CBUECTCLASS B NUMBER R 0: HueER
(CLASS : VARCHAR2(156) IUSAGE_CODESPACE | VARCHARZ(4000) [PIECTCLASS JD: NUMBER
(LASS_CODESPACE - \ARCHARD(4000) et TUNHEL_PARENT_D - HLMBER
FUNCTION . VARCHAR2{1000] TUNHEL HOLLOW SPACE_D: MMEER TUNKEL _ROOT_ID : MMBER
0.1 FLHCTION_CODESPACE : VARCHAR2I4000) LoDz _BReP - HvGER joLAss  vaRciARZS6)
USAGE ! VARCHAR211000) 1LCO3 BREP - MMBER (CLASS_CODESPACE : VARCHAR2(4000)
USAGE_CODESPACE : VARCHAR4000) LCO4_EREP B 1U1BER FUNCTION - VARCHAR2(1030)
TUNEL_D NUMBER o |Loa_THER ecw: MDSVS.500_oeckeTRY FUNCTICH_CODESPACE . VARCHAR2(4000)
LOD4_MULTI_SLRF ACE_ID | NIVEBER: D9 OTHER GEDM: MOSYS.SDD_GEOMETRY USAGE : VARCHARZ(1000)
L0D4_S0LD_D: MMEER: * |Lcosomer_ceom: mos v 500_cEoNETRY ”;ﬁ; R r M
LoD2_IPLET_FEP_ID O
ILCD3_WPLIEIT_REF 1D MUMEER |VEAR_OF LEMOLITION DATE
LOD4 NPT REP 1D | WNBER LOD1_TERRARLINTERSECTION : MDS /S SDO_GEQMETRY
e = - g Fr—— fooa_TERRARLTERSECTON:MOSTS 500_GEOMETRY
FITUN_HSPACE_CITVORLFY D i e I.UIIO_TEWN INTERSECTION : MDSY'S SDO_GEOMETRY
|eFHaTUN_HSPACE _FK: LODM_MULTI_SURF ACE_ID LCO4_IMPLICIT_REF_POINT - MDS'YS SDO_GECWETRY e MEYS.SED v
I TUN_HSPACE_LODHSOUD.FY: LODS_SCLD_D ILCD2_IMPLICIT_TRANSFORMATION | VARCHAR2(1000) 0.1 [OORMUTUORVE: N
a1 [X] 0t \eFKaTUN_HSPACE_DBUCLASS FK: CBUECTCLASS D oI P SR Tias
1 TUN_HSPACE_TLINEL FIC TLHEL D 1LOD4_WPLICIT_TRANSFORMATION : ARCHAR2{1000) T TR
| cables T o
Ty ACE_D : HMEER
= AR . | . o . LOD3_MLLTI SURFACE D : NLMBER
GMLD - VARCHARZ{256) I.Lmuu:mmwu AFACE 0 LR
GMLD_CCOESPACE - V) 1000 " o
PARBIT 0. UAFSCEAFEN R e STALLATION_PI. D 2_S0LD_D
AREHT_ID . NMBER: . 4P K TUNMIEL IST_CITYOBJECT_Fik 0 LOD3_S0LID_ID : LMBER
L \<FKSTUNNEL NST_HSPACE_FK: TUNNEL_HOLLOW_SPACE_ID LOD4_SOUD_ID : MUMBER.
:imb NUMBER(1, 0) » |FKaTUNNEL_INST_LODZBRER_FH LOD2_BREP_D
! . * | aFKaTUNNEL INST_LODIMPL Fic: LODZ_MPLICTT_REP 1D
I5_TRIANGLLATED : NLMEER(, O} [<FIKSTUNMEL INST_LODIBREP_Fr: LOD3_BREP_D
EILNC: MMEER(, () o . |eFKaTUREL ST L ODIMPL P LODS_1PLCIT_FEP_1D
5 FESE: RR. 0 s 14K TUNNEL INST_LODMBREP_Fi: LOD_BREP O
[BEIRE] - * | K TUNNEL ST _LODAINPL_Fit LOD4_IMPLICIT_REP_ID e
SOLD-EOMETRY 140515 500, OFOHETEY . 4K TUNMEL I4ST_OBICLASS FI OBVECTCLASS D FHaTUNEL _CITYCBUECT i D
* CITYORECT D- NUMBER | ST e eSS R T EET (eFTURNEL_LODIMERF_Fic: LODI_MLLTI_SURFACE D
«FHRTUNNEL_LOD1 SCUD_FK: LOD_SOLD D
«FKsTUNNEL_LODOMERF_FK. LODZ_MULTI_SURFACE_ID
0.1 Taos «FHaTUNNEL_LCD2SCLD Fi LOC2_SOLD D
& LODIMERF_Fi: LODI_ M.LTL SURFACE 1D
" FHsTUNKEL_LODASCUD,_FH. LOG3_SOLD_D

(eFHsTUNNEL _LODMERF_FK: LOD4_MULTL_SURFACE_D

. |FSTUNNEL LODMSCLD FIG LODM_SOLD_D
eFHaTUNMEL_OBUECTCLASS. Fit: OBJECTCLASS D

FITUNNEL _PARENT_FK. TUNNEL_PARENT_ID
*_|eFKaTUNNEL_ROOT_FKC TUHREL_ROOT_ID.

L ] atales
TUNHEL_OPENING

D HUMBER.

OB.ECTCLASS JD: MVBER

LOD3_MLLTI_SURFACE D : HUVBER

LOD4_MLLTI_SURFACE D : HUVEER
LOD3_IMPLICIT_REP_D - NUMBER

LODA_MPLICIT_REP_D - NUWBER

LOD3 IMPLICIT_REF_PORT : NS5 S00_GEOMETRY
LOD4 _JMPLICIT_REF_PORT : MDS'YS SDO_GEOMETRY
LOD3_IMPLICIT_TRANSFORMATION - ¥ ARCHARA(1000)
LODA _IMPLICIT_TRANSFORMATION: ¥ AREHAR(1000)

‘<FHSTUNNEL _OPEN_OB.CLASS Fit. OBJECTCLASS D

aties
TUMAEL_OFEN ]

TO_THEM_SAF.

TUNNEL_OPENNG_D - HUMBER
TUKNEL _THEMATIC_SURFACE ID | NUMEER:

PHaTUNNEL_OPEN_TO_THEM_SRF_PK: TUNNEL_OPENING_D, TUNNEL_THEMATIC_SLRFACE_ID
FHsTUN_QPEN_TO_THEM_SFF_FIX TUNHEL_OPENING
FHaTUN_OPEN_TO_THEM_SAF_K1: TUNNEL THEMATIC_SURFACE D

SPACE 1D MAMBER

TUNEL_INSTALLATION 1D NUMEER
LOD2_MULTI_SURFACE 0 - NUMBER
LOGI_MULTL_SLRFACE 10 MMBER

(<PITUNNEL_THEMATIC_SURFACE Pt 1D,
\<FIaTUN_THEM_SAF_CITYOB._FIC. ID
\cFKaTUN_THEM_SRF_HSPACE_FK: TURNEL_HOLLOW_SPACE_D
\cFIKa TUN_THEM_SRF_LODIMSRF_FIC LODZ_MULTI_SURFACE_D
(<FIaTUN_THEM_SAF_LOOIMSAF_FK: LODI_MULTI_SURF ACE_D
\<FIaTUN_THEM_SRF_LOOAMSRF_FK: LOD4_MULTI_SURFACE_D
\cFKaTUN_THEM_SRF_CBUCLASS_FK: OBLECTCLASS_ O

\cFIKa TUN_THEM_SRF_TUNNEL FI<: TUKNEL_D
(<FIaTUN_THEM_SFF_TUN_INST_FIC TLNREL INSTALLATION 1D

Figure 47: Tunnel database schema



92

3D Geodatabase for CityGML 2019

The tunnel model, described in paragraph 2.2.4.9 at the conceptual level, is realised by the
tables shown in Figure 47. The relational schema is identical to the building and bridge
schema for the most parts except for the naming. Please, refer to the explanation of the
building schema on the previous pages for a complete understanding. The main differences to
the building schema are the following:

Tunnels cannot be modelled in LoD 0. Therefore, no corresponding columns appear in
the TUNNEL table.

The CityGML feature HollowSpace can be seen analogue to the feature Room of a
building or a bridge

CityGML features of tunnels, such as boundary surfaces, installations, openings,
hollow spaces and furniture, are mapped to separate specific tables and are not stored
in already existent ones (e.g. THEMATIC SURFACE, OPENING). The reason for this
IS to provide a schema that is as close to the UML model as possible. There are slight
differences between the building and the tunnel model that would lead to ambiguous
references e.g. a boundary surface of the building namespace cannot reference to a
tunnel feature.

OBJECTCLASS ID oftable TUNNEL THEMATIC SURFACE allows the values:
89 (TunnelCeilingSurface),

90 (InteriorTunnelWallSurface)

91 (TunnelFloorSurface),

92 (TunnelRoofSurface),

93 (TunnelWallSurface),

94 (TunnelGroundSurface),

95 (TunnelClosureSurface),

96 (OuterTunnelCeilingSurface),

97 (OuterTunnelFloorSurface).

O O 0 0O 0o 0 o O °O

In the TUNNEL INSTALLATION table external tunnel installations can be
identified by the OBJECTCLASS ID 86 and internal ones by 87.

The OBJECTCLASS_ID column in table BRIDGE OPENING can be of integer value
100 (BridgeDoor) or 99 (BridgeWindow). They are associated to entries in the table
TUNNEL THEMATIC SURFACE via the TUNNEL OPEN TO THEM SRF link
table.

If a CityGML ADE is used that extends any of the named classes above, further values
for OBUECTCLASS ID may be added by the ADE manager. Their concrete numbers
depend on the ADE registration (cf. section 6.3.3.1).

In contrast to the building model tunnels and tunnel openings do not have addresses.



3D Geodatabase for CityGML 2019 93

2.3.3.13 Vegetation Model

The vegetation model specified in paragraph 2.2.4.10 is realized by the tables shown in Figure
48 which correspond largely to the UML model.

=

D: NUMBER
OBJECTCLASS b : NUMBER

(GILID : VARCHAR2(256)
(GILID_CODESPACE : VARCHAR2(1000)
IANE | VARCHAR2(1000)
NAME_CODESPACE : VARCHAR2(4000)
DESCRIPTION : VARCHAR2(4000)

tables
CITYOBJECT

UPDATING_PERSON : VARCHAR2(256)
REASON_FOR_UPDATE: VARCHAR2(4000)
LINEAGE : VARCHAR2(256)

XML_SOURCE : CLOB

<PI<3CITYOBJECT_PIS, ID
\<Fi6> CITYOBJECT_OBJECTCLASS_Fi: OBJECTCLASS_D

] ctables =] tables
SOLITARY_VEGETAT_OBJECT PLANT_COVER
D NUMBER

OBJECTCLASS D : NUVBER

CLASS : VARCHAR2(256)
CLASS_CODESPACE : VARCHAR2(4000)
FUNCTION : VARCHAR2(1 000)
FUNCTION_CODESPACE : VARCHAR2(4000)
USAGE : VARCHAR2(1000
USAGE_CODESPACE : VVARCHAR2(4000)
SPECIES : VARCHAR2(1000)

1D NUMBER
OBJECTCLASS D : NUMBER

USAGE : VARCHAR2(1000)
USAGE_CODESPACE : VARCHAR2(4000)
CLASS : VARCHAR2(256)
CLASS_CODESPACE: VVARCHAR2(4000)
FUNCTION : VARCHAR2(1000;
FUNCTION_CODESPACE : VARCHAR2(4000)
AVERAGE_HEIGHT : BINARY_DOUBLE

SPECIES_CODESPACE: VARCHAR2(4000) AVERAGE _HEIGHT_UNIT : VARCHARZ(4000)
LOD1_MULTI_SURFACE_ID: NUWBER

HEIGHT : BINARY_DOUBLE
HEIGHT_UNIT : VARCHAR2(4000) LOD2_MULTI_SURFACE I
TRUNK DIAMETER : BINARY_DOUBLE LOD3_MULTI_SURFACE I
TRUNK_DIAMETER_UNIT : VARCHARZ2(4000)
ROVN_DIAMETER : EINARY_DOUBLE _MULTI_SOLD_|
CROWN_DIAMETER_UNIT : VVARCHAR2(4000) LOD2_MULTI_SOLID_D: NUMBER
LOD1_BREP_ID : NUVBER LOD3_MULTI_SOLID_ID: NUMBER
LOD2_BREP_ID : NUMBER LOD4_MULTI_SOLID_ID: NUMBER
LOD3_BREP_ID : NUMBER

LOD4_BREP_ID : NUMBER

LOD1_OTHER_GEOM : MDSYS.SDO_GEOMETRY
LOD2_OTHER_GEON : MDSYS.SD0_GEOMETRY

ID: NUMBER
ID: NUMBER

Lo OrHeR GEQH: DS 15500 GEOHETRY :
LOD4_OTHER_GEOM : MDSYS S0_GEONETRY. [etiaERN eV P,

e N COVER LG SOUD A Lo LT oL,

SOz e oL ANT COVER LCOSRF . LooT 1T, SLRFACE D
LOD3_MPLICIT_REP_ID : NUMBER COVERL 7 LTS !

TP e e “FPLANT COVER L COSOUD. 6 OS2 AT S0LD.D

FGPLANT COVER L OB 13 LO02 I SRTACED
o e e

[ A e R FCPUANT COVER L OB 3OO IAT SRTACED
HeLANT COVER LGOAISOLD, F LobH HULT S0LD 1D

LooutLT e ronn s s oo ceaneee

HuPLANT COUER ORICLASS i ORIECTCLAGS D

LOD2_IMPLICIT_TRANSFORMATION : Y/ARCHAR2(1000)
LOD3_IMPLICIT_TRANSFORMATION : Y/ARCHAR2(1000)
LOD4_IMPLICIT_TRANSFORMATION : ¥/ARCHAR2(1000)

PK>SOLITARY_VEG_OBJECT_PK: ID .
«FI3SOL_VEG_OBJ_CITYGBJECT_FIt. ID
<FK»SOL_VEG_OB_LODIBREP_FK: LOD1_BREP_ID
FK3SOL_VEG_OB_LODIINMPL_Fi: LOD1_IMPLICIT_REP_D. .
FIS3SOL_VEG_0BJ_LOD2BREP_FIS LOD2_BREP_ID
<FK>SOL_VEG_OB._LODMPL FK: LOD2_IMPLICIT_REP_D.
FI(SOL_VEG_OB._LODIBREP_FI: LODI_BREP_ID .
<FIS3SOL_VEG_0BJ_LODINPL Fii; LODI_IMPLICIT_REP_D
<FK>SOL_VEG_OB.|_LODABREP_FH: LOD4_BREP_ID
FISOL_VEG_OBJ_LODAINPL_Fli: LOD4_IMPLICIT_REP_D.
<FK»SOL_VEG_OBJ_OBICLASS_FI: OBJECTCLASS_D.

04| 00| 0] * 0 [odfor P (g a0 o

aable>
SURFACE_GEONETRY
ID: NUMBER
VARCHAR2(256)
_CODESPACE : VARCHAR2(1D00)
PARENT_D: NUMBER
ROOT_I: NUMBER

GMLD
GMLD.

LE] 0.1 0.1 o1
13_SOLID: NUMBER(1, 0)
H vl SEoveRy IS CONFOSIE  WUIBER1 0
- IS_TRIANGULATED : NUMBER(1, 0}
D: NUVBER
IS CLINK : NUMBER(1, 0
VIME_TYPE : VARCHAR2(256) [EVER NuMéER(: .
SEFERENCE_TO_LERARY : VARCHARZ(4000) . o |STEMERSE: R 0)
FpeN G Ky SOLD_GEOMETRY : HDSYS S00_GEOUETRY
RELATIVE_OTHER_GEGH : MDSY'S.SDO_GEGMETRY g:}(\ggkiﬁf‘ngﬂz ufM EMEDPS ¥S SDO_GEOMETRY

\<PI{SURF ACE_GEONETRY_PK: ID
\<FIt>SURF ACE_GEOM_CITYOBJ_FK: CITYOBJECT_D .
\<FI>SURF ACE_GEOM_PARENT_FK: PARENT_ID

&FI{>SURF ACE_GEOM_ROOT_Fi. ROOT_ID

<PIGINPLICIT_GEOETRY PIC: ID
<FICINPLICIT_GEOM_BREP_FIS RELATIVE

Figure 48: Vegetation database schema
SOLITARY_VEGETAT OBJECT

The attributes class, function, usage, species, height, trunkDiameter, and crownDiameter
describe single vegetation objects. The attribute species is of type gml:CodeList in CityGML
that can be referenced to a certain codespace. Therefore, another CODESPACE column is
provided in the SOLITARY VEGETAT OBJECT table. Similar to the building table attribute
with measure information can optionally be coupled with a reference to the used measuring
scale by an additional UNIT column.



94 3D Geodatabase for CityGML 2019

The geometry of the vegetation can either be described explicitly using the attribute
LOD4 OTHER GEOM or LOD4 BREP ID or implicitly using a foreign key relation the
IMPLICIT GEOMETRY table including a reference point and optionally a transformation
matrix (LODx IMPLICIT REP ID, LODx IMPLICIT REF POINT
LODx IMPLICIT TRANSFORMATION, with1<x<4).

PLANT_COVER

Information on vegetation areas are contained in attributes usage, class, function, and
averageHeight. There is also a UNIT column to specify the scale the averageHeight values
are based on. The geometry is restricted to a MultiSurface or (and this is unique for
PlantCover features) a MultiSolid, represented respectively by the foreign keys
LODx MULTI SURFACE ID (with 1 <x <4)and LODx MULTI SOLID ID which refer
to the SURFACE _GEOMETRY table.

2.3.3.14 WaterBody Model

WATERBODY, WATERBOD_TO_WATERBND_SRF

The modelling of the WATERBODY database schema corresponds largely to the respective
UML model. For LoDO and LoD1 additional attributes are added, e.g. for modelling river
geometry (LODx MULTI CURVE).

The geometries of LODO and LOD1 areal water bodies are stored within the table
SURFACE GEOMETRY. The foreign keys LODx MULTI SURFACE ID (with 0 < x <1)
refer to the corresponding rows. Geometry for water filled volumes is handled in a similar
way using foreign keys LODx SOLID ID (with1<x<4).

For mapping the boundedBy aggregation which identifies the water body’s exterior shell
managed by the WATERBOUNDARY SURFACE table, the additional table
WATERBOD TO WATERBND_ SRF is needed to realise the m:n relationship.

WATERBOUNDARY_SURFACE

The exterior shell of a WaterBody can be differentiated semantically using features of the type
_WaterBoundarySurface. These features are stored in the WATERBOUNDARY SURFACE
table and can be distinguished by the OBJECTCLASS_ ID attribute:

e 11 (WaterSurface)
e 12 (WaterGroundSurface)
e 13 (WaterClosureSurface)

If a CityGML ADE is used that extends any of the named classes above, further values for
OBJECTCLASS ID may be added by the ADE manager. Their concrete numbers depend on
the ADE registration (cf. section 6.3.3.1).



3D Geodatabase for CityGML 2019 95

Since every _WaterBoundarySurface object must have at least one associated surface
geometry, the foreign keys LODx SURFACE ID (with 2 <x <4, no MultiSurface here) are
used to realise these relations.

L] stables
CITYOBJECT

1D : NUMBER

OBJECTCLASS_ID: NUMBER

GMLID : VARCHAR2(256)

GMLID_CODESPACE : W ARCHAR2(1000)

MNAME : VARCHAR2(1000)

NAME_CODESPACE : VARCHAR2(4000)

DESCRIPTION : VARCHAR2(4000)

ENVELOPE : MDSY'S.SDO_GEOMETRY

CREATION_DATE : TIMESTAMP VIITH TIME ZONE
TERMINATION_DATE : TIMESTAMP WITH TIME ZONE
RELATIVE_TO_TERRAIN : VARCHAR2(256)
RELATIVE_TO_WATER : VARCHAR2(256)
LAST_MODIFICATION_DATE : TIMESTAMP VWWITH TIME ZONE | 1
UPDATING_PERSCN : VARCHAR2(256)
REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)

XML_SOURCE : CLOB

«PI=CITYOBJECT_PK: ID
«FI=CITYOBJECT_OBJECTCLASS FI: OBJECTCLASS_ID

0.4
= atables
WATERBGDY o
0.4
ID: NUMBER
OBJECTCLASS_ID : NUMBER = dables
CLASS : VARCHAR2(258) WATERBOUNDARY_SURFACE
CLASS_CODESPACE : VARCHAR2(4000) ID - NUMBER
FUNCTION : VVARCHAR2(1000) (OBJECTCLASS_ID : NUMBER
FUNCTION_CODESPACE : \ARCHAR2(4000) \WATER_LEVEL : VARCHAR2(256)
USAGE : VARCHAR2(1000) & \WATER_LEVEL_CODESPACE : ARCHAR2(4000)
dables

/ LOD2_SURFACE_ID': NUMBER
USAGE_CODESPACE : VARCHAR2(4000) WATERBOD_ 10, WATEREND, SFF £
LODO_MULTI_CURVE : MDSYS SDO_GEOMETRY LOD3_SURFACE_ID : NUMBER

WATERBOUNDAR'Y_SURFACE_ID : NUMBER

LOD1_MULTI_CURVE : MDSYS SDO_GEOMETRY NATERBODY_ID: NUMBER

LODO_MULTI_SURFACE_ID : NUMBER

LOD4_SURFACE_ID : NUMBER

LODT_MULTI_SURFACE_ID : NUMBER 1 * 1

LOD1_SOLID_ID : NUMBER | S | | S

LOD2_SOLID_ID : NUMBER «PK3WATERBOD_TO_WATEREND_PK: WATERBOUNDARY_SURFACE_ID, WATEREODY ID

LOD3_SOLID_ID : NUMBER «FKSWATERBOD_TO_WATERBND_FK: WATERBOUNDARY_SURFACE_ID <PKsWATEREOUNDARY SURFACE_PK: D
LOD4_SOLID_ID : NUMBER FKAWATERBOD_TO_WATERBND_FK1: WATERBODY_ID T 3

\FKsWATERBND_SRF_CITYOBJECT FK: ID
«FKsWATERBND_SRF_LCOD2SRF_FK: LOD2_SURFACE_ID
«FKWATERBND_SRF_LCOD3SRF_FK: LOD3_SURFACE_ID
oFKWATERBND_SRF_LOD4SRF_FK: LODA_SURFACE_ID
(«FKWATERBND_SRF_OBJCLASS FI: OBJECTCLASS D
<PKWATERBODY_PK: ID
<FK3WATERBODY_CITYOBJECT_FK: D

<FKVWATERBODY_| ODOMSRF_FK: LODO_MULTI_SURFACE_D
<FK3WATERBODY_LOD1MSRF_FK: LOD1_MULTI_SURFACE_D
<FK3VWATERBODY_|OD1SOLID_FK: LODT_SOLID_|D
<FK3WATERBODY_| OD2SO0LID_FK: LOD2_SOLID_jD ]

atable
<FKsWATERBODY_LOD3SOLID_FK: LOD3_SOLID_D SURFACE. GEOWETRY.
<FKsWATERBODY_LOD4SOLID_FK: LOD4_SOLID_D SO
<FKSWATERBODY_OBJCLASS FK: OBJECTCLASS_ID (GMLID : VARCHAR2(256)

. (GMLID_CODESPACE : VARCHAR2(1000) 0.4

L PARENTD:NUMBER
ROOT_ID : NUMBER
0.1 |S_SOLID: NUMBER(1, 0)
IS_COMPOSITE : NUMBER(1, 0)
IS_TRIANGULATED : NUMBER(1, 0) 01
0.1 |ISXLINK: NUMBER(1, 0)
1S_REVERSE : NUWBER(1, 0)
GEOMETRY : MDSYS SDO_GEOMETRY
0.1 |SOLID_GEOMETRY : MDS'Y'S SDO_GEOMETRY
IMPLICIT_GEOMETRY : MDSYS.SDO_GEOMETRY
(CITYOBJECT ID : NUMBER

\aPK»SURFACE_GEOMETRY_PK: ID
laFK»SURFACE_GEOM_CITYOBJ_FK: CITYOBJECT_ID
\<FK»SURFACE_GEOM_PARENT_FK: PARENT_ID
(<FK»SURFACE_GEOM_ROOT_FK: RODT_ID

m]m—

Figure 49: WaterBody database schema

2.3.4 Sequences

Figure 50 lists predefined sequences from which multiple users may generate unique integers
for primary keys automatically. Sequences help to coordinate primary keys across multiple
rows and tables. For instance, the ID values of the BUILDING table are generated from the
CITYOBJECT SEQ sequence. The sequences are defined to start with 1 and to be
incremented by 1 when a sequence number is generated. It is highly recommended to generate
1D values for all tables by using the predefined sequences only.

The sequence GRID COVERAGE RDT SEQ does not exist in the PostgreSQL version as the
corresponding table does not exist.



96 3D Geodatabase for CityGML 2019

e ADE_SEQ T SCHEMA_SEQ

Increment : 1 Increment : 1

Maximum Value : Maximum Value :

Minimum *alue : 1 Minimum *alue : 1

Start With : 1 Start With : 1
e «SeqUences o aSefuences i 4Sequences

ADDRESS_SEQ APPEARAMCE_SEQ IMPLICIT_GECMETRY _SEGQ

Increment : 1 Increment : 1 Increment : 1

Maximum “alue :
Minimum Yalue : 1

Start With : 1

el “SequUences
CITYMODEL _SEQ

Increment : 1

Maximum Value :
Minimum Value : 1

Start With : 1

.13. aSequences
CITYOBJECT_SEQ

Increment : 1

Maximum Value :
Minimum Value : 1

Start With : 1

.13. “Sequences
TEX_IMAGE_SEQ

Increment : 1

Maximum Value :
Minimum Value : 1
Start With : 1

Maximum *alue :
Minimum alue : 1
Start With : 1

.?..3. “Sequences
SURFACE_DATA_SEQ
Increment : 1

Maximum “alue :

Minimum alue : 1

Start With : 1

i IDCHtyDB
CITYOBJECT_GEMERICATT_SEQ

Increment : 1

Maxdmum “alue :
Minimum alue : 1
Start With : 1

“.J:.E. asequences
SRID_COVERAGE_SEQ
Increment : 1

Maxdmum “alue :

Minimum alue : 1

Start With : 1

Maximum Value :
Minimum “alue : 1

Start With : 1

el 4Sequences
SURFACE_GECMETRY _SEQ

Increment : 1

Mandimum Value :
Minimum “alue : 1
Start With : 1

.13. sequences
EXTERMAL_REF_SEGQ
Increment : 1

Mandimum Yalue :

Minimum “alue : 1

Start With : 1

.13. asequences
GRID_COVERAGE_RDT_SEGQ

Increment : 1

Mandimum Yalue :
Minimum “alue : 1
Start With : 1

Figure 50: Overview of all sequences used in 3DCityDB

2.3.5 Definition of the CRS for a 3D City Database instance

The definition of the CRS of a 3D City Database instance consists of two components: 1) a
valid Spatial Reference Identifier (SRID, typically the EPSG code) and 2) an OGC GML
conformant definition identifier for the CRS. Both components are defined during the database
setup (see chapter 3.3) and are further stored in the table DATABASE SRS (see Figure 28).

The SRID is an integer value key pointing to spatial reference information within Oracle’s
MDSYS.CS_SRS table or PostGIS® SPATIAL REF SYS table. Both DBMSs are shipped
with a large number of predefined spatial reference systems. At setup time, the SRID chosen
as default value for the 3D City Database instance must already exist in the mentioned
tables.

The GML conformant CRS definition identifier is used as value for the gml : srsName
attribute on GML geometry elements when exporting database contents to CityGML instance
documents. It should follow the OGC recommendation for the Universal Resource Name
(URN) encoding of CRSs given in the OGC Best Practice Paper Definition identifier



3D Geodatabase for CityGML 2019 97

URNSs in OGC namespace [Whiteside 2009]. At setup time, please make sure to provide a
URN value which corresponds to the spatial reference system identified by the default SRID
of the database instance. Since CityGML is a 3D standard, the URN encoding shall always
represent a three-dimensional CRS which, for example, can be denoted as compound
coordinate reference systems [Whiteside 2009]. The general syntax of a URN encoding for a
compound reference system is as follows:

urn:ogc:def:crs,crs:authority:version:code,crs:authority:
version:code

Authority, version, and code depend on the information authority providing the CRS
definition (e.g. EPSG or OGC). The following example shows a possible combination of an
SRID (here referring to a 2D CRS) and CRS URN encoding (3D) to set up an instance of the
3D City Database:

SRID: 314606
URN: urn:ogc:def:crs,crs:EPSG:7.7:31466,crs:EPSG:7.7:5783

The example SRID is referencing a Projected CRS defined by EPSG (DHDN / 3-degree
Gauss-Kriiger zone 2; used in the western part of Germany; EPSG-Code: 31466). The URN
encodes a compound coordinate reference system which adds a Vertical CRS as height
reference (DHHNO92 height, EPSG-Code: 5783).



98

3D Geodatabase for CityGML 2019




3D Geodatabase for CityGML 2019 99

3 Implementation and Installation

The 3D City Database comes with SQL scripts for setting up an instance of the relational
schema on a spatial database system (Oracle Spatial/Locator or PostgreSQL/PostGIS) and
with a database loading and extracting tool called Importer/Exporter. Installers are available
for download at http://www.3dcitydb.org. The source code of the 3D City Database project is
hosted on https://github.com/3dcitydb. Please follow the instructions on the next pages to
complete a proper installation.

The individual components of the 3D City Database are also available as images for the
Docker virtualization technology. This makes it possible to install and configure a 3D City
Database with a single command line statement in almost any runtime environment. See
chapter 9 for more details.

3.1 System requirements

3.1.1 3D City Database

Setting up an instance of the 3D City Database requires a running installation of an Oracle or
PostgreSQL database server.

Oracle

Supported version are Oracle 10g R2 or higher. The 3D City Database requires spatial data
support provided either through the Oracle Spatial or Locator extension. It is highly
recommended to install available patches to avoid unexpected errors and to benefit from the
latest functionality. For Oracle 10g R2, at least patch set 10.2.0.4.0 is required for using the
KML/COLLADA/gITF export capabilities.

PostgreSQL

Supported versions are PostgreSQL 9.3 or higher with the PostGIS extension 2.0 or
higher. Please also make sure to always install the latest patches and updates.

The SQL scripts to create the database schema are written to be executed by the default
command-line-based client interface of the DBMS — which is SQL*Plus for Oracle and psql
for PostgreSQL. The scripts include meta commands specific to these clients and would not
work properly when using a different client software. So please make sure SQL*Plus or psql
is installed on the machine from where you want to setup the 3D City Database.

3.1.2 Importer/Exporter Tool

The Importer/Exporter tool can run on any platform providing support for Java 8 (or higher).
It has been successfully tested on (but is not limited to) the following operating systems:

e Microsoft Windows XP, Vista, 7, 8, 10;
e Apple Mac OS X and macOS;
e Ubuntu Linux 9 to 18.


http://www.3dcitydb.org/
https://github.com/3dcitydb

100 3D Geodatabase for CityGML 2019

Prior to the setup of the Importer/Exporter tool, the Java 8 Runtime Environment (or
higher) must be installed on your system. The installation package can be obtained from
http://www.java.com/en/download. Follow the installation instructions for your operating
system.

The Importer/Exporter is shipped with a universal installer that will guide you through the
steps of the setup process. A full installation of the Importer/Exporter including
documentation and example CityGML files requires approx. 505 MB of hard disk space.
Installing only the mandatory application files will use approx. 350 MB of hard disk space.
Installation packages can be selected during the setup process.

The Importer/Exporter runs with 1 GB of main memory per default. This setting should be
reasonable on most platforms and for most import/export procedures. If required, you can
manually adapt the main memory limits in the starter script of the program. Please refer to
chapter 5.1 for more details.

3.2 Installation of the Importer/Exporter and the 3D City
Database SQL Scripts

Download the universal installer from the 3DCityDB website at http://www.3dcitydb.org or at
https://github.com/3dcitydb/importer-exporter/releases and save it to your local file system.
The installer is shipped as an executable Java Archive (JAR) file. To run the installation
wizard, simply double-click on the 3DCityDB-Importer-Exporter-4.1.0-Setup.jar file.

F] Installation - 3D City Database Importer/Exporter v4.1.0 - O x

Installationspakete wihlen o |
Wahlen Sie die zu installierenden Programmfunktionen aus. bl L L
CityGML
Schritt 5von 9 -

48 Bitte wahlen Sie hier die Installationspakete aus:
Q Hinweis: Die grau markierten Pakete kénnen nicht optional ausgewshlt werden.

f Anwendungsdaten 351,156 MB
3D City Database 2,14 MB
Dokumentation 21,53 MB
3D Web Map Client 29,52 MB
CityGML und KML/COLLADA Beispieldaten 57,95 MB
Plugins 20,32 MB
- [/] Spreadsheet Generator Plugin 13,52 MB
+w [#] ADE Manager Plugin 6,8 MB
Beschreibung
Erforderlicher Speicherplatz: 432,61 MB
Verfligbarer Speicherplatz: 278,82 GB
{Erstellt mit IzPack - hitp:/fizpack.ong/)
{:—] Zurlick @ Beenden

Figure 51: Installation wizard of Import/Export tool (Step 5).

After accepting the license agreement and specifying an installation directory, you can choose
the software packages to be installed. It is recommended to at least select the packages ‘3D
City Database’ and ‘Documentation’. The ‘3D City Database’ package contains all SQL
scripts that are required for setting up an instance of the 3D City Database on your spatial


http://www.java.com/en/download
http://www.3dcitydb.org/
https://github.com/3dcitydb/importer-exporter/releases

3D Geodatabase for CityGML 2019 101

database system. Please refer to chapter 3.3 for a step-by-step guide on how to use the SQL
scripts. The package ‘Sample CityGML and KML/COLLADA datasets’ contains license-free
sample data that may be used in first tests.

The option ‘Plugins’ allows a user to install plugins for the Importer/Exporter, which add
further functionality to the tool. This release is shipped with the ‘Spreadsheet Generator
Plugin’ and the ‘ADE Manager Plugin’. A documentation of both plugins is provided in
chapters 6.2 and 6.3. More plugins may be added in future releases.

The ‘3D Web Map Client’ is a web-based viewer for 3DCityDB content and provides high-
performance 3D visualization and interactive exploration of arbitrarily large semantic 3D city
models on top of the open source Cesium Virtual Globe (refer to chapter 8 for the complete
documentation).

After successful installation, the contents of all selected installation packages are available in
the installation directory. To run the Importer/Exporter, simply use the starter script in the bin
subfolder (refer to chapter 5.1 for more information).

Note:  Before the Importer/Exporter can connect to an Oracle/PostgreSQL database, the 3D
City Database schema must have been set up. Please follow the instructions
provided in the next chapter.

The installation directory contains the following subfolders:

Folder Optional | Explanation
3dcitvdb X Contains all SQL scripts and stored procedures for operating the
y 3DCityDB

X Contains a ZIP archive containing all files required to install the 3D Web
Map Client on a web server

Contains extension packages to support CityGML ADEs. ADE extensions

3d-web-map-client

ade-extensions only must be copied to this directory to make them available in the
program.
Platform-specific starter scripts to launch the Importer/Exporter. For
bin instance, under Windows, double-click on 3DCityDB-Importer-

Exporter.bat to run the program
Third-party tools required by the Importer/Exporter (e.g. collada2gltf

SRS converter binaries)

lib Contains all libraries required by the Importer/Exporter

licence Contains the license documents for Importer/Exporter

manual X Contains the documentation for the 3DCityDB and the tools

lugins Cont_ain_s plugins of the Importer/E_xporte_r. Plugins only have to be copied

piug to this directory to make them available in the program.

samples X Contains CityGML and KML/COLLADA test datasets
Contains HTML templates for information balloons for KML/COLLADA

templates exports, a selection of coordinate reference systems in th form of XML
documents, and example XSLT stylesheets to be used in imports and
exports.

uninstaller Contains a JAR executable that uninstalls the Importer/Exporter

README.txt A brief information about the application

Table 18: Contents of the installation directory.



102 3D Geodatabase for CityGML 2019

3.3 Setting up the database schema

The required scripts for setting up the 3D City Database are in the installation directory of the
Importer/Exporter within the 3dcitydb/oracle/ or 3dcitydb/postgresql/ subfolders.

3.3.1 Shell Scripts

In previous versions of the 3D City Database the setup was managed through user prompts in
SQL scripts. To facilitate continuous integration workflows these inputs have been moved to
batch (Windows) and shell scripts (UNIX/Linux/macOS). The following table provides an
overview of the different shell scripts:

File Oracle | PgSQL | Explanation

CONNECTION_DETAILS X X Sets database credentials

CREATE_DB X X Runs all scripts for creating the relational schema of the
3DCityDB incl. user-defined types and functions

CREATE_SCHEMA X Creates an additional 3DCityDB instance in a separate
schema within the same database

DROP_DB X X Deletes all elements of the 3DCityDB

MIGRATION/ X Deletes all deprecated elements of a 3DCityDB v2 after a

DROP_DB V2 successful migration towards v4

DROP_SCHEMA X Removes a given database schema that contains a
3DCityDB instance

MIGRATION/ X Grants access on a 3DCityDB v2 to a v4 user (only

GRANT_ACCESS_V2 relevant for migration)

GRANT_ACCESS X X Grants read-only of read-write access on the 3DCityDB for
a given user

MIGRATION/ X X Starts the migration process from an older version

MIGRATE_DB

REVOKE_ACCESS X X Revokes access rights for a given user

Table 19: Overview of all shell scripts within 3dcitydb/oracle or 3dcitydb/postgresql folder.

The batch/shell scripts can be executed on double click. On some UNIX/Linux distributions
though, you will have to run the .sh scripts from within a shell environment. Please open your
favorite shell and check whether execution permission is set for the starter script. Change to
the installation folder and enter the following to make the starter script executable for the
owner of the file, e.g.:

chmod u+x CREATE DB.sh
Afterwards, simply run the shell script by typing:
./CREATE_DB.sh

Note: The database connection details need to be set in the CONNECTION_DETAILS
script prior to executing the batch/shell scripts.



3D Geodatabase for CityGML 2019 103

3.3.2 SQL Scripts

The SQLScripts directory contains four subfolders:
SCHEMA

Includes SQL files about the logical (tables, constraints) and physical (datatypes, indexes)
database schema of the 3D City Database exported from the schema modelling tools
JDeveloper (Oracle) or pgModeler (PostgreSQL) (with minor changes). INSERT statements
for the prefilled lookup tables OBJECTCLASS and AGGREGATION INFO as well as
converter functions between table names and objectclass IDs can be found in the
OBJECTCLASS subfolder. Because of PostgreSQL’s way to handle database schemas the
SCHEMA folder contains a few more scripts with stored procedures. See next chapter for
more details.

CITYDB_PKG

Contains scripts that create database objects and stored procedures mainly to be used by the
Importer/Exporter application. They are written in PL/SQL (Oracle) or PL/pgSQL
(PostgreSQL) and grouped by the type of operation (data manipulation, maintenance etc.).
The APIs are introduced in chapter 4.

UTIL
This folder assembles different database management utilities:

e Grant and revoke read rights to and from the 3D City Database.
e Create additional database schemas with a 3D City Database layout (PostgreSQL-

only)
e Enable or disable versioning (execution can be time-consuming) (Oracle-only)

e Update table statistics for spatial columns (PostgreSQL-only)
MIGRATION

Provides a migration path from previous releases to the newest version. See chapter 3.4 for
more details. This folder will also include upgrade scripts for upcoming minor releases.

3.3.3 Installation steps on Oracle Databases

Step 1 - Define a user for the 3D City Database

A dedicated database user should be created for your work with the 3D City Database. This
user must have the roles CONNECT and RESOURCE assigned and must own the privileges
CREATE SEQUENCE and CREATE TABLE.

Note: The privileges CREATE SEQUENCE and CREATE TABLE are required for
enabling and disabling spatial indexes. It is not sufficient to inherit these privileges
through a role.



104 3D Geodatabase for CityGML 2019

Step 2 — Edit the CONNECTION_DETAILS][.sh | .bat] script

Go to the 3dcitydb/oracle/ShellScrpts directory, choose the folder corresponding to your
operating system and open the file named CONNECTION_DETAILS within a text editor.
There are five variables that will be used to connect to the DBMS. If SQL*Plus is already
registered in your system path, you do not have to set the directory for the SQLPLUSBIN
variable. The other parameters should be obvious to Oracle users. Here is an example how the
complete CONNECTION_DETAILS can look like:

SQLPLUSBIN=C:\Oracle\instantclient 11 2
HOST=localhost

PORT=1521

SID=orcl

USERNAME=citydb v4

Note, that the scripts to grant or revoke read access require SYSDBA privileges. You can
specify a SYSDBA user in the CONNECTION_DETAILS script under an additional
parameter called SYSDBA USERNAME.

Step 3 - Execute the CREATE_DB script:

As soon as the database credentials are defined run the CREATE_DB script — located in the
same folder as CONNECTION_DETAILS (see also chapter 3.3.1).

Step 4 - Define the coordinate reference system

When executing the CREATE_DB script, the user is prompted for the coordinate reference
system (CRS) to be used in the 3D City Database. You have to enter the Oracle-specific SRID
(spatial reference ID) of the CRS which — in most cases — resembles the EPSG code of the
CRS. There are three prompts in total to define the spatial reference:

e First, specify the SRID to be used for the geometry columns of the database. Unlike
previous version of the 3D City Database there is no default CRS defined.

e Second, specify the SRID of the height system if no true 3D CRS is used for the data.
This can be regarded as metadata and has no effect on the geometry columns in the
database. The default value is 0 — which means “not set”.

e Third, provide the GML-conformant uniform resource name (URN) encoding of the
CRS. The default value uses the OGC namespace and comprises of the first two user
inputs: urn:ogc:def:crs, crs:EPSG: :<crsl>[,crs:EPSG: :<crs2>].

More information about the SRID and the URN encoding can be found in chapter 2.3.5.

Step 5 — Enable or disable versioning

After providing the CRS information, the user is asked whether or not the database should be
versioned-enabled. Versioning is realized based on Oracle’s Workspace Manager
functionality (see the Oracle documentation for more information). Please enter ‘yes’ or ‘no’.
The default value ‘no’ is confirmed by simply pressing Enter. Note that, in general, insert,
update, delete and index operations on version-enabled tables take considerably more time
than on tables without versioning support.



3D Geodatabase for CityGML 2019

Step 6 — Choose Spatial or Locator license option

You can set up a 3D City Database instance on an Oracle database with Spatial or Locator
support. Since Locator differs from Spatial with respect to the available spatial data types,
you need to specify which license option is valid for your Oracle installation. Simply enter ‘L’

for Locator or ‘S’ for Spatial (default value) to make your choice.

Note:

Note:

Since Locator lacks the GeoRaster data type, the 3D City Database tables for storing
raster reliefs (RASTER RELIEF, GRID COVERAGE, GRID COVERAGE RDT) are

not created when choosing Locator.

Several spatial operations and functionalities that are available in Oracle Spatial are
not covered by the Locator license even though they might be available from your
Oracle installation. It is the responsibility of the database user to observe the
Oracle license option. Choosing Locator or Spatial when setting up the 3D City

Database does neither affect the license option nor the users’ responsibility.

The following figure exemplifies the required user input during steps 4 to 6.

B C\Windows\system32\cmd.exe | = | = %

__ T

I - T

S 2 N U LN L ST B
I__/

3D City Database - The Open Source CityGHML Database

HHHE R R R H BB R R R B E B B H B R R R R R R R R HHHE
HEHEHE

Welcome to the 3DCityDB Setup Script. This script will guide you through the pro
cess
of setting up a 3DCityDB instance. Please follow the instructions of the script.

Enter the required parameters when prompted and press ENTER to confirm.
Just press ENTER to use the default values.

Documentation and help:
3DCityDB webhsite: https://wwu.3dcitydb.org
3DCityDB on GitHub: https://github.com/3dcitydb

Having problems or need support?
Please file an issue here:
https://github.com/3dcitydb/3dcitydb/issues

HEHE R R R R H BB R R R B E BH HHH B HE B R R RH B HH B HE R R R R R HHES
Li:dididia

Please enter a valid SRID (e.g., EPSG code of the CRS to be used).
(SRID must be an integer greater than zero): 25833

Please enter the EPSG code of the height system (use @ if unknown or '25833' is
already 3D).
(default HEIGHT_EPSG=8): 5783

Please enter the corresponding gml:srsName to be used in GML exports.
(default GMLSRSNAME=urn:ogc:def:crs, crs:EPSG::25833,crs:EPSG: :5783):

Shall versioning be enabled (yes/no)?
(default UERSIONING:=nho):

Which database license are you using (Spatial=$/Locator=L)?
(default DBUERSION=S): L

Figure 52: Example user input when executing CREATE_DB on an Oracle database.




106 3D Geodatabase for CityGML 2019

Step 7 — Check if the setup is correct

After successful completion of the setup procedure, the tables, sequences and packages (that
contain stored procedures) should appear in the user schema.

Versioning of the database can also be switched on and off at any time. The corresponding
scripts are ENABLE_VERSIONING.sgl and DISABLE_VERSIONING.sgl. These scripts
invoke routines of the Oracle Workspace Manager and will take some time for execution
depending on the amount of data stored in the 3D City Database instance.

Last but not least, the schema and stored procedures of the 3D City Database can be dropped
with the DROP_DB script, which is executed like CREATE_DB. Similar to CREATE_DB,
you need to provide the license option (Locator or Spatial). Note that the script will delete all
data stored in the 3D City Database schema. The database user will, however, not be deleted.

3.3.4 Installation steps on PostgreSQL
Step 1 - Create an empty PostgreSQL database

Choose a superuser or a user with the CREATEDB privilege to create a new database on the
PostgreSQL server (e.g. ‘citydb_v4"). As owner of this new database, choose or create a user
who will later set up the 3D City Database instance. Otherwise, more permissions have to be
granted. In the following steps, this user is called 'citydb_user".

Connect to the database and type:

CREATE DATABASE citydb v4 OWNER citydb user;

or use a graphical database client such as pgAdmin that is shipped with PostgreSQL. Please
check the pgAdmin documentation for more details.

Step 2 — Add the PostGIS extension

The 3D City Database requires the PostGIS extension to be added to the database. This can
only be done as superuser. The extension is added with the following command (or,
alternatively, using pgAdmin):

CREATE EXTENSION postgis;

Some 3D operations such as extrusion or volume calculation are only available through the
PostGIS SFCGAL extension. The installed PostGIS add-on should at least be on version
2.2 to execute the DDL command:

CREATE EXTENSION postgis sfcgal;
Step 3 — Edit the CONNECTION_DETAILS[.sh | .bat] script

Go to the 3dcitydb/postgresql/ShellScrpts directory, choose the folder corresponding to your
operating system and open the file named CONNECTION_DETAILS within a text editor.
There are five variables that will be used to connect to the DBMS. If psql is already registered
in your system path, you do not have to set the directory for the PGBIN variable. The other



3D Geodatabase for CityGML 2019 107

parameters should be obvious to PostgreSQL users. Here is an example how the complete
CONNECTION_DETAILS can look like:

PGBIN=C:\PostgreSQL\9.6\bin
PGHOST=localhost
PGPORT=5432
CITYDB=citydb v4
PGUSER=citydb user

Step 4 - Execute the CREATE_DB script

As soon as the database credentials are defined run the CREATE_DB script — located in the
same folder as CONNECTION_DETAILS (see also chapter 3.3.1).

Step 5 — Specify the coordinate reference system

Like with the Oracle version, the user is prompted to enter the SRID used for the geometry
columns, the SRID of the height system and the URN encoding of the coordinate reference
system to be used (see chapter 2.3.5. for more information).

Note:  The setup process will terminate immediately if an error occurs. Reasons might be:

e The user executing CREATE_DB.sql is neither a superuser nor the owner of the
specified database (or does not own privileges to create objects in that database);

e The PostGIS extension has not been installed; or

e Parts of the 3D City Database do already exist because of a previous setup
attempt. Therefore, make sure that the schemas ‘citydb’ and ‘citydb _pkg’ do not
exist in the database when setting up the 3D City Database.

After a series of log messages reporting the creation of database objects, the chosen reference
system is applied to the spatial columns (expect for those that will store data with local
coordinate systems). This takes some seconds and is finished when the word ‘Done’ is
displayed.

Step 5 — Check if the setup is correct

The 3D City Database is stored in a separate PostgreSQL schema called ‘citydb’. The stored
procedures are written to a separate PostgreSQL schema called ‘citydb pkg’. Usually
different schemas have to be addressed in every query via dot notation, e.g.

SELECT * FROM citydb.building;

Fortunately, this can be avoided when the corresponding schemas are on the database search
path. The search path is automatically adapted during the setup. Execute the command

SHOW search path;

to check if the schemas citydb, citydb_pkg and public (for PostGIS elements) are contained.



108 3D Geodatabase for CityGML 2019

Note:  When using the created 3D City Database as a template database for new databases,
the search path information is not transferred and thus has to be set again, e.g.:

ALTER DATABASE new citydb v4 SET search path TO citydb,
citydb pkg, public;

The search path will be updated upon the next login, not within the same session.

To drop the 3D City Database with all data, execute the DROP_DB.sql script in the same way
like CREATE_DB.sql. Simply dropping the schemas ‘citydb’ and ‘citydb pkg’ in a cascading
way will also do the job.

3.4 Working with multiple database schemas

Most users rarely work with only one 3D City Database. They maintain multiple instances for
each data set, for different city projects or user groups and probably for various test demos.
The new ability to manage CityGML ADEs sets the ground for even more experiments. This
chapter explains how to manage multiple 3D City Databases in separate schemas.

3.4.1 Create and address database schemas
Databases and schemas in PostgreSQL

PostgreSQL provides a clustering concept for database schemas that allows users to group
multiple instances of the 3D City Database. This means within one database object a user can
create more schemas like in the ‘citydb’ schema, that store the table layout of the 3D City
Database. They can be regarded as separate namespaces. To address the different namespaces,
dot notation should be used in queries. Note, if tables are not schema-qualified the first
namespace in the database search path (see chapter 3.3.4) that contains the tables will be used.
One advantage of using multiple schemas instead of many databases is the ability to join
tables from different namespaces. Cross-database queries are not directly possible in
PostgreSQL (see postgres_fdw extension).

To create an additional 3D City Database instance within a given database run the
CREATE_SCHEMA shell script and define a name for the new schema. The new instance
will obtain the CRS from the ‘citydb’ schema, which can be changed later (see chapter 4.5).
To drop a schema, call the DROP_SCHEMA shell script.

Oracle user schemas

In Oracle, schemas are bound to one user. All user schemas belong to one database. There is
no clustering concept like in PostgreSQL, so a CREATE_SCHEMA script would not make
too much sense. In fact, a new instance should be created with a new user and the
CREATE_DB script. Like with PostgreSQL schemas, it is possible to join tables from
different user namespaces if sufficient privileges were granted (see next chapter). As another
alternative Oracle databases can be set under version control with the Oracle Workspace
Manager so that a user can also work with multiple versions of a city model in separate
workspaces. To change the workspace a user must execute the DBMS WM. GotoWorkspace
procedure.



3D Geodatabase for CityGML 2019 109

3.4.2 Read and write access to a schema

A shell script called GRANT_ACCESS is provided to grant either READ-ONLY (RO) or
READ-WRITE (Rw) access rights to a 3D City Database instance. The user who acts as the
grantor must be specified in the CONNECTION_DETAILS file. The user name of the grantee
must be entered when executing the script.

Read-only access rights

Granting only read access is useful if you want to protect your data from unauthorized or
accidental modification. This is the default setting in the GRANT_ACCESS script. Read-only
users will be allowed to:

e connect to the given database schema and use its objects (tables, views, sequences,
types etc.),

e export data in both CityGML and KML/COLLADA formats,

e Qenerate database reports, query the index status and calculate envelopes.

But they can neither import new data into the 3DCityDB nor alter the data already stored in
the tables in any way (incl. updating envelopes, dropping and creating indexes).

Read and write access rights

By choosing the Rw option in the GRANT_ACCESS script the grantee will also be able to
perform UPDATE and DELETE operations against the schema content. This is especially
useful for Oracle users, who want to manage different database schemas with primarily one
user. In PostgreSQL however, one user can be the owner of multiple schemas. Still, write
access can be interesting in a multi-editor scenario.

Note:  Dropping and creating indexes is not possible in PostgreSQL, if you’re not the owner
of the table.

Revoke access

Like with the GRANT_ACCESS script, access rights can also be revoked, of course. Simply
call the REVOKE_ACCESS script and enter the user name of the grantee and the schema
name from which the rights shall be revoked from.

3.4.3 Schema support in stored procedures

Since v3.0.0, most stored procedures of the 3D City Database offer an input argument to
specify the schema name against which the operation will be executed. The default for Oracle
is the schema of the currently connected user, for PostgreSQL it is “citydb’. For v4.0 this
parameter has been removed for those type of stored procedures that operate on the logical
level of the database, because managing different ADEs in separate schemas can result in a
different table structure. E.g. one central delete script is not guaranteed to work against every
schema. Thus, for PostgreSQL these procedures are now part of an instance schema such as
‘citydb’ (see also chapter 4). Instead of calling a delete function from the central ‘citydb pkg’
schema like this:



110 3D Geodatabase for CityGML 2019

SELECT citydb pkg.delete cityobject(l, ‘my schema’);
you now have to schema-qualify the function itself:

SELECT my schema.delete cityobject(1l);

In Oracle, every stored procedure could be called this way, as every user schema stores the
PL/SQL packages.

3.5 Migration from previous major releases

Scripts are located in the folder 3dcitydb/[oracle/postgresql]/MIGRATION within the
installation directory of the Importer/Exporter tool. A migration path is provided for 3D City
Databases of version 2.1 and of version 3.3.

Hint:  Another safe and simple migration approach is to export the database content from
the v2.x/v3.x instance as CityGML with the previous version of the
Importer/Exporter and to re-import the data into the new 3D City Database version
by using the new Importer/Exporter shipped with this release. This approach might
take more time though, depending on the amount of data stored in the database.

Note:  The migration scripts do not handle version-enabled tables under Oracle. Therefore,
if you are using Oracle and have enabled versioning, then exporting and re-importing
the data is the recommended way to migrate to the new 3DCityDB version.

To start the migration process run the MIGRATE_DB shell script. Make sure, the database
credentials taken from the CONNECTION_DETAILS file are correct. With the first input you
need to enter the major version number of the currently installed 3D City Database instance —
either 2 or 3. To identify the actual version of your 3D City Database you can use the
Importer/Exporter tool to connect to the 3D City Database instance that you want to upgrade.
Starting from v3.0.0 the version string is printed to the console window after the connection
has been successfully established as shown below (see chapter 5.2.1 for details).

.

Console

[11:24:23 INFO] Connected to database profile 'citydb'.

[11:24:23 INFO] 3D City Database: 3 0.0 |

[11:24:23 INFDO] Database: PostgreSQL

[11:24:22 INFO] Versiom: 5.5.0

[11:24:23 INFO] SRID: 3088 (Projected)

[11:24:23 INFO] SRS5: DHDN / Soldner Berlin

[11:24:23 INFO] gml:sraName: urn:ogco:def:crs, cra:EPSE::3088, crs:EPSE: 5783
[11:24:-23 INFO] WVersioning: Not supported

Figure 53: Version information of a 3D City Database.



3D Geodatabase for CityGML 2019 111

If the version string does not show up, you are running a v2.x instance. Alternatively, the
version information can also be queried using database-side functions. For Oracle the
command is:

SQL> select MAJOR VERSION from
table (CITYDB_UTIL . CITYDB_VERSION) ;

For PostgreSQL it is:
psgl> SELECT major version FROM citydb pkg.citydb version();

If the function is not known to the system, you are probably running a v2.x instance. For
Oracle Database, migrating from v2 to v4 has some prerequisites which will be explained in
detail in the next chapter.

3.5.1 V2 to V4 Migration on Oracle

Step 1 — Upgrade an existing installation

The migration to v4.0 must be carried out on a version 2.1.0 instance of the 3D City
Database. Versions prior to version 2.1.0 must first be upgraded to 2.1.0 since the internal
storage of envelopes of city objects changed substantially. Corresponding upgrade scripts are
shipped with the v2.1.0 release. Upgrades to 2.1.0 can be carried out from any older version
2.0.0 to 2.0.6. A more detailed description of the upgrade procedure can be found in the
document “Documentation of the 3D City Database v2.1.0 and the Importer/Exporter v1.6.0.

Before upgrading your 3D City Database, a database backup is highly recommended to secure
all data. The latter can be easily done using the Importer/Exporter tool or by tools provided by
Oracle.

Important: Please note that the last step in the upgrade process is a lengthy one. Altering the
internal storage of the envelopes of all city objects in a large and/or versioned database may
take hours. Depending on their initial state, spatial indexes may be disabled and re-enabled in
the process, adding to the duration as a whole. This process MUST NOT be interrupted since
it could lead to an inconsistent state. Please be patient and remember that backing up all of
your data before starting any database upgrade is the commonly recommended practice.

Step 2 — Creating a new installation

The migration script transfers data from a user schema with the v2.1.0 installation to another
user schema that has to contain the 3D City Database schema v4.0. Install the new version
like it is described in chapter 3.3 if not done so yet.

Step 3 — Grant select on v2.1.0 schema to v4.0 schema

The migration process requires that the user with the v4.0 schema can access the user schema
with the v2.1.0 version. Therefore, run the GRANT_ACCESS V2 shell script (see chapter
3.3.1) as the V2 user. When executed the user is requested to type in the schema name for the
3D City Database v4.0 instance.



112 3D Geodatabase for CityGML 2019

Step 4 - Run MIGRATE_DB

Now, start the MIGRATE_DB script located in the same folder like GRANT_ACCESS V2
as the V4 user. Choose the value 2 as first input and specify the name of the schema with the
v2.1.0 instance.

Step 5 — Be sure of using unique texture URIs

Starting from v3.0.0 of the 3D City Database, textures that are referenced to more than one
geometry are no longer stored redundantly in the SURFACE DATA table but only once in the
TEX IMAGE table. This optimization can also be done during the migration process, if it is
guaranteed that texture URIs are unique and not used for different texture files. Otherwise,
some textures would get lost during the migration and remaining images would be referenced
to wrong surfaces. Therefore, if you can assure the non-existence of duplicate texture URISs,
verify with ‘y’ or ‘yes’. In case you know that textures in the database are named equally (or
if you do not know) you can still run the script by entering ‘n’ or nothing (because it is the
default). Entries in the TEX IMAGE column of the SURFACE DATA table from version 2.1
are then further mapped 1:1 to the TEX IMAGE table of version 4.0.

Note: A simple unification of texture URIs in advance of the migration will not help to
store the textures only once, because same textures with different URIs are regarded
as different image files and would all end up in the new TEX IMAGE table. You
would have to compare the binary data itself.

Step 6 — Choose Spatial or Locator license option

With the last input parameter you specify the database license running on your Oracle server,
like you have done when setting up the v4.0 instance of the 3D City Database. Choose ‘S’ for
Spatial (which will additionally migrate raster data) and ‘L’ for Locator.

Step 7 — Check if the setup is correct

The script temporary disables databases indexes and foreign key constraints and creates an
additional package with migration procedures (CITYDB MIGRATE). The package is
removed again when the migration progress is completed and the message "DB migration is
completed successfully.” is displayed on the console. It is recommended to generate a
database report of the new user schema and compare it with a report of the schema that
contains the 2.1 instance of the 3D City Database (done with the previous version of the
Import/Export tool). Verify that

e NoO city objects are missing (do a database report),

¢ indexes and foreign keys got activated again,

e relations between features and attributes are correct, and
e exports look correct inside a viewer application.

Step 8 — Drop the deprecated v2.x schema

If the migration was successful, the v2.x user simply has to invoke the DROP_DB (of version
2.X) to drop the deprecated schema. Deleting the v2.x user works as well.



3D Geodatabase for CityGML 2019 113

3.5.2 V2 to V4 Migration on PostgreSQL
Step 1 - Run MIGRATE_DB

For PostgreSQL, setting up a new v4.0 instance is not necessary. Simply execute the
MIGRATE_DB shell script and choose the value 2 as first input.

Step 2 — Be sure of using unique texture URIs

Like with the Oracle version, you are requested to guarantee that no texture URI is used for
different images. See Step 5 in the workflow explanation of the Oracle version for further
details.

Step 3 — Check if the setup is correct

After a series of log messages reporting the selection of data from the v2.x schema, updates of
references and the creation of database objects, the script is finished with the message
'3DCityDB migration complete!. If the old database schema is not dropped during the
migration (see last step), both versions of the 3D City Database will remain in one database.
This is actually a good thing, because you can further compare if everything has been
transferred correctly.

Idempotent migration

If the migration process has been interrupted by the user or by severe software errors, the
migration script can simply be executed again (only if the old v2.x schema still exists) without
manually dropping already created parts of the v4.0 schema because the script does it for you.

Step 4 — Drop the deprecated v2.x schema

To remove the deprecated parts of your 3D City Database invoke the DROP_DB_V?2 shell
script. DO NOT execute the DROP_DB script as the old and new instance of the 3D City
Database are both stored inside the same database (new = citydb schema, old = public
schema). DROP_DB drops all database schemas where it finds a DATABASE SRS table, so
all you data would be lost. Be careful!

3.5.3 V3 to V4 Migration

The migration process from v3 to v4 does not require any user inputs after entering the value
3 in the MIGRATE_DB script (except for choosing the license under Oracle). Please note,
that schema changes on existing tables are applied with ALTER TABLE statements which
can lock these tables for a longer period if they contain millions of rows.

3.6 Upgrade between minor releases

Every minor release of the 3D City Database is shipped with an upgrade script if necessary.
Starting from version 4.x.x it can be found in the MIGRATION folder. Like with other
database DDL tasks a shell script will be provided as well to ease the upgrade process. Make
sure to first check the current version of your 3D City Database installation before performing



114 3D Geodatabase for CityGML 2019

an upgrade, as mentioned in the migration chapter 3.5. During an upgrade check the output
messages of the script for errors and warnings. The process should finish the message “3D
City Database upgrade complete”.



3D Geodatabase for CityGML 2019 115

4 Stored procedures and additional features

The 3D City Database is shipped with a set of stored procedures referred to as the CITYDB
package (formerly known as the GEODB package in v2.x). They are automatically installed
during the setup procedure of the 3D City Database. For the Oracle version, it comprises of
eight PL/SQL packages. In the PostgreSQL version, functions are written in PL/pgSQL and
stored either in their own database schema called ‘citydb pkg’ or as part of an instance
schema like ‘citydb’. Many of these functions and procedures expose certain tasks on the
database side to the Importer/Exporter client. When calling stored procedures, the package
name has to be included for the Oracle version. With PostgreSQL, the ‘citydb pkg’ schema
has not to be specified as prefix since it is put on the database search path during setup.

26 citydb_v4 o = aydb_va
#-kg Tables (Filtered) ; [% Casts
w-{E9 Views H QCatalogs
w=-{89 Editioning Views 1 [ Event Triggers
(a8 Indexes = ) Extensions (3)
BE@ Packages T plpgsql
@@ CITYDB_CONSTRAINT - Dpostgs
- CITYDB_DELETE £ postgis._sfcgal
{‘fﬁ CITYDB_ENVELOPE £ Foreign Data Wrappers
- CITYDB_IDX 5 5 Languages (1)
@) CITYDB_OBICLASS plpgsql
- CITYDB_SRS 5 & schemas (3)
N 4 O i
- CITYDB_STAT 1 99 citydb
=@ CITYDB_UTIL 41+ 99 citydb_pkg
- 9 public

Figure 54: Graphical database client connected to the 3D City Database (left: SQL Developer (Oracle), right:
pgAdmin 4 (PostgreSQL)

4.1 User-defined data types

The Oracle version defines a set of user-defined data types that are used by functions from the
PL/SQL packages. They are not necessary in PostgreSQL, because of how it deals with arrays
and returns of multiple variables.

e STRARRAY, a nested table of the data type VARCHAR2
e ID ARRAY, anested table of the data type NUMBER

e DB VERSION OBJ, an object that bundles version information of the installed 3D
City Database instance

e DB VERSION TABLE, a nested table of DB VERSION OBJ
e DB INFO_OBJ, an object that bundles metadata of the used reference system
e DB INFO TABLE, a nested table of DB INFO OBJ

The definition of the data types can be found in the SQL file for the CITYDB UTIL package.



116

3D Geodatabase for CityGML 2019

4.2 CITYDB_UTIL

The CITYDB UTIL package can be seen as a container for various single utility functions. If
further releases will bring more stored procedures with similar functionality some of them
will probably be outsourced in their own package (like CITYDB CONSTRAINT in Vv4.0).
Nearly all functions take the schema name as the last input argument (“schema-aware”).
Therefore, they can be executed against another user schema in Oracle or database schema in
PostgreSQL. Note, for the function get seq values the schema name must be part of the
first argument — the sequence name, e.g. 'my schema.cityobject seq'.

Here is overview on API of the CITYDB UTIL package in Oracle:

Function

Return Type

Explanation

citydb_version

DB VERSION TABLE

Returns version information of the currently
installed 3DCityDB

construct_solid (geom_root_id)

SDO_GEOMETRY

Tries to construct a solid geometry based on a
given root_id value in SURFACE GEOMETRY table

db_info (schema_name)

3 OUT variables

Returns three columns: schema_srid INTEGER,
schema_gml_srs_name VARCHAR2, versioning
VARCHAR2

db_metadata (schema_name)

DB_INFO TABLE

Returns a set of 3DCityDB metadata

drop_tmp_tables (schema_name) | void Drop existing temporal tables
get_id_array_size (ID_ARRAY) NUMBER Returns the size of an ID_ARRAY nested table
get_seq_values (seq_name, ID ARRAY Returns the next k values of a given sequence
seq_count)

min (NUMBER, NUMBER) NUMBER Returns the smaller of two given numbers
sdo2geojson3d CLOB Returns a given geometry into a 3D GeoJSON
(SDO_GEOMETRY, character object

decimal_places, compress_tags,

relative2mbr)

split (VARCHAR2, delimiter) STRARRAY Splits a String based on a given delimiter into a

STRARRAY object

ST_Affine (SDO_GEOMETRY,
rowlcoll, rowlcol2, rowlcol3,
row2coll, row2col2, row2col3,
row3coll, row3col2, row3col3,
rowlcol4, row2col4, row3col4)

SDO_GEOMETRY

Performs an affine transformation on a given
geometry a given 3x3 matrix plus 3 offset values

string2id_array (VARCHAR2,
delimiter)

ID ARRAY

Transforms a String into an ID_ARRAY with a
given delimiter

to_2d (SDO_GEOMETRY, srid)

SDO_GEOMETRY

Returns a geometry without Z values

versioning_db (schema_name)

VARCHAR2

Returns either ‘ON’ or ‘OFF’

versioning_table (table_name,
schema_name)

VARCHAR2

Returns either ‘ON’ or ‘OFF’

Table 20: APl of CITYDB UTIL package for Oracle

The PostgreSQL API includes less functions, as some functionality is provided by the
PostGIS extension, such as ST_AsGeoJSON, ST_Affine and ST_Force2D. Returning
multiple variables is always performed with OUT variables.

Function

Return Type

Explanation

citydb_version ()

4 OUT variables

Returns version information of the currently
installed 3DCityDB

db_info (schema_name)

3 OUT variables

Returns three columns: schema_srid INTEGER,
schema_gml_srs_name TEXT, versioning TEXT




3D Geodatabase for CityGML 2019 117

db_metadata (schema_name) 6 OUT variables Returns six variables: schema_srid INTEGER,
schema_gml_srs_name TEXT,

coord_ref_sys _name TEXT, coord_ref_sys_kind
TEXT, wktext TEXT, versioning TEXT

drop_tmp_tables (schema_name) | void Drop existing temporal tables
get_seq_values (seq_name, SETOF INTEGER Returns the next k values of a given sequence
seq_count)

Min (NUMERIC, NUMERIC) NUMERIC Returns the smaller of two given numbers
versioning_db (schema_name) TEXT Returns ‘OFF’

versioning_table (table_name, TEXT Returns ‘OFF’

schema_name)

Table 21: APl of CITYDB UTIL package for PostgreSQL

4.3 CITYDB_CONSTRAINT

The CITYDB_CONSTRAINT packages includes stored procedures to define constraints or
change their behavior. A user can temporarily disable certain foreign key relationships
between tables, e.g. the numerous references to the SURFACE GEOMETRY table. The
constraints are not dropped. While it comes at the risk of data inconsistency it can improve the
performance for bulk write operations such as huge imports or the deletion of thousands of
city objects.

It is also possible to change the delete rule of foreign keys from ON DELETE NO ACTION
(use 'a' as input) to ON DELETE SET NULL ('n') or ON DELETE CASCADE ('c').
Switching the delete rule will remove and recreate the foreign key constraint. The delete rule
does affect the layout of automatically generated delete scripts as no explicit code is necessary
in case of cascading deletes. However, we do not recommend to change the behavior of
existing foreign key relationships because some delete operations might not work properly
anymore. For Oracle databases, there is an additional procedure to define spatial metadata for
single geometry column. All functions are schema-aware and their return type is void.

Function Explanation

set_column_sdo_metadata Inserts a new entry in the USER_SDO_GEOM_METADATA View
(geom_column_name, dimension, srid, for a given geometry column

table_name, schema_name)

set_enabled_fkey (fkey_name, table_name, Disables / enables a given foreign key constraint

BOOLEAN, schema_name)

set_enabled_geom_fkeys (BOOLEAN, Disables / enables all foreign key constraints that reference
schema_name) the SURFACE_GEOMETRY table
set_enabled_schema_fkeys (BOOLEAN, Disables / enables all foreign key constraints within a given
schema_name) user schema

set_fkey_delete_rule (fkey_name, table_name, | Changes the delete rule of a given foreign key constraint
column_name, ref_table, ref_column,
on_delete_param, schema_name)

set_schema_fkey_delete_rule Changes the delete rule of all foreign key constraint within a
(on_delete_param, schema_name) given user schema
set_schema_sdo_metadata (schema_name) Inserts new entries in the USER_SDO_GEOM METADATA view

for all geometry columns of a given schema (some
expections)

Table 22: API of CITYDB_CONSTRAINT package for Oracle



118 3D Geodatabase for CityGML 2019

There is only one significant difference in the API in PostgreSQL. Instead of specifying the
name, table and schema of a foreign key, the OID of the corresponding integrity trigger is
enough. This is because there is no ALTER TABLE command in PostgreSQL to disable
foreign keys.

Function Explanation

set_enabled_fkey (fkey_trigger_oid, BOOLEAN) Disables / enables a given foreign key constraint trigger

Table 23: Notable difference in the APl of CITYDB CONSTRAINT package for PostgreSQL

4.4 CITYDB_IDX

The package CITYDB IDX provides functions to create, drop, and check both spatial and
non-spatial indexes on tables of the 3D City Database by using a user-defined data type called
INDEX OBJ. In the Oracle version, the data type offers three member functions to construct
an INDEX OBJ. In the PostgreSQL version, these are just separate functions within the
‘citydb_pkg’ schema:

e construct spatial 3d fora 3-dimensional spatial index
e construct spatial 2d fora 2-dimensional spatial index
e construct normal foranormal B-tree index

The easiest way to take use of this package is by using the Importer/Exporter (see chapter
5.2.2), which provides an interface for enabling and disabling indexes (ON and OFF).
Disabling spatial indexes can accelerate some operations such as bulk imports, deletion of
many objects, and migration of data from a 3D City Database v2.1.0 instance to version 4.0.
The methods used by the Importer/Exporter iterate over the entries in the INDEX TABLE
table which is part of the database schema. In order to include more indexes the user need to
insert their metadata into INDEX TABLE. The differences between Oracle and PostgreSQL
only apply to different data types. Instead of STRARRAY an array of TEXT is used as return

type.

Function Return Type | Explanation

create_index(INDEX_OBJ, VARCHAR2 Creates a new index based on the metadata of the input
is_versioned, schema_name) INDEX_OBJ. Returns a text status.
create_normal_indexes STRARRAY Creates indexes for all normal indexes to be found in
(schema_name) INDEX TABLE. Returns an array of status reports.
create_spatial_indexes STRARRAY Creates indexes for all spatial indexes to be found in
(schema_name) INDEX TABLE. Returns an array of status reports.
drop_index (INDEX_OBJ, VARCHAR2 Drops an index that matches the metadata of the input
is_versioned, schema_name) INDEX_OBJ. Returns a text status.
drop_normal_indexes STRARRAY Drops indexes that match all normal indexes to be found in
(schema_name) INDEX TABLE. Returns an array of status reports.
drop_spatial_indexes STRARRAY Drops indexes that match all spatial indexes to be found in
(schema_name) INDEX TABLE. Returns an array of status reports.
get_index(table_name, INDEX OBJ Returns an INDEX OBJ from INDEX TABLE based on the
column_name, inputs

schema_name)

index_status(INDEX_OBJ, VARCHAR2 Returns a text status for an index that matches the
schema_name) metadata of the input INDEX OBJ




3D Geodatabase for CityGML 2019 119

index_status(table_name, VARCHAR?2 Returns a text status for an index that matches the input
column_name, argument

schema_name)

status_normal_indexes STRARRAY Returns an array of status reports for all normal indexes to
(schema_name) be found in INDEX TABLE

status_spatial_indexes STRARRAY Returns an array of status reports for all spatial indexes to
(schema_name) be found in INDEX TABLE

Table 24: APl of CITYDB IDX package for Oracle

4.5 CITYDB_SRS

The package CITYDB SRS provides functions and procedures dealing with the coordinate
reference system used for an 3D City Database instance. The most essential procedure is
change schema srid to change the reference system for all spatial columns within a
database schema. If a coordinate transformation is needed because an alternative reference
system shall be used, the value ‘1’ should be passed to the procedure as the third parameter. If
a wrong SRID had been chosen by mistake during setup, a coordinate transformation might
not be necessary in case the coordinate values of the city objects are already matching the new
reference system. Thus, the value 0 should be provided to the procedure, which then only
changes the spatial metadata to reflect the new reference system. It can also be omitted, as 0 is
the default value for the procedure. Either way, changing the CRS will drop and recreate the
spatial index for the affected column. Therefore, this operation can take a lot of time
depending on the size of the table. Note that in Oracle, the reference system cannot be
changed for another user schema. So, there is no schema_name parameter. The is also an
additional function called get dim(column name, table name, schema name)
to fetch the dimension of the spatial column which is either 2 or 3.

Function Return Type | Explanation

change_column_srid void Changes the reference system for a given geometry

(table_name, column_name, column. Spatial metadata is needed to recreate the

dimension, srid, do_transform, spatial index.

geometry_type, schema_name)

change_schema_srid (srid, void Changes the reference system for all spatial columns

gml_srs_name, do_transform, inside a database schema. The second parameter

schema_name) needs to be a GML-compliant URN to the CRS (see
chapter 2.3.5)

check_srid (srid) TEXT Returns the message 'SRID ok' if the CRS with the

given EPSG code exists in the database. Returns
"SRID not ok' ifnot.

is_coord_ref_sys_3d (srid) INTEGER Tests if CRS with given EPSG code is a 3D CRS.
Returns 1 if yes and 0 if not.

is_db_coord_ref_sys_3d INTEGER Tests if the current CRS of a given schema is a 3D one.

(schema_name) Returns 1 if yes and O if not.

transform_or_null GEOMETRY Applies a coordinate transformation on the input

(GEOMETRY, srid) geometry with the given CRS. Returns NULL, if the input

geometry is not set.

Table 25: APl of CITYDB SRS package for PostgreSQL



120 3D Geodatabase for CityGML 2019

4.6 CITYDB_STAT

The package CITYDB STAT currently only serves a single purpose: To count all entries in
all tables and generate a report as an array of string values (STRARRAY data type in Oracle,
text [] in PostgreSQL). The tabulator escape sequence \t is used to generate a nice
looking report for the Importer/Exporter.

Function Return Type | Explanation

table_content (table_name, NUMBER Returns the count result obtained from a query

schema_name) against the given table

table_contents (schema_name) STRARRAY Returns a text array with row count results for most
tables in 3D City Database (excluding metadata
tables and system tables)

Table 26: APl of CITYDB STAT package for Oracle

4.7 CITYDB_OBJCLASS

The CITYDB OBJCLASS package only provides two convenience functions to cast between
table names and ID values of the OBJECTCLASS table. In contrast to the previously
introduced packages these functions cannot be applied against different database schemas as
this would require dynamic SQL. While it would not be problem when converting single
values, the performance with dynamic SQL could be a lot worse when these functions are
integrated in a full table scan. Therefore, for PostgreSQL they are now part of the ‘citydb’
schema as pure SQL functions. In Oracle, they make up another PL/SQL package.

Function Return Type | Explanation

objectclass_id_to_table_name VARCHAR2 Returns the corresponding table name to a given
(objectclass_id) object class ID
table_name_to_objectclass_ids ID ARRAY Returns an array of object class 1Ds that a are
(table_name) managed in the given table

Table 27: APl of CITYDB OBJCLASS package for Oracle

4.8 CITYDB_DELETE

The package CITYDB DELETE consists of several functions that facilitate to delete single
and multiple city objects. Each function automatically takes care of integrity constraints
between relations in the database. The package is meant as low-level API providing a delete
function for each relation (except for linking tables) — from a single polygon in the table
SURFACE GEOMETRY (del surface geometry) up to a complete CityObject
(del cityobject) or even a whole CityObjectGroup (del cityobjectgroup). This
should help users to develop more complex delete operations on top of these low-level
functions without re-implementing their functionality.

Most of the stored procedures take the primary key ID value of the entry to be deleted as
input parameter and return the ID value if the entry has been successfully removed. So, if
NULL is returned, the entry is either already gone or the deletion did not work due to an error.
Nearly every delete function comes with a pendant to delete multiple entries at once. These



3D Geodatabase for CityGML 2019 121

alternative functions take an array of ID values as input and return an array of successfully
deleted entries. For PostgreSQL, the array is unrolled inside the functions as PL/pgSQL can
returna SET OF INTEGER values.

In order to illustrate the low-level approach of this package, assume a user wants to delete a
building feature together with all its nested sub features. For this purpose, the user calls the
del building (or del cityobject) function, which internally leads to subsequent
calls to the following stored procedures:

e del building for the building and its dependent building parts (recursive call)

e del thematic surface for dependent boundary surfaces of the building (nested
call of del opening for dependent openings of the boundary surfaces)

e del building installation for dependent outer installations of the building
(nested call of del thematic surface for boundary surfaces of the
installations)

e del room for dependent rooms of the building (nested call of
del thematic surface for interior boundary surfaces,
del building installation for interior installation and
del building furniture for furniture within the room)

e del address for dependent addresses that are not referenced by other buildings
and bridges

e del implicit geometry for each prototype geometry of a nested feature, e.g.
Openings, Buildinglnstallation

e del surface geometry for deleting the geometry of the building and its nested
features

e del cityobject to remove the entry in the CITYOBJECT table that corresponds
to the deleted building and the deleted child features (also deletes generic attributes,
external references, appearances, etc.)

Note, that global Appearances with no direct reference to a CityObject are not deleted during
such a deletion process. Therefore, the method cleanup appearances should be
executed afterwards, to remove all Appearance information (incl. entries in tables
APPEAR TO SURFACE DATA, SURFACE DATA and TEX IMAGE). Like with the stored
procedures from the CITYDB_OBJCLASS package, the delete functions are part of the
‘citydb’ schema and not ‘citydb pkg’. This is not only because of a better performance
without dynamic SQL. It is mandatory as the code for the delete functions is generated
automatically based on the foreign keys.

The del prefix is used to not exceed 30 characters in Oracle. As explained in chapter 3.4,
managing different CityGML ADEs in different schema would require different delete scripts
for each schema. A simple code block to delete objects based on a query result can look like
this:



122 3D Geodatabase for CityGML 2019

Oracle:
DECLARE
deleted id NUMBER;
dummy ids ID ARRAY := ID ARRAY ();
BEGIN
FOR rec IN (SELECT * FROM cityobject WHERE ...) LOOP
deleted id := citydb delete.del cityobject (rec.id);
END LOOP;
dummy ids := citydb delete.cleanup appearances;
END;
DECLARE
pids ID ARRAY := ID ARRAY();
deleted ids ID ARRAY := ID ARRAY();
dummy ids ID ARRAY := ID ARRAY ();
BEGIN
SELECT id BULK COLLECT INTO pids
FROM cityobject WHERE ...;
deleted ids := citydb delete.del cityobject (pids);
dummy ids := citydb delete.cleanup appearances;
END;
PostgreSQL:
SELECT citydb.del cityobject(id) FROM cityobject WHERE ... ;

SELECT citydb.cleanup appearances();

SELECT citydb.del cityobject (array agg(id))
FROM cityobject WHERE ... ;
SELECT citydb.cleanup_ appearances();

Which delete function to use depends on the ratio between the number of entries to be deleted
and the total count of objects in the database. One array delete executes each necessary query
only once compared to numerous single deletes and can be faster. However, if the array is
huge and covers a great portion of the table (say 20% of all rows) it might be faster to go for
the single version instead or batches of smaller arrays. Nested features are deleted with arrays

anyway.

The previously available CITYDB DELETE BY LINEAGE package has been included into
the CITYDB DELETE package and reduced to only one function. It allows to delete multiple
city objects that share a common value in the LINEAGE column of the CITYOBJECT table.



3D Geodatabase for CityGML 2019 123

The procedure cleanup schema provides a convenient way to reset an entire 3DCityDB
instance under both Oracle and PostgreSQL. After invoking this procedure, all entries from all
tables are deleted and all sequences are reset.

The following table only lists functions that differ from each other where
del cityobject stands for the general layout of a delete function:

Function Return Type Explanation
cleanup_appearances ID ARRAY Removes unreferenced Appearences incl.
(only_global) SurfaceData and textures and returns an array of

their IDs. Pass 1 (default) to only delete global
appearances, or 0 to include local appearances

cleanup_schema void Truncates most tables and resets sequences in a

(schema_name) given 3D City Database schema

cleanup_table (table_name) ID ARRAY Removes entries in given table which are not
referenced by any other entities

del_cityobject (NUMBER) NUMBER Removes the CityObject with the given 1D incl. all
references to other tables. The ID value is returned
on success

del_cityobject (ID_ARRAY) ID ARRAY Removes CityObjects with the given 1Ds incl. all

references to other tables. An array of 1Ds of
successfully deleted objects is returned
del_cityobjects_by_lineage ID ARRAY Removes all CityObjects on behalf of a LINEAGE
(lineage_value) value and returns an array of their I1Ds

Table 28: APl of CITYDB DELETE package for PostgreSQL

Function Return Type Explanation
cleanup_appearances SET OF INTEGER | Removes unreferenced Appearences incl.
(only_global) SurfaceData and textures and returns an set of their

1Ds. Pass 1 (default) to only delete global
appearances, or 0 to include local appearances

cleanup_schema void Truncates most tables cascadingly and resets

(schema_name) sequences in a given 3D City Database schema

cleanup_table (table_name) SET OF INTEGER Removes entries in given table which are not
referenced by any other entities

del_cityobject (INTEGER) INTEGER Removes the CityObject with the given 1D incl. all
references to other tables. The ID value is returned
on success

del_cityobject (INTEGER[ ]) SET OF INTEGER | Removes CityObjects with the given IDs incl. all

references to other tables. A set of 1Ds of
successfully deleted objects is returned
del_cityobjects_by_lineage SET OF INTEGER Removes all CityObjects on behalf of a LINEAGE
(lineage_value) value and returns a set of deleted IDs

Table 29: APl of CITYDB DELETE package for PostgreSQL

4.9 CITYDB_ENVELOPE

The package CITYDB ENVELOPE provides functions that allow a user to calculate the
maximum 3D bounding volume of a CityObject identified by its ID. For each feature type, a
corresponding function is provided starting with env_ prefix. In PostgreSQL, they are part of

an instance schema like ‘citydb’ and not ‘citydb pkg’ due to unforeseen schema changes by
adding CityGML ADEs.



124 3D Geodatabase for CityGML 2019

The bounding volume is calculated by evaluating all geometries of the city object in all LoDs
including implicit geometries. In PostGIS, they are first collected and then fed to the
ST 3DExtent aggregate function which returns a BOX3D object. In Oracle the aggregate
function SDO AGGR MBR is used which produces a 3D optimized rectangle with only two
points. The box2envelope function turns this output into a diagonal cutting plane through the
calculated bounding volume. This surface representation follows the definition of the
ENVELOPE column of the CITYOBJECT table as discussed in chapter 2.3.3.2 (see also
Figure 29). All functions in this package return such a geometry.

The CITYDB ENVELOPE API also allows for updating the ENVELOPE column of the city
objects with the calculated value (by simply setting the set envelope argument that is
available for all functions to 1). This is useful, for instance, whenever one of the geometry
representations of the city object has been changed or if the ENVELOPE column could not be
(correctly) filled during import and, for example, is NULL.

To calculate and update the ENVELOPE of all city objects of a given feature type, use the
get envelope cityobjects function and provide the OBJECTCLASS ID as
parameter. If O is passed as OBJECTCLASS 1ID, then the ENVELOPE columns of all city
objects are updated. To update only those ENVELOPE columns having NULL as value, set the
only_if_null parameter to 1.

Function Return Type Explanation

box2envelope (BOX3D) GEOMETRY Takes a BOX3D and returns a 3D polygon that
represents a diagonal cutting plane through this
box. Under Oracle the input is an optimized 3D
rectangle (SDO_INTERPRETATION = 3)

env_cityobject (cityobject_id, GEOMETRY Returns the current envelope representation of the

set_envelope) given CityObject and optionally updates the
ENVELOPE column

get_envelope_cityobjects GEOMETRY Returns the current envelope representation of all

(objectclass_id, set_envelope, CityObjects of given object class and optionally

only_if_null) updates the ENVELOPE column with the individual
bounding boxes

get_envelope_implicit_geometry | GEOMETRY Returns the envelope of an implicit geometry which

(implicit_rep_id, reference_point, has been transformed based on the passed

transformation_matrix) reference point and transformation matrix

update_bounds (old_box, GEOMETRY Takes two GEOMETRY objects to call

new_box) box2envelope and returns the result. If one side is
NULL, the non-empty input is returned.

Table 30: APl of CITYDB ENVELOPE package for PostgreSQL



3D Geodatabase for CityGML 2019 125

5 Importer / Exporter

The 3D City Database Importer/Exporter is a Java-based front-end for the 3D City Database
and allows for high-performance loading and extracting 3D city model data.

The supported import and export operations are:

e Import of CityGML models (cf. chapter 5.3);

e Export data as CityGML models (cf. chapter 5.4);

e Export data in KML/COLLADA/gITF format (cf. chapter 5.5); and
e Export data as spreadsheets (available as plugin, cf. chapter 6.2).

Please refer to chapter 3.1 for system requirements and a documentation of the installation
procedure.

The 3D City Database Importer/Exporter is free software under the Apache
License, Version 2.0. See the LICENSE. txt file shipped with the software
for more details. For a copy of the Apache License, Version 2.0, please visit
http://www.apache.org/licenses/.

fAPACHE

5.1 Running and using the Importer / Exporter

The 3D City Database Importer/Exporter offers both a graphical user interface (GUI) and a
command line interface (CLI). The CLI allows for embedding the tool in batch processing
workflows and third-party applications. The usage of the CLI is documented in chapter 5.8.

To launch the GUI, simply use the starter scripts located in the bin subfolder of the
installation directory of the 3D City Database Importer/Exporter. A desktop icon as well as
shortcuts in the start menu of your operating system will additionally be available in case you
chose to create shortcuts during setup. Depending on your platform, one of the following
starter scripts is provided:

e 3DCityDB-Importer-Exporter.bat (Microsoft Windows family)
e 3DCityDB-Importer-Exporter.sh (UNIX/Linux/Mac OS family)

On most platforms, double-clicking the starter script or its shortcut runs the
Importer/Exporter.

For some UNIX/Linux distributions, you will have to run the starter script from within a shell
environment though. Please open your favourite shell and first check whether execution rights
are correctly set on the starter script. If not, change to the installation folder and enter the
following command to make the starter script executable for the owner of the file:

chmod ut+x 3DCityDB-Importer-Exporter.sh
Afterwards, simply run the software by issuing the following command:

./3DCityDB-Importer-Exporter.sh


http://www.apache.org/licenses/

126 3D Geodatabase for CityGML 2019

Note:  With every release, the README . txt file in the installation folder provides up-to-
date and version-specific information on how to run the Importer/Exporter.

The starter scripts define default values for the Java Virtual Machine (JVM) that runs the
Importer/Exporter. Most importantly, they specify the minimum amount of main memory for
the application through the —xms parameter of the JVM. The default value has been chosen to
be reasonable for most platforms but may need to be adapted to your needs before launching
the application (e.g., if you want to increase or limit the available main memory).

The graphical user interface of the Importer/Exporter is organized into four main components
as shown in Figure 55. A menu bar [1] is located either below (Windows, some Linux
distributions) or above (Mac, some Linux distributions) the title bar. The main application
window is divided into an operations window [2] that renders the user dialogs of the separate
operations of the Importer/Exporter and a console window [4] that displays log messages. Via
the View entry in the menu bar, the console window can be detached from the main window
and rendered in a separate window. At the bottom of the operations window, a status bar [3]
provides information about running processes and database connections.

4 3D City Database Imparter/Exr - o x
[Tmport] Export  KML/COLLADA/GI: oatabase Preferences Console

Browse

[ Attribute Filter

[ Feature Counter

[ Bounding Box

Import Just validate

Read Database dlsconnEdEd'

Figure 55: Organization of the Importer/Exporter GUI.

The tab menu on top of the operations window lets you switch between the operations of the
Importer/Exporter and their user dialogs. The following tabs are available:

® Tmport Import of CityGML models into the database

® Export Export of city model data as CityGML

e KML/COLLADA/glTF Export EXport of city model data in KML, COLLADA
or gITF format



3D Geodatabase for CityGML 2019 127

® Database Database connection settings and operations
e pPreferences Preference settings for each operation

Note: If you have installed plugins, the tab menu may contain additional entries. Please
refer to the documentation of your plugin in this case.

The main menu bar [1] offers the entries File, Project, View and Help. The File
menu only contains one entry Ex it to close the application.

The Project menu lets a user store and load settings from a config file. The separate menu
entries provide the following functionality:

Open Project.. Load a config file and recover all settings from this file.

Save Project Save all settings made in the GUI to the default config
file.

Save Project As. Save all settings made in the GUI to a separate config
file.

Restore Default Settings Set all settings to default values.

Save Project XSD As. Save the XML Schema defining the XML structure of
config files to a separate file. The XML Schema is
helpful in case a user wants to manually edit the config
file. Only config files conforming to the XML Schema
definition will be successfully loaded by the
Importer/Exporter.

Recently Used Projects..  List of recently loaded config files.

Note:  The Importer/Exporter uses one default config file per operating system user running
the Importer/Exporter. All settings made in the GUI are automatically stored to this
default config file when the Importer/Exporter is closed and are loaded from this file
upon program start. The default config file is named project.xml and is stored in
the home directory of the user. Precisely, you will find the config file in the subfolder
3dcitydb/importer-exporter/config. However, the location of the home
directory differs for different operating systems. Using environment variables, the
location can be identified dynamically:

e SHOMEDRIVE$%$HOMEPATH%\3dcitydb\importer-
exporter\config (Windows 7 and higher)

e SHOME/3dcitydb/importer-exporter/config (UNIX/Linux, Mac
OS families)

The View menu affects the GUI elements of the Importer/Exporter and offers the following
entries:

Open map window Opens the 2D map window for bounding box
selections (cf. chapter 5.7).



128 3D Geodatabase for CityGML 2019

Detach Console Renders the console window in a separate application
window.

Restore default Restores the GUI to its default settings.

perspective

Finally, the He1p menu gives access to an Info dialog and the Read Me file shipped with
the Importer/Exporter. Amongst other information, the Info dialog displays the official
version and build number of the Importer/Exporter.

5.2 Database connections and operations

The Database tab of the operations window shown in the figure below allows a user to
manage and establish database connections [1] and to execute database operations [2].

[#. 3D City Database Importer/Exporter - O x
File Project View Help

Import Export KML/COLLADA/QTF Export Database  preferences

Connection | citydb w
Connection details
Description  |citydb Apply
Username  |citydb_user New
Password | eessss
Copy

.v| Save password

P Delete
Type PostgreSQL PostGIS w
Server localhost Port |5432

Database  |citydb

Schema v Fetch schemas

Database operations

Workspace |Use default workspace Timestamp (DD.MM.YYY)

Ready Database disconnected

Figure 56: Database tab.

5.2.1 Managing and establishing database connections
In order to connect to an instance of the 3D City Database, valid connection parameters must
be provided on the Database tab.

Mandatory database connection details comprise the username and password of the database
user, the type of the database, the server name (network name or IP address) and port number
(default: 1521 for Oracle; 5432 for PostgreSQL) of the database server, and the database
name (when using Oracle, enter the database SID or service name here). The optional schema
parameter lets you define the database schema you which to connect to. Leave it empty to
connect to the default schema. More information on how to work with multiple 3DCityDB



3D Geodatabase for CityGML 2019 129

schemas can be found in chapter 3.4. If you need assistance, ask your database administrator
for connection details and schemas. For convenience, a user can choose to save the password
in the config file of the Importer/Exporter. Please be aware that the password will be stored as
plain text.

To manage more than one database connection, connection details are assigned a short
description text. The drop-down list at the top of the Database tab allows a user to switch
between connections based on their description. By using the Apply, New, Copy and Delete
buttons, edits to the parameters of the currently selected connection can be saved, a new
connection with empty connections details can be created, and existing connections can be
copied or deleted from the list.

The Connect / Disconnect button lets a user connect to / disconnect from a 3D City Database
instance based on the provided connection details.

Note:  With this version of the Importer/Exporter, you will be able to connect to version
4.0 to 3.0 instances of the 3D City Database but not to any previous version. See
chapter 3.5 for a guide on how to migrate a version 2 and 3 instances of the 3D City
Database to the latest version 4.0.

The console window logs all messages that occur during the connection attempt. In case a
connection could not be established, error messages are displayed that help to identify the
cause of the connection problem. Otherwise, the console window contains information about
the connected 3D City Database instance like those shown in Figure 57. This information
comprises the version of the 3D City Database, the name and version of the underlying
database system, the connection string, the schema name, the spatial reference system ID
(SRID) as well as its name and GML encoding (as specified during the setup of the 3D City
Database), and whether the database tables are version-enabled.

[ 3D City Database Importer/Exporter - Console — O X

Console

[10:54:-08 INFO] Connecting to database profile 'citydb' .
[10:54:-0&8 INFQ] Database connection established.

[10:54:08 IMFQ] 3D City Database: 4.0.0

[10:54:06 INFO] DBEMS: PostgreSQL 10.1

[10:54:08 INFC] Connection: citydb user@localhost:543Z/citydb
[10:54:08 IMF2] Schema: citydb

[10:54:0& INFO] SRID: 25832 (Projected)

[10:54:0& INFO] SRS: ETRS58% / UIM zone 3ZN

[10:54:08 INFQ] gml:srsMame: urn:ogc:def:crs, crs:EPSE::25832, cra:EPSGE- 5783
[10:54:08 INFO] Versioning: Not supported

Figure 57: Log messages for a successful database connection.

This information can be requested from a connected 3D City Database at any time using the
Info button on the Database tab. Upon successful connection, the description of the active
connection is moreover displayed in the title bar of the application window.



130 3D Geodatabase for CityGML 2019

5.2.2 Executing database operations

After having established a connection to an instance of the 3D City Database, the Database
tab (cf. [2] in Figure 56) offers the following database operations to be executed on that
instance:

e Generating a database report;

e Calculating/updating the bounding box of selected feature types;
e Managing indexes on database tables;

e Managing the spatial reference system of the database; and

e Displaying supported CityGML ADEs.

Generating a database report. A database report is a list of all tables of the 3D City
Database together with their total number of rows. This operation therefore provides a quick
overview of the contents of the 3D City Database. The report is printed to the console
window.

Database operations

Workspace a " Timestamp (DD.MM.YYY) a

Database report  Bounding box  Indexes Reference system ADEs

Generate database report

Figure 58: Generating a database report.

If the database is version-enabled (Oracle only), the database report can be created for the
contents of a specific workspace [1] at a given timestamp [2]. If no workspace is specified, the
default workspace is chosen per default (Oracle: LIVE). If the workspace does not exist, a
corresponding error message is provided. Workspaces are not a feature of the 3D City
Database but are managed through the Oracle Workspace Manager tool. Please refer to the
Oracle database documentation for details. Since PostgreSQL currently does not support
workspaces, the corresponding input fields are disabled when connecting to a 3D City
Database running on PostgreSQL.

Calculating/updating the bounding box. This dialog lets you calculate the 2D bounding box
of the city objects stored in the database. The bounding box is useful, for instance, as input to
spatial filters in CityGML imports and exports as well as KML/COLLADA/gITF exports (see
documentation of the corresponding operations).



3D Geodatabase for CityGML 2019 131

Database operations

Workspace Timestamp (DD.MM.YYY)

Database report Bounding box Indexes Reference system ADEs

I Bounding box for top-level feature  core: ect VI
- —
O ] I Reference system | Same as in database vI Creaing
-~
X min Re all

Ymin

Calculate

Figure 59: Calculating the bounding box for selected feature types.

The coordinate values of the lower left (Xmin, Ymin) and upper right (Xmax, Ymax) corner of the
calculated bounding box are rendered in the corresponding fields of the dialog [3]. The values
are also copied to the clipboard of your operating system and can therefore easily be pasted
into the import and export dialogs. You can also manually copy the values to the clipboard by
clicking the I button [4], or by right-clicking on a data field [3] and choosing the
corresponding option from the context menu.

The calculation of the bounding box can be restricted to a specific city object type such as
Building or WaterBody [1]. Like the generation of a database report, the user can request
the bounding box for city objects living in a specific workspace at a given timestamp if the
database is version-enabled (Oracle only). The coordinate values can optionally be
transformed into a user-defined coordinate reference system that is available from the drop-
down list [2]. Per default, the coordinate values are presented in the same reference system as
specified for the 3D City Database instance during setup. See chapter 2.3.5 for details on how
to define and manage user-defined reference systems.

By using the map button Q [4], the calculated bounding box is rendered in a separate 2D map
window for visual inspection as shown below. The usage of this map window is described in
chapter 5.7.



132 3D Geodatabase for CityGML 2019

e 3D City Database Importer/Exporter - Map window X
|Beriin, 10117, Germany v| | 6o Cancel
2 from der (0.276 s)

| Bounding box ﬂ ‘

525205378 |

(133639049 | |13.413105
525059301 |

Show Clear

' Address lookup

Use popup menu for queries

', Geocoder service

S
. § s 1P z \i\?‘\‘
0SM Nominatim vi| s N | L S 5 ¢ YA A U Schillingstd

G Show in Google Maps

@ Help

Click the link in the upper right corner
of the map for usage hints

TR
U Heinrich-
Heine-

Reio =4

N Straie

oy (] KochstraBe/
Checkpoint
Charlie

VoA
VS A»:alter"),‘;\‘

B nhnl:% >
e ]

© OpenStreetMap contributors [l

Figure 60: Map window for displaying and choosing bounding boxes. Note that the coordinate values of the
bounding box are shown in the upper left component.

The calculation of the bounding box is based on the values stored in the ENVELOPE column
of the CITYOBJECT table. If this column is NULL or contains an incorrect value (e.g., in case
the value could not correctly filled during import or the geometry representation of a city
object has been changed), then the resulting bounding box will be wrong and subsequent
operations might not provide the expected result. To fix the ENVELOPE values in the
database, simply let the Importer/Exporter create missing values (i.e., replace NULL values)
or recreate all values by clicking on the corresponding buttons [5]. This update process either
affects only the city objects of a given feature type or all city objects based on the selection
made in [1].

Note:  This process directly updates the ENVELOPE column of the affected city objects and
might take long to complete since the new values are calculated by evaluating all
geometries of the city objects in all LoDs including implicit geometries.

Managing indexes. The Importer/Exporter allows the user to manually activate or deactivate
indexes on predefined tables of the 3D City Database schema, and to check their status.



3D Geodatabase for CityGML 2019 133

Database operations

Workspace Timestamp (DD.MM. YY)

Database report  Bounding box  Indexes  Reference system ADEs

Spatial indexes
Mormal indexes

Activate Deactivate Status VACLILIM

Figure 61: Managing spatial and normal indexes.

The operation dialog differentiates between spatial indexes on geometry columns and normal
indexes on columns with any other datatype [1]. The buttons Activate, Deactivate, and Status
trigger a corresponding database process on spatial indexes only, normal indexes only or both
index types depending on which checkboxes are selected [1]. Again, the user can define a
workspace and timestamp on which the operation shall be executed if the database is version-
enabled (Oracle only).

The index operations only affect the following subset of all indexes defined by the 3D City
Database schema:

e Spatial index on column ENVELOPE of table CITYOBJECT

e Spatial index on column GEOMETRY of table SURFACE _GEOMETRY

e Spatial index on column SOLID GEOMETRY of table SURFACE GEOMETRY

e Normal index on columns GMLID, GMLID CODESPACE of table CITYOBJECT
e Normal index on column LINEAGE of table CITYOBJECT

e Normal index on columns GMLID, GMLID CODESPACE of table
SURFACE_GEOMETRY

e Normal index on columns GMLID, GMLID CODESPACE of table APPEARANCE

e Normal index on column THEME of table APPEARANCE

e Normal index on columns GMLID, GMLID CODESPACE of table SURFACE DATA
e Normal index on columns GMLID, GMLID CODESPACE of table ADDRESS

The result of an index operation is reported in the console window as shown below. For
instance, Figure 62 shows the result of a status query on both spatial and normal indexes. The
status ON means that the corresponding index is enabled.



134 3D Geodatabase for CityGML 2019

[# 3D City Database Imparter/Exporter - Console - O X

Console
[11:17:44 INFO] Checking spatial indexes...
[11:17:44 INFO] ON: CITYOBJECT_ ENVELOPE_SPX on RAR_CITYORJECT (ENVELOEE)
[11:17:44 INFC] CON: SURFARCE_GECM SPX on RAR._SURFACE_GECMETRY (GEOMETRY)
[11:17:44 INFO] ON: SURFACE GECM SOLID SPX on RRAR.SURFACE GECOMETRY (SOLID GECMETRY)
[11:17:44 INFO] Checking normal indexes...
[11:17:44 INFQ] ON: CITYOBJECT INX on AAA.CITYOBJECT (GMLID, GMLID CODESPACE)
[11:17:44 INFO] ON: CITYOBJECI_LINEAGE INX on A2AZL.CITYOBJECT (LINEAGE)
[11:17:44 INFC] ON: SURFRCE GECM INX on ARR_SURFACE GECMETRY (GMLID, GMLID CODESPRCE)
[11:17:44 INFC] ON: APPERRANCE INX on RAR_RPPEARANCE (GMLID, GMLID CODESPACE)
[11:17:44 INFC] ON: APPERRANCE THEME INX on RRA_APPEARRNCE (THEME)
[11:17:44 INFC] ON: SURFACE DATR INX on ARR._SURFACE DATRZ (GMLID, GMLID CODESPRCE)
[11:17:44 INFC] ON: ADDRESS TNX on RRA_RDDRESS (GMLID, GMLID CODESDRCE)
[11:17:44 INFO] Querying index status successfully finished.

Figure 62: Result of a status query on spatial and normal indexes.

Note: It is strongly recommended to deactivate the spatial indexes before running a
CityGML import on a big amount of data and to reactive the spatial indexes
afterwards. This way the import will typically be a lot faster than with spatial indexes
enabled. The situation may be different if only a small dataset is to be imported.

Note:  Activating and deactivating indexes can take a long time, especially if the database
fill level is high. Note that the operation cannot be aborted by the user since this
would result in an inconsistent database state.

Managing the spatial reference system of the database. When setting up a 3DCityDB
instance, you have to choose a spatial reference system (SRS) by picking a spatial reference
ID (SRID) supported by the database and a corresponding SRS name identifier
(gml:srsName) that is used in CityGML exports (see chapter 3.3). These settings can be easily
changed at any later time using the reference system operation.

Database operations

Workspace Timestamp (DD, MM, YYY)

Edit Cﬂ

Database report  Bounding box  Indexes Reference system  apEs

SRID

25832
gml:srshame | urn:ogo:defiors:EPSG:: 25832

(") Only update metadata

Geometries | (@) Transform coordinates

Restore Apply

Figure 63: Changing the SRS information of the 3DCityDB instance.

After connecting to a 3DCityDB, the SRID and gml:srsName input fields shown in the above
dialog [1] are assigned the current values from the database. Simply edit the fields to pick a
new SRID or SRS name identifier. Since changing the SRID potentially affects all geometries
in your database and thus may take a long time to complete, the SRID field is disabled per
default. Click on Edit [2] to enable changes to this field. Use the Check button [2] to make
sure that your new SRID value is supported by the database. The gml:srsName field provides
a drop-down list of common SRS identifier encoding schemes (such as OGC URN encoding,



3D Geodatabase for CityGML 2019 135

see chapter 2.3.5). You may pick one of these proposals (be careful to replace the
HEIGHT SRID token with the correct value if required) or enter any other value.

When changing the SRID, you can choose whether the coordinates of geometry objects
already stored in the database should be transformed to the new SRID or whether only the
metadata should be updated [3]. The latter option might be enough, for example, if you
accidentally picked a wrong SRID that does not match the imported geometries when setting
up the database, and you simply want to correct this mistake.

Click on Apply to update the reference system information in the database according to your
settings. The Restore button lets you discard any changes made to the SRID and gml:srsName
fields.

Note: If you just want to use different gml:srsName values for different CityGML exports,
then instead of changing the identifier in the database before every export it is
simpler to create multiple user-defined reference systems for the same SRID (cf.
chapter 5.6.4) and pick one for each CityGML export (cf. chapter 5.4).

Displaying supported CityGML ADEs. This tab provides a list of all CityGML Application
Domain Extensions (ADES) that are registered in the 3DCityDB instance and/or are supported
by the Importer/Exporter. The following screenshot shows the corresponding dialog.

Database operations

Warkspace |lUse default workspace Timestamp (DD.MM.YYY)

Database report  Bounding box  Indexes Reference system ADEs

Mame Version Database Importer [Exporter
TestADE Lo X \ Ve \

Figure 64: Table of all supported CityGML ADEs.

The ADE table [1] contains one entry per CityGML ADE. Each entry lists the name and the
version of the ADE and indicates whether it is supported by the database and/or the
Importer/Exporter (using check or cross signs). Database support requires that the ADE has
been successfully registered in the 3DCityDB instance using the ADE Manager Plugin (see
chapter Fehler! Verweisquelle konnte nicht gefunden werden.). Additional support by the
mporter/Exporter requires that a corresponding ADE extension has been copied into the ade-
extensions folder within the installation directory of the Importer/Exporter. Only if both
conditions are met both fields will contain a check sign. If no ADE has been detected upon
database connection, the table remains empty.

In the example of Figure 64, there is only an Importer/Exporter extension for an ADE called
TestADE but the connected 3DCityDB instance lacks support for it. TestADE data would
therefore not be handled by the Importer/Exporter and thus not stored into the database in this
scenario.



136

3D Geodatabase for CityGML 2019

If you select an entry in the ADE table and click the Info button (or simply double-click on
the entry), metadata about the ADE will be displayed in a separate window as shown below.
The Status field shows whether the ADE is fully supported, or some user action is required.

TestADE 1.0

Mame
Version

Description

Identifier
CityGML

Status

Features

Database
Table prefix
ObjectClassId

XML schema

Mamespaces

l-;-i ADE information

TestADE
1.0
Test ADE

06b4f55820d9dacd999223c2c4b00dae
200 [Jio.0

CD The ADE must be registered in the database.

Top-evel features

test:IndustrialBuilding
test:OtherConstruction

test
10000 .. 10010

http: /fwww . citygml.org/ade/TestADE/1.0

Ok

X

Prefix  test

Figure 65: ADE metadata dialog.



3D Geodatabase for CityGML 2019 137

5.3 Importing CityGML files

To load 3D city model content into a 3D City Database instance, the Importer/Exporter
supports the import of CityGML files. Supported CityGML versions are 2.0.0, 1.0.0 and
0.4.0. The CityGML import operation is available on the Import tab of the operations
window as shown below.

il 3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

Versioning
Workspace

Attribute Filter
aml:id e
gml:name

Feature Counter
from # to # °

Bounding Box
t-). 3| I? eReference system Same as in database

Xmin Xmax

ymin ymax
Mode (® Al overlapping features () Just features inside

Feature Types

= _D CityObject
- [] Bridge

- [] Building

[+ [T] CityFurniture

[+ [] CityObjectGroup

& [[] Generics

[+ [] Landuse

B[] Relief

[+ [T] Transportation

&[] Tunnel

[+ [] Vegetation

[+ [] WaterBody

———————————————————————————————————————
Import e o Just validate

Ready Database disconnected

Figure 66: The CityGML import dialog.

Input file selection. At the top of the Import dialog [1], a list of one or more CityGML files
to be imported must be provided. Files can be selected through clicking on the Browse button,
which opens a regular file selection dialog. Alternatively, you can drag&drop files from your
preferred file explorer onto the Import tab. If the file list already contains entries, the
drag&drop operation will replace its content. If you want to keep the previous entries and
only append additional files, keep the CTRL key pressed while dropping (on Windows). The



138 3D Geodatabase for CityGML 2019

Remove button or DEL key lets you remove selected entries from the input files. Note that
adding folders to the list is also supported. Each folder will be recursively scanned for
CityGML files, and every CityGML file found will be imported.

The importer supports the following file formats for CityGML datasets: 1) regular XML files
(*.gml, *.xml), 2) GZIP compressed XML files (*.gz, *.gzip), and 3) ZIP archives (*.zip).
ZIP archives are recursively scanned for contained XML files. Additional files such as texture
images will also be imported from the ZIP archive if they are correctly referenced from the
XML file(s) using relative paths within the ZIP archive.

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the
name of the workspace into which the data shall be imported can be specified [2]. If no
workspace is given, the default workspace is assumed (Oracle: LIVE).

Note: Importing into version-enabled tables typically takes considerably more time than
importing into non-version-enabled tables. The import time can be reduced if spatial
indexes are disabled beforehand.

Import filter. The import dialog allows for setting thematic and spatial filter criteria to
narrow down the set of CityGML top-level features that are to be imported from the input
files. The checkboxes on the left side of the import dialog let you choose between an attribute
filter, a feature counter filter, a spatial bounding box filter and a feature type filter. If more
than one filter is chosen, then the filter criteria are combined in a logical AND operation. If no
checkbox is enabled, no filter criteria are applied and thus all CityGML features contained in
the input file(s) will be imported.

e Attribute filter This filter takes a gm1 : 1d and/or a gm1 : name as parameter
[3] and only imports CityGML features having a matching
value for the respective attribute. More than one gm1:1id can
be provided in a comma-separated list. Multiple gm1 : name
values are not supported though.

e Counter filter The feature counter filter lets you import a subset of the top-
level features based on their position index over all input
file(s). Simply provide the lower and upper boundary [4] for
the position index to define the subset (both boundary limits
are inclusive).

e Bounding box filter  This filter takes a 2D bounding box as parameter that is given
by the coordinate values of its lower left (Xmin, Ymin) and upper
right corner (Xmax, Ymax) [5]. The bounding box is evaluated
against the gm1 : boundedBy property of the CityGML input
features. You can choose whether features overlapping with
the provided bounding box are to be imported, or whether
features must be inside of it.

e Feature type filter ~ With the feature types filter, you can restrict the import to one
or more CityGML features types by enabling the



3D Geodatabase for CityGML 2019 139

corresponding checkboxes [7]. Only features of the chosen
type(s) will be imported.

Note:  All filters only work on top-level features but not on nested sub-features.

For the bounding box filter, make sure that you choose a coordinate reference system from the
drop-down choice list that matches the provided coordinate values. Otherwise, the spatial
filter may not work as expected. The coordinate reference system list can be augmented with
user-defined reference systems (see chapter 5.6.4 for more information).

The coordinate values of the bounding box filter can either be entered manually or chosen
interactively in a 2D map window. To open the map window, click on the map button Q@ [6].

6 3D City Database Importer/Exporter - Map window X

I Y| [ e Apply  Cancel

. | Bounding box ﬂ ‘

[133509244  |[133633588
52.4795483 |

Show Clear

9 Address lookup

Use popup menu for queries

' Geocoder service

OSM Nominatim v

G Show in Google Maps ‘

@ Help

Click the link in the upper right corner
of the map for usage hints

© OpenStreetMap contributors [

Figure 67: Bounding box selection using the 2D map window.

In the map window, keep the left mouse button clicked while holding the AL T key. This lets
you draw a bounding box on the map. In order to move the map to a specific location or
address, simply enter the location or address in the input field on top of the map and click the
Go button or use the map navigation controls. If you are happy with the bounding box
selection, click the Apply button. This will close the map window and carry the coordinate
values of the selected area into the corresponding fields of the bounding box filter [5]. Click
Cancel if you want to close the map window but skip your selection. A more comprehensive
guide on how to use the map window is provided in chapter 5.7.



140 3D Geodatabase for CityGML 2019

With the 2 button on the bounding box filter dialog [6], you can copy a bounding box to the
clipboard, while the ™ button pastes a bounding box from the clipboard to the input fields of
the bounding box filter [5] (or use the right-click context menu).

XML validation. Before importing, the CityGML input files can be validated against the
official CityGML XML schemas. Simply click the Just Validate button [9] in order to run the
validation process. Filter settings are not considered in this process. Note that this operation
does not require internet access since the XML schemas are packaged with the application.
The CityGML features are not imported into the database during validation. The validation
results are printed to the console window.

Note: It is strongly recommended that only CityGML files having successfully passed
XML validation are imported into the database. Otherwise, errors in the data may

lead to unexpected behavior or abnormal termination.

Import preferences. More fine-grained preference settings affecting the CityGML import are
available on the Preferences tab of the operations window. Make sure to check these
settings before starting the import process. A full documentation of the import preferences is
available in chapter 5.6.1. The following table provides a summary overview.

Preference name

Description

Continuation

Metadata that is stored for every object in the database such as the
data lineage, the updating person or the creationDate property.

gml : 1d handling

Generates UUIDs where gml : ids are missing on input features or
replaces all gm1 : ids with UUIDs.

Controls the way in which xAL address fragments are imported into the

AR database.

Appearance Defines whether appearance information is imported.

Geometry Allows for applying an affine transformation to the input geometry.
Indexes Settings for automatically enabling/disabling spatial and normal indexes

during imports.

XML validation

Performs XML validation automatically and exclude invalid features
from being imported.

XSL transformation

Defines one or more XSLT stylesheets that shall be applied to the city
objects in the given order before import.

Import log

Creates a list of all successfully imported CityGML top-level features.

Resources

Allocation of computer resources used in the import operation.

Table 31: Summery overview of the import preferences.

CityGML import. Once all import settings are correct, the Import button [8] starts the import
process. If a database connection has not been established manually beforehand, the currently
selected entry on the Database tab is used to connect to the 3D City Database. The separate
steps of the import process as well as all errors that might occur during the import are reported
to the console window, whereas the overall progress is shown in a separate status window.
The import process can be aborted at any time by pressing the Cancel button in the status
window. The Importer/Exporter will make sure that all pending city objects are completely
imported before it terminates the import process.



3D Geodatabase for CityGML 2019 141

After having completed the import, a summary of the imported CityGML top-level features is
printed to the console window.

Note:

Note:

The import operation does not automatically apply a coordinate transformation to
the internal reference system of the 3D City Database instance. Thus, if the
coordinate reference system of the CityGML input data does not match the
coordinate reference system defined for the 3D City Database instance, the user must
transform the coordinate values before importing the data (or use an affine
transformation during import if this is enough). A possible workaround procedure
can be realized as follows:

1) Set up a second (temporary) instance of the 3D City Database with an internal
CRS matching the CRS of the CityGML instance document.

2) Import the dataset into this second 3D City Database instance.

3) Export the data from this second instance into the target CRS by applying a
coordinate transformation (see CityGML export documentation in chapter 5.4).

4) The exported CityGML document now matches the CRS of the target 3D City
Database instance and can be imported into that database. The temporary
database instance can be dropped.

Alternatively, you can change the reference system in the database to the one used by
the imported geometries (see the corresponding database operation in chapter 5.2.2).

The Importer/Exporter does not check by any means whether a CityGML feature
from an input file already exists in the database. Thus, if an import is executed twice
on the same dataset, all CityGML features contained in the dataset will be imported
twice.



142 3D Geodatabase for CityGML 2019

5.4 Exporting to CityGML

3D city model content stored in a 3D City Database instance can be fully or partially exported
as CityGML datasets. The CityGML export is available on the Export tab of the operations
window as depicted in the following figure.

# 3D City Database Importer/Exporter - O X

File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

1 Browse

Versioning and coordinate transformation

Workspace Timestamp (DD.MM.Y 2

Reference system Same as in database 3 ~

Attribute Filter  SQL Filter
gml:id
gml:name

citydb:lineage

LoD Filter
[J b0 [] b1 [] LoD2 [ LoD3

Filter mode | Or Search depth ' 1%

Feature Counter

from #

Bounding Box
() | F‘ Reference system  Same as

xmin max

ymin ymax
Mode (® All overlapping features (O Just features inside (O Tiling Rows |1 Columns |1

Feature Types

= [] CityObject
+ [7] Bridge
[] Building
[] CityFurniture
[ cityObjectGroup
* [[] Generics
[ LandUse
[] Relief
[] Transportation
[] Tunnel
* ] Vegetation
~ [[] WaterBody

D o R e P e S

Export o e Use XML query

Ready Database disconnected

Figure 68: The CityGML export dialog.

Output file selection. At the top of the export dialog, the folder and filename of the target
CityGML dataset must be specified [1]. You can either manually enter the target file or open a
file selection dialog via the Browse button.

The exporter supports the following file formats for writing CityGML datasets: 1) regular
XML files (*.gml, *.xml), 2) GZIP compressed XML files (*.gz, *.gzip), and 3) ZIP archives
(*.zip). Simply make sure to add the file extension of the file format of your choice to the



3D Geodatabase for CityGML 2019 143

name of the target file in [1]. When choosing ZIP as target format, then all additional files
such as texture images are also written into the ZIP container per default.

The export operation supports tiled exports, which typically results in multiple datasets being
written to the file system. Nevertheless, also for tiled exports, only a single target file must be
specified. More details on tiled exports are provided below and in chapter 5.6.2.2.

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the
name of the workspace and the timestamp from which the data shall be exported can be
specified [2]. If no workspace is provided, the default workspace is assumed (Oracle: LIVE).

Coordinate transformation. In general, coordinate values of geometry objects are associated
with the coordinate reference system defined for the 3D City Database instance during setup
and are exported “as is” from the database. The export operation allows a user to apply a
coordinate transformation to another reference system during export. The target coordinate
reference system is chosen from the corresponding drop-down list [3]. This list can be
augmented with user-defined reference systems (cf. chapter 5.6.4 for more details). When
picking the entry “Same as in database”, no transformation will be applied (default behavior).

Simple export filters. Like the import of CityGML datasets, the export operation supports
thematic and spatial filter criteria to restrict exports to subsets of the 3D city model content.
The checkboxes on the left side of the export dialog let you choose between an attribute filter,
an SQL filter, an LoD filter, a feature counter filter, a spatial bounding box filter and a feature
type filter [4]. If more than one filter is chosen, then the filter criteria are combined in a
logical AND operation. If no checkbox is enabled, no filter criteria are applied and thus all
CityGML features contained in the database will be exported.

The export filters work similar to the ones on the Import tab. Please refer to chapter 5.3 for
a description of the filter settings that are common to both operations.

e Attribute filter This filter lets you define values for the attributes gm1:id,
gml :name and citydb:1lineage which must be matched
by city objects to be exported. More than one gm1 : id can be
provided in a comma-separated list. Multiple gm1 : name or
citydb:lineage values are not supported though.

e SQL filter The attribute filter only operates on predefined attributes (see
above). To overcome this limitation, you can alternatively
choose the SQL Filter tab and enter an arbitrary SELECT
statement into the input field. The query must return a list of
database ids of the city objects to be exported (i.e., references
to the column 1D of the table CITYOBJECT). The SQL filter
is very powerful as you can access every column of every
table in the 3DCityDB and make use of all functions and
operations offered by the underlying database system to
define your filter. More information about the SQL filter is
provided in chapter 5.4.1.



144

3D Geodatabase for CityGML 2019

Bounding box filter The bounding box filter takes the same parameters as on the
Import tab. It is evaluated against the ENVELOPE column of
the CITYOBJECT table. The user can choose whether the
bounding box of top-level features only needs to overlap with
or must be strictly inside the filter geometry to satisfy the filter.
Alternatively, the export can be tiled by splitting the bounding
box into a regular grid. The number of rows and columns can be
defined by the user. Each tile of this grid is exported into its own
file. To make sure that every city object is assigned to one tile
only, the center point of its envelope is checked to be either
inside or on the left or top border of the tile.

LoD filter This filter allows for exporting only specific LoDs of the city
objects. The LoD selection can be either AND or OR
combined. City objects not having a spatial representation in
one (OR) or all (AND) of the selected LoDs will not be
exported. The search depth parameter specifies how many
levels of nested city objects shall be considered when
searching for matching LoD representations.

When exporting 3D city model content to a single CityGML file, the file size may quickly
grow. Although the Importer/Exporter supports writing files of arbitrary size (only limited by
the file system of the operating system), such files might become too big to be processed by
other applications. A bounding box filter with tiling enabled is useful in this case because the
contents of each tile are written to separate and thus smaller files. The output files are put into
subfolders, and the names of both the subfolders and the output files can be augmented with
tile-specific suffixes (see the tiling options of the export preferences).

Note:

Note:

Note:

Note:

Both the gm1 : name and the citydb:1ineage filter internally use an SQL LIKE
operator and wildcards for identifying matches. For example, if you provide the
string “castle” as gml : name, this will be translated to “LIKE ‘%castle%’” in
the SQL query.

When choosing a spatial bounding filter, make sure that spatial indexes are enabled
so that filtering can be performed on the database (use the index operation on the
Database tab to check the status of indexes, cf. chapter 5.2.2).

If the entire 3D city model stored in the 3DCityDB instance shall be exported with
tiling enabled, then a bounding box spanning the overall area of the model must be
provided. This bounding box can be easily calculated on the Database tab (cf.
chapter 5.2.2).

Using the center point of the envelope as criterion for a tiled export has a side-effect
when tiling is combined with the counter filter: the number of city objects on the tile
can be less than the number of city objects returned by the database query because
the tile check happens after the objects have been queried. Therefore, the counter



3D Geodatabase for CityGML 2019 145

filter only sets a possible maximum number in this filter combination. This is a
correct behavior, so the Importer/Exporter will not report any errors.

Note:  The feature type filter in general behaves like for the CityGML import. However,
regarding city object groups the following rules apply:

1) If only the feature type CityObjectGroup is checked, then all city object groups
and all their group members (independent of their feature type) are exported.

2) If further feature types are selected in addition to CityObjectGroup, then only
group members matching those feature types are exported. Of course, all features
that match the type selection but are not group members are also exported.

Advanced XML export query. The export can also be controlled through a more advanced
query expression. In addition to the filter capabilities explained above, a query expression
offers logical operators (AND, OR, NOT) that combine thematic and spatial filters to complex
conditions. Moreover, it allows for defining projections on the properties of the exported city
objects and provides a filter for different appearance themes. Operators like the LoD filter or
tiling are, of course, also available for query expressions.

Query expressions are encoded in XML using a <citydb:query> element. The query
language used has been developed for the purpose of the 3DCityDB but is strongly inspired
by and very similar to the OGC Filter Encoding 2.0 standard and the query expressions used
by the OGC Web Feature Service 2.0 standard.

To enter an XML-based query expression, click on the Use XML query button [6] at the
bottom right of the export dialog (cf. Figure 68). The simple filter settings dialog will be
replaced with an XML input field like shown below.

4 3D City Database Importer/Exporter - O X

File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

| Browse

Versioning and coordinate transformation ~

Workspace Timestamp (DD.MM.YYY)
Reference system |Same as in database v
B <query xmlns="http://www.3dcitydb.org/importer-exporter/config"> ~1 0
2[F  <typeNames>
<typeName xmlns:core="http://www.opengis.net/citygml/2.8">core:_CityObject</typeName> E;

</typeNames>
@ <filter>
=] <resourcelds>

v
<id>building_8815</id>
</filter>

</resourcelds>
</query>
]
Export o Use simple filter

Ready Database disconnected

Figure 69: Input field to enter an XML-based query expression for CityGML exports.



146 3D Geodatabase for CityGML 2019

The XML query is entered in [7]. This requires knowledge about the structure and the allowed
elements of the query language. A documentation of the query language is provided in chapter
5.4.2.

The new query button O on the right side of the input field [8] can be used to create an empty
query element that contains all allowed subelements. The copy query button €] translates all
settings defined on the simple filter dialog (cf. Figure 68) to an XML query. The results of
both actions can therefore be used as starting point for defining your own query expression.
The validate query button v [8] performs a validation of the query entered in [7] and prints
the validation report to the console window. Only valid query expressions are accepted by the
export operation. The Use simpe filter button [9] takes you back to the simple filter dialog.

You can also use an external XML editor to write XML query expressions. External editors
might be more comfortable to use and often offer additional tools like auto completion. The
XML Schema definition of the query language (required for validation and auto completion)
can be exported via “Project > Save Project XSD As..” on the main menu of the
Importer/Exporter (cf. chapter 5.1). Make sure to use a <query> element as root element of
the query expression in your external XML editor.

Export preferences. In addition to the settings on the Export tab, more fine-grained
preference settings affecting the CityGML export are available on the Preferences tab of
the operations window. Make sure to check these settings before starting the export process.
A full documentation of the export preferences can be found in chapter 5.6.2. The following
table provides a summary overview.

Preference name |Description
CityGML version CityGML version to be used for exports.
More settings for tiled exports. Requires that tiling is enabled on the

iy @EreTs bounding box filter.
CityObjectGroup Defines whether group members are exported by value or by reference.
Controls the way in which xAL address fragments are exported from the
Address
database.
Appearance Defines whether appearance information is exported.
XLinks Controls whether referenced features or geometry objects are exported

using XLinks or as deep copies.

Defines one or more XSLT stylesheets that shall be applied to the
exported city objects in the given order before writing them to file.

XSL transformation

Resources Allocation of computer resources used in the export operation.

Table 32: Summery overview of the export preferences.

CityGML export. Having completed all settings, the CityGML data export is triggered with
the Export button [5] at the bottom of the dialog (cf. Figure 68). If a database connection has
not been established manually beforehand, the currently selected entry on the Database tab
is used to connect to the 3D City Database. Progress information is displayed within a
separate status window. This status window also offers a Cancel button that lets a user abort
the export process. The separate steps of the export process as well as possible error messages
are reported to the console window.



3D Geodatabase for CityGML 2019 147

5.4.1 SQL queries

The simple filter settings on the Export tab of the Importer/Exporter support user-defined
SQL queries. The figure below shows the corresponding SQL input field.

Attribute Filter SQL Filter

1 select cityobject_id from cityobject_genericattrib ~M +

2 where attrname='energy_level® and realvalue < 12 a

Figure 70: Input field to enter a SQL query for CityGML exports.

The SQL query is entered in [1]. The + and - buttons [2] on the right side of the input field
allow for increasing or reducing the size of the input field.

In general, any SELECT statement supported by the underlying database system can be used
as SQL filter. The query may operate on all tables and columns of the database instance and
may involve any database function or operator. The SQL filter therefore provides a high
degree of flexibility for querying content from the 3DCityDB.

The only mandatory restriction is that the SQL query must return a list of ID values of the
selected city objects. Put differently, the result set returned by the query may only contain a
single column with references to the ID column of the CITYORJECT table. The name of the
result column can be freely chosen, and the result set may contain duplicate ID values. Of
course, it must also be ensured that the SELECT statement follows the specification of the
database system.

The following example shows a simple query that selects all city objects having a generic
attribute of name energy_level with a double value less than 10.

select cityobject id from cityobject genericattrib
where attrname='energy level' and realval < 10

The CITYOBJECT ID columnof CITYOBJECT GENERICATTRIB stores foreign keys to
the ID column of CITYOBJECT. The return set therefore fulfills the above requirement.

Note that you do not have to care about the type of the city objects belonging to the ID values
in the return set. Since the SQL filter is evaluated together with all other filter settings on the
Export tab, the export operation will automatically make sure that only top-level features in
accordance with the feature type filter are exported. For example, the above query might
return ID values of buildings, city furnitures, windows or traffic surfaces. If, however, only
buildings have been chosen in the feature type filter, then all TD values in the result set not
belonging to buildings will be ignored. This allows for writing generic queries that can be
reused in different filter combinations. Of course, you may also limit the result set to specific
city objects if you like.



148

3D Geodatabase for CityGML 2019

The following example illustrates a more complex query selecting all buildings having at least
one door object.

select t.building id from thematic surface t

Security note:

inner join opening to them surface o2t on

oZ2t.thematic surface id = t.id
inner join opening o on o.id = o2t.opening id
where o.objectclass id = 39

group by t.building id
having count(distinct o.id) > O

Other statements than SELECT such as UPDATE, DELETE or DDL commands
will be rejected and yield an error message. However, in principle, it is possible
to create database functions that can be invoked with a SELECT statement and
that delete or change content in the database. An example are the DELETE
functions offered by the 3DCityDB itself (cf. chapter 4.8). For this reason, the
export operation scans the SQL query for these well-known DELETE functions
and refuses to execute it in case one is found. However, similar functions can
also be created after setting up the 3DCityDB schema and thus are not known
to the export operation a priori. If such functions exist and a user of the
Importer/Exporter shall not be able to accidentically invoke them through an
SQL query, then it is strongly recommended that the user may only connect
to the 3DCityDB instance via a read-only user (cf. chapter 3.4.2).



3D Geodatabase for CityGML 2019 149

5.4.2 XML query expressions

A query expression is an action that directs the export operation to search the 3DCityDB for
city objects that satisfy some filter expression encoded within the query. Query expressions
are given in XML using a <query> root element. The XML language used is specific to the
Importer/Exporter and the 3DCityDB but draws many concepts from OGC standards such as
Filter Encoding (FE) 2.0 and Web Feature Service (WFS) 2.0.

Note: All XML elements of the query language are defined in the XML namespace
http://www.3dcitydb.org/importer-exporter/config. Simply define this namespace as
default namespace on your <query> root element.

A query expression may contain a typeNames parameter, a projection clause, a selection
clause, a counter filter, an LoD filter, an appearance filter, tiling options and a targetSrid
attribute for coordinate transformations.

<typeNames> Lists the name of one or more feature types to query
(optional).

<propertyNames> Projection clause that identifies a subset of optional feature
properties that shall be kept or removed in the target dataset
(optional).

<filter> Selection clause that specifies criteria that conditionally select
city objects from the 3DCityDB (optional).

<count> Limits the number of requested city objects that are exported
to the target dataset (optional).

<lod> Limits the LoDs of the exported city objects to a given subset
(optional).

<appearance> Limits the appearances of the exported city objects to a given
subset (optional).

<tiling> Defines a tiling scheme for the export (optional).

targetSrid Defines a coordinate transformation (optional).

5.4.2.1 <typeNames> parameter

The <typeNames> parameter lists the name of one or more feature types to query from the
3DCityDB. Each name is given as xsd:QName and must use an official XML namespace from
CityGML 2.0 or 1.0. Only top-level feature types are supported. The CityGML version of the
associated XML namespace determines the CityGML version used for the export dataset.
Namespaces from different CityGML versions shall not be mixed.

The following example shows how to query CityGML 2.0 bridges and buildings:

<query "http://www.3dcitydb.org/importer-exporter/config">
<typeNames>
<typeName xmlins:brid="http://www.opengis.net/citygml/bridge/2.0">brid:Bridge</typeName>
<typeName xmlins:bldg="http://www.opengis.net/citygml/building/2.0">bldg:Building</typeName>
</typeNames>
</query>


http://www.3dcitydb.org/importer-exporter/config

150 3D Geodatabase for CityGML 2019

If you want to query all feature types, then simply use the name core:_CityObject of the
abstract base type in CityGML, or just skip the <t ypeNames> paramenter.

The following table shows all supported top-level feature types together with their official
CityGML XML namespace(s) and their recommended XML prefix.

Feature type XML prefix XML namespace
. . http://www.opengis.net/citygml/2.0
_Cityobject core http://www.opengis.net/citygml/1.0
SERE http://www.opengis.net/citygml/building/2.0
LR ele http://www.opengis.net/citygml/building/1.0
Bridge brid http://www.opengis.net/citygml/bridge/2.0
Tunnel tun http://www.opengis.net/citygml/tunnel/2.0
. http://www.opengis.net/citygml/transportation/2.0
TransportationComplex tran http://lwww.opengis.net/citygml/transportation/1.0
Road tran http://www.opengis.net/citygml/transportation/2.0
http://lwww.opengis.net/citygml/transportation/1.0
Track tran http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
Square tran httpf//WWW.openg!s.net/c!tygmI/transportat!on/Z.O
http://www.opengis.net/citygml/transportation/1.0
. http://www.opengis.net/citygml/transportation/2.0
Railway tran http://www.opengis.net/citygml/transportation/1.0
. . http://lwww.opengis.net/citygml/cityfurniture/2.0
CityFurniture 43 http://www.opengis.net/citygml/cityfurniture/1.0
http://www.opengis.net/citygml/landuse/2.0
LandUse e http://www.opengis.net/citygml/landuse/1.0
http://www.opengis.net/citygml/waterbody/2.0
WaterBody wtr http://www.opengis.net/citygml/waterbody/1.0
http://www.opengis.net/citygml/vegetation/2.0
A CL Veg http://www.opengis.net/citygml/vegetation/1.0
. . . http://www.opengis.net/citygml/vegetation/2.0
Sell TR S e St vVeg http://www.opengis.net/citygml/vegetation/1.0
. http://www.opengis.net/citygml/relief/2.0
ORI AERSIG Eel http://www.opengis.net/citygml/relief/1.0
R . http://www.opengis.net/citygml/generics/2.0
GenericCityObject gen http://www.opengis.net/citygml/generics/1.0
. . http://www.opengis.net/citygml/cityobjectgroup/2.0
Loyl eEEerang ap http://www.opengis.net/citygml/cityobjectgroup/1.0

Table 33: Supported CityGML top-level feature types together with their XML namespace.

In order to simplify typing the <typeNames> parameter, you can skip the namespace
declaration from the type names. The Importer/Exporter will then assume the corresponding
CityGML 2.0 namespace, but only if you use the recommended XML prefix from the table
above. The listing below exemplifies how to use this simplification to query all city furniture
objects from the 3DCityDB.

<query>
<typeNames>
<typeName>frn:CityFurniture</typeName>
</typeNames>
</query>



3D Geodatabase for CityGML 2019 151

5.4.2.2 <propertyNames> projection clause

The <propertyNames> parameter identifies a subset of optional feature properties that
shall be kept or removed in the target dataset. Property projections can be defined for all
feature types that are part of the export, and thus not just for top-level feature types but also
for nested feature types.

The <propertyNames> parameter consists of one ore more <context> subelements,
each of which must define the target feature type through the typeName attribute. A context
then lists the name of one ore more feature properties and/or generic attributes. The mode
attribute determines the action for these properties: 1) if set to keep, then only the listed
properties are kept in the target dataset, and all other properties are deleted from the feature
(default); 2) if set to remove, then only the listed properties are deleted from the feature, and
all other properties are kept.

The following listing shows an example in which only the properties bldg:measuredHeight
and bldg:lod2Solid shall be exported for bldg:Building features (mode = keep). Note that this
implies that all other thematic and spatial properties of buildings are deleted. For
bldg:WallSurface features, all properties shall be kept besides the generic measure attribute
area (mode = remove).

<query>

<propertyNames>
<context "bldg:Building" "keep">
<propertyName>bldg:measuredHeight</propertyName>
<propertyName>bldg:lod2Solid</propertyName>
</context>
<context "bldg:WallSurface" "remove">
<genericAttributeName "measureAttribute">area</genericAttributeName>
</context>

</propertyNames>

</query>

The typeName of the target feature type must be given as xsd:QName. Like for the
<typeNames> parameter, the XML namespace declaration can be skipped if XML prefixes
from Table 33 are used. Multiple <context> elements for the same typeName are not
allowed.

Each propertyName must reference a valid property of the given feature type. This includes
properties that are defined for the feature type or inherited from a parent type in the CityGML
schemas, but also properties injected through an ADE. The propertyName is given as
xsd:QName. Mandatory properties like gml:id cannot be removed.

Generic attributes are also referenced by their name using a genericAttributeName element.
The name is case sensitive and thus must exactly match the name stored in the database. The
optional type attribute can be used to more precisely specify the target generic attribute. If
type is omitted, then all generic attributes matching the name are kept or removed,
independent of their type. If you want to address all generic attributes of a given type but



152 3D Geodatabase for CityGML 2019

independent of their name, then use a propertyName instead as illustrated below. In this
example, all gen:stringAttributes are removed from bldg:Building.

<query>
<propertyNames>
<context "bldg:Building" "remove">
<propertyName>gen:stringAttribute</propertyName>
</context>
</propertyNames>
</query>

The typeName may also point to an abstract feature type such as bldg:_AbstractBuilding or
core:_CityObject. The property projection is then applied to all subtypes and can even be
refined on the level of individual subtypes if the value of the mode attribute is identical. If
mode differs, then the context of the subtype overrides the context of the (abstract) supertype.

The listing below shows how to remove gml:name and generic attributes of name location
from all city objects by defining a projection context for the abstract type core:_CityObject.
The projection is refined for bldg:Building by additionally removing bldg:measuredHeight.

<query>
<propertyNames>
<context "core:_CityObject" "remove">
<propertyName>gml:name</propertyName>
<genericAttributeName>location</genericAttributeName>
</context>
<context "bldg:Building" "remove">
<propertyName>bldg:measuredHeight</propertyName>
</context>
</propertyNames>
</query>

If mode would be switched to keep on the bldg:Building context in the above example, then
this would override the core:_CityObject settings for buildings. Thus, buildings would only
keep the bldg:measuredHeight property. The core:_CityObject context would, however, still
apply to all other city objects besides buildings.

5.4.2.3 <filter> selection clause

The <filter> parameter is used to identify a subset of city objects from the 3DCityDB
whose property values satisfy a set of logically connected predicates. If the property values of
a city object satisfy all the predicates in a filter, then that city object is part of the export.

Predicates can be expressed both on properties of the top-level feature types listed by the
<typeNames> parameter and on properties of their nested feature types. If the predicates
are not satisfied, then the entire top-level feature is not exported.

If the <typeNames> parameter lists more than one top-level feature type, then predicates
may only be expressed on properties common to all of them.



3D Geodatabase for CityGML 2019 153

The <filter> parameter supports comparison operators, spatial operators and logical
operators. The meaning of the operators is identical to the operators defined in the OGC
Filter Encoding (FE) 2.0 standard?, but their encoding slightly differs.

Most expressions are formed using a valueReference pointing to a property value and a literal
value that is checked against the property value.

5.4.2.3.1 Value references

A value reference is a string that represents a value that is to be evaluated by a predicate. The
string can be the name of a property of the feature type or an XML Path Language (XPath)
expression that represents the property of a nested feature type or a complex property.

Property names are given as xsd:QName. Examples for valid property names are
core:creationDate, bldg:measuredHeight, and tun:lod2MultiSurface.

In cases where a property of a nested feature type or complex property shall be evaluated, the
value reference must be encoded using XPath. The XPath expression is to be formulated
based on the XML encoding of CityGML. Note that the Importer/Exporter only supports a
subset of the full XPath language:

e Only the abbreviated form of the child and attribute axis specifier is supported.

e The context node is the top-level feature type to be exported. In case two or more top-
level feature types are listed by the <t ypeNames> parameter, then the context node
is their common parent type.

e Each step in the path may include an XPath predicate of the form “.=value” or
“child=value”. Equality tests can be logically combined using the "and" or "or"
operators. Indexes are not supported as XPath predicate.

e The schema-element() function is supported. It takes the xsd:QName of a feature type
as parameter. The function selects the given feature type and all its subtypes.

e The last step of the XPath must be a simple thematic attribute or a spatial property.
Property elements that contain a nested feature are not allowed as last step.

Assuming that bldg:Building is the top-level feature type to be exported, then the following
examples are valid XPath expressions:

e gen:stringAttribute/@gen:name Selects the gen:name attribute of the generic
string attributes of the building

® gen:stringAttribute[@gen:name=’"area’]/gen:value selects the gen:value of a
generic string attribute of name “area”

e bldg:boundedBy/bldg:WallSurface/bldg:lod2MultiSurface Selects the spatial
LoD2 representation of the wall surfaces of the building

® bldg:boundedBy/bldg:WallSurface[@gml:id="ID 01’ or gml:name=’'wall’]/
bldg:opening/bldg:Door/core:creationDate Selects the core:creationDate of
doors that are associated with wall surfaces having a specific gml:id or gml:name

3 http://docs.opengeospatial.org/is/09-026r2/09-026r2.html



154 3D Geodatabase for CityGML 2019

® bldg:boundedBy/schema-element (bldg: BoundarySurface)/@gml:id Selects the
gml:id attribute of all boundary surfaces of the building

® core:externalReference[core:informationSystem="http://somewhere.de']/
core:externalObject/core:name Selects the core:name of the external object in an
external reference to a given information system

® gen:genericAttributeSet [@gen:name='energy’]/gen:measureAttribute/
gen:value Selects the gen:value of all generic measure attributes contained in the
generic attribute set named “energy”

Note: CityGML uses the eXtensible Address Language (XAL) to encode addresses of
buildings, bridges and tunnels. xAL is very flexible and allows an address to be
encoded in different ways, which makes XPath expressions complex to write. For
this reason, the Importer/Exporter uses a simple ADE that can be used in XPath
expressions to evaluate address elements such as the street or city name. More
information is provided in chapter 5.4.2.9.

5.4.2.3.2 Literals and geometric values
Literals are explicitly stated values that are evaluated against a valueReference. The type of
the literal value must match the type of the referenced value.

If the literal value is a geometric value, the value must be encoded using one of the geometry
types offered by the query language. Support for additional geometry encodings like (E)WKT
is planned for a future version. The following geometry types are available:

e <envelope>

e <point>

e <lineString>

e <polygon>

e <multiPoint> (listof <point>s)

e <multilLineString> (listof <lineString>s)
e <multiPolygon> (listof <polygon>s)

An <envelope> is defined by its <lowerCorner> and <upperCorner> elements that
carry the coordinate values. The coordinates of a <point> are provided by a <pos>
element, whereas <1ineString> uses a <posList> element. A <polygon> can have
one <exterior> and zero or more <interior> rings. Rings are supposed to be closed
meaning that the first and the last coordinate tuple in the list must be identical. Interior rings
must be defined in opposite direction compared to the exterior ring.

The dimension of the points contained in a <posList> as well as in <exterior> and
<interior> rings can be denoted using the dimension attribute. Valid values are 2 (default)
or3.

Every geometry type offers an optional srid attribute to reference an SRID defined in the
underlying database. If srid is present, then the coordinate tuples are assumed to be given in
the reference system associated with the corresponding SRID, which is also used in



3D Geodatabase for CityGML 2019 155

coordinate transformations. If srid is not present, then the coordinate tuples are assumed to be
given in the SRID of the 3DCityDB instance.

A 2D bounding box:

<envelope>
<lowerCorner>30 10</lowerCorner>
<upperCorner>60 20</upperCorner>
</envelope>

A 2D point:

<point>
<pos>30 10</pos>
</point>

A 2D line string given in SRID 4326:

<lineString "4326">
<posList "2">45.67 88.56 55.56 89.44</posList>
</lineString>

A 2D polygon with hole:

<polygon>
<exterior>35 10 45 45 15 40 10 20 35 10</exterior>
<interior>20 30 35 35 30 20 20 30</interior>
</polygon>

5.4.2.3.3 Comparison operators
A comparison operator is used to form expressions that evaluate the mathematical comparison
between two arguments. The following binary comparisons are supported:

e <propertyIsEqualTo> (=)

e <propertyIsLessThan> (<)

e <propertyIsGreaterThan> (>)

e <propertyIsEqualTo> (=)

e <propertyIsLessThanOrEqualTo> (<=)

e <propertyIsGreaterThanOrEqualTo> (>=)
e <propertyIsNotEqualTo> (<>)

The optional matchCase attribute can be used to specify how string comparisons should be
performed. A value of true means that string comparisons shall match case (default), false
means caselessly.

The following example shows how to export all buildings from the 3DCityDB whose
bldg:measuredHeight attribute has a values less than 50.

<query>
<typeNames>
<typeName>bldg:Building</typeName>



156 3D Geodatabase for CityGML 2019

</typeNames>
<filter>
<propertylsLessThan>
<valueReference>bldg:measuredHeight</valueReference>
<literal>50</literal>
</propertylsLessThan>
</filter>
</query>

Besides these default binary operators, the following additional comparison operators are
supported:

e <propertyIsLike>
e <propertyIsNull>
e <propertylIsBetween>

The <propertyIsLike> operator expresses a string comparison with pattern matching. A
combination of regular characters, the wildCard character (default: *), the singleCharacter
(default: .), and the escapeCharacter (default: \) define the pattern. The wildCard character
matches zero or more characters. The singleCharacter matches exactly one character. The
escapeCharacter is used to escape the meaning of the wildCard, singleCharacter and
escapeCharacter itself. The matchCase attribute is also available for the
<propertyIsLike> operator.

The following example shows how to find all roads whose gml:name contains the string
“main”.

<query>
<typeNames>
<typeName>tran:Road</typeName>
</typeNames>
<filter>
<propertylsLike R . "\" "false">
<valueReference>gml:name</valueReference>
<literal>*main*</literal>
</propertylsLike>
</filter>
</query>

The <propertyIsNull> operator tests the specified property to see if it exists for the
feature type being evaluated.

The <propertyIsBetween> operator is a compact way of expressing a range check. The
lower and upper boundary values are inclusive. The operator is used below to find all
buildings having between 10 and 20 storeys.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>



3D Geodatabase for CityGML 2019 157

<propertylsBetween>
<valueReference>bldg:storeysAboveGround</valueReference>
<lowerBoundary>10</lowerBoundary>
<upperBoundary>20</upperBoundary>
</propertylsBetween>
</filter>
</query>

5.4.2.3.4 Spatial operators
A spatial operator determines whether its geometric arguments satisfy the stated spatial
relationship. The following operators are supported:

e <bbox>

e <equals>

e <Jdisjoint>

e <touches>

e <within>

e <overlaps>

e <Jintersects>
e <contains>

e <JdWithin>

e <pbeyond>

The semantics of the spatial operators are defined in OGC Filter Encoding 2.0, 7.8.3, and in
ISO 19125-1:2004, 6.1.14.

The valueReference of the spatial operators must point to a geometric property of the feature
type or its nested feature types. If valueReference is omitted, then the gml:boundedBy
property is used per default.

The listing below exemplifies how to use the <bbox> operator to find all city objects whose
envelope stored in gml:boundedBy is not disjoint with the given geometry.

<query>
<filter>
<bbox>
<operand>
<lowerCorner>30 10</lowerCorner>
<upperCorner>60 20</upperCorner>
</operand>
</bbox>
</filter>
</query>

The following example exports all buildings having a nested bldg:GroundSurface feature
whose bldg:lod2MultiSurface property intersects the given 2D polygon.

<query>
<typeNames>



158 3D Geodatabase for CityGML 2019

<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<intersects>
<valueReference>bldg:boundedBy/bldg:GroundSurface/bldg:lod2MultiSurface</valueReference>
<polygon>
<exterior>35 10 45 45 15 40 10 20 35 10</exterior>
</polygon>
</intersects>
</filter>
</query>

The last example demonstrates how to find all city furniture features whose envelope
geometry is within the distance of 80 meters from a given point location. The uom attribute
denotes the unit of measure for the distance. If uom is omitted, then the unit is taken from the
definition of the associated reference system. If the reference system lacks a unit definition,
meter is used as default value.

<query>
<typeNames>
<typeName>frn:CityFurniture</typeName>
</typeNames>
<filter>
<dWithin>
<valueReference>gml:boundedBy</valueReference>
<point "4326">
<pos>45.67 88.56</pos>
</point>
<distance "m">80</distance>
</dWithin>
</filter>
</query>

5.4.2.3.5 Logical operators
A logical operator can be used to combine one or more conditional expressions. The logical
operator <and> evaluates to true if all the combined expressions evaluate to true. The
operator <or> operator evaluates to true is any of the combined expressions evaluate to true.
The <not> operator reverses the logical value of an expression. Logical operators can
contain nested logical operators.

The following <and> filter combines a <propertyIsLessThan> comparison and a
spatial <dwithin> operator to find all buildings with a bldg:measuredHeight less than 50
and within a distance of 80 meters from a given point location.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<and>
<propertylsLessThan>



3D Geodatabase for CityGML 2019 159

<valueReference>bldg:measuredHeight</valueReference>
<literal>50</literal>
</propertylsLessThan>
<dWithin>
<valueReference>gml:boundedBy</valueReference>
<point "4326">
<pos>45.67 88.56</pos>
</point>
<distance "m">80</distance>
</dWithin>
</and>
</filter>
</query>

5.4.2.3.6 gml:id filter operator
The <resourceIds> operator is a compact way of finding city objects whose gml:id value
is contained in the provided list of <id> elements.

The example below exports all buildings whose gml:id matches one of the values in the list.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<resourcelds>
<id>ID_01</id>
<id>ID_02</id>
<id>ID_03</id>
</resourcelds>
</filter>
</query>

5.4.2.3.7 SQL operator
The <sgl> operator lets you add arbitrary SQL queries to your filter expression. It can be
combined with all other predicates.

The SQL query is provided in the <select> subelement. It must follow the same rules as
discussed in chapter 5.4.1. Most importantly, the query shall return a list of id values that
reference the ID column of the table CITYOBJECT.

Note that the query is encoded in XML. Thus, characters having special meaning in the XML
language must be encoded using entity references. For example, the less-than sign < and
greater-than sign > must be encoded as &1t; and &gt ; respectively. Instead of using entity
references, you can put your SQL string into a CDATA section. The string is then parsed as
purely character data.

For example, the following SQL filter expression selects all id values from city objects having
a generic attribute called energy level whose double value is less than 10. The entity
reference &1t ; must be used here.



160 3D Geodatabase for CityGML 2019

<query>
<filter>
<sql>
<select>select cityobject_id from cityobject_genericattrib
where attrname='energy_level' and realval &It; 10</select>
</sql>
</filter>
</query>

When putting the same query into a CDATA section, the less-than sign must not be replaced
with an entity reference.

<query>
<filter>
<sql>
<select>
<![CDATA][
select cityobject_id from cityobject_genericattrib
where attrname='energy_level' and realval < 10
11>
</select>
</sql>
</filter>
</query>

5.4.2.4 <count> parameter
The <count> parameter limits the number of explicitly requested top-level city objects in
the export dataset.

The mandatory <upperLimit> element denotes the number of city objects to be exported.
When combined with the optional <lowerLimit> element, then the range of city objects
from the lowerLimit position to the upperLimit position in the result set are exported. Note
that both lowerLimit and upperLimit are inclusive in this case.

The following query shows how to export at maximum 10 buildings from the database, even
if more buildings satisfy the query expression.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<count>
<upperLimit>10</upperLimit>
</count>
</query>

The following query would export at maximum 11 buildings (from the 10" to the 20"
building in the result set). If the result set contains less buildings, then the export dataset will,
of course, also contain less buildings.

<query>
<typeNames>



3D Geodatabase for CityGML 2019 161

<typeName>bldg:Building</typeName>
</typeNames>
<count>
<lowerLimit>10</lowerLimit>
<upperLimit>20</upperLimit>
</count>
</query>

5.4.2.5 <lods> parameter
The <1ods> parameter lists the level of details (LoD) that shall be exported for the requested
feature types.

The LoDs to be exported are given as list of one or more <1od> element having an integer
value between 0 and 4. The optional mode attribute specifies whether a feature must have a
spatial representation in all of the enumerated LoDs to be exported (mode = and), or whether
it is enough that the feature has a spatial representation in at least one LoD from the list (mode
= or) (default). If a feature has additional spatial representations in LoDs that are not listed,
then these representations are not exported. If a feature does not satisfy the LoD filter
condition at all, then it is skipped from the export.

Many feature types in CityGML can have nested sub-features. In such cases, the top-level
feature itself is not required to have a spatial property, but the geometry can be modelled for
its nested sub-features. For example, a bldg:Building feature does not need to provide an LoD
2 geometry through its own bldg:lod2Solid or bldg:lod2MultiSurface properties. Instead, it
can have a list of nested boundary surfaces such as bldg:WallSurface and bldg:RoofSurface
features that have own LoD 2 representations. Nevertheless, in this case the bldg:Building is
considered to be represented in LoD 2.

To handle these cases, the <1 ods> parameter offers the optional searchMode attribute. When
set to all, then all nested features are recursively scanned for having a spatial representation in
the provided list of LoDs. If an LoD representation is found for any (transitive) sub-feature,
then the top-level feature is considered to satisfy the filter condition. The all mode is,
however, expensive because it requires many joins and sub-queries on the database level.
When setting searchMode to depth instead, you can use the additional searchDepth attribute
to specify the maximum depth to which nested sub-features are searched for LoD
representations.

For example, the following bldg:Building feature has a nested bldg:BuildingInstallation sub-
feature and a nested bldg:WallSurface sub-feature. Moreover, the bldg:Buildinglnstallation
itself has a nested bldg:RoofSurface sub-feature.

<bldg:Building>

<bldg:outerBuildinglnstallation>
<bldg:Buildinglnstallation>
<bldg:boundedBy>
<bldg:RoofSurface> ... </bldg:RoofSurface>
</bldg:boundedBy>
</bldg:BuildinglInstallation>



162 3D Geodatabase for CityGML 2019

</bldg:outerBuildinglnstallation>

<bldg:boundedBy>
<bldg:WallSurface> ... </bldg:WallSurface>
</bldg:boundedBy>

</bldg:Building>

When setting searchDepth to 1 in this example, then not only the bldg:Building but also its
nested bldg:Buildinglnstallation and bldg:WallSurface are searched for a matching LoD
representation, but not the bldg:RoofSurfaces of the bldg:Buildinginstallation. This roof
surface is on the nesting depth 2 when counted from the bldg:Building. Thus, searchDepth
would have to be set to 2 to also consider this bldg:RoofSurface feature.

Per default, searchMode is set to depth with a searchDepth of 1.

The following listing exemplifies the use of the <lods> parameter. In this example, all
tunnels shall be exported that have either an LoD 2 or LoD 3 representation. LoD
representations are also searched on sub-features up to a nesting depth of 2.

<query>
<typeNames>
<typeName>tun:Tunnel</typeName>
</typeNames>
<lods “or" "depth" 2>

<lod>2</lod>

<lod>3</lod>
</lods>
</query>

5.4.2.6 <appearance> parameter

The <appearance> parameter filters appearances by their theme. To keep an appearance in
the target dataset, the value of its app:theme attribute simply has to be enumerated using a
<theme> subelement. The string values must exactly match.

The app:theme attribute in CityGML is optional and thus can be null. To be able to also
express whether appearances having a nul1l theme should be exported, the <appearance>
parameter offers another subelement <nul1lTheme>, which is of type Boolean. If set to true,
appearances with a nul1 theme are exported, otherwise not (default).

The following query exports road features and appearances with theme summer and winter.
Since <nullTheme> is set to false, appearances lacking an app:theme attribute are not
exported.

<query>
<typeNames>
<typeName>tran:Road</typeName>
</typeNames>
<appearance>
<nullTheme>false</nullTheme>



3D Geodatabase for CityGML 2019 163

<theme>summer</theme>
<theme>winter</theme>
</appearance>
</query>

5.4.2.7 <tiling> parameter
The <tiling> parameter allows for exporting the requested top-level features in tiles.
Every tile is exported to its own target file within a separate subfolder of the export directory.

Like the tiling settings of the simple GUI-based export filter (cf. chapter 5.4), the <tiling>
parameter requires three mandatory inputs: the <extent> of the geographic region that
should be tiled and the number of <rows> and <columns> into which the region should be
evenly split. The <extent> must be provided as bounding box using a <lowerCorner>
and an <upperCorner> element.

The example below exports all buildings within the provided <extent> into 2x2 tiles.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<tiling>
<extent "4326">
<lowerCorner>10.7005978 47.5707931</lowerCorner>
<upperCorner>10.7093525 47.5767573</upperCorner>
</extent>
<rows>2</rows>
<columns>2</columns>
</tiling>
</query>

Besides the mandatory input, the optional <cityGMLTi1lingOptions> element can be
used to control the names of the subfolders and tile files, and whether tile information should
be stored as generic attribute. The following subelements are supported:

e <tilePath> Name of subfolder that is created for each tile
(default: tile).
<tilePathSuffix> Suffix to append to each <tilePath>. Allowed values
are row_column (default), xMin_yMin, xMax_yMin,
xMin_yMax, xMax_yMax and xMin_yMin_xMax_yMax.
<tileNameSuffix> Suffix to append to each tile filename. Allowed values
are none (default) and sameAsPath.
<includeTileAsGenericAttribute> Add a generic attribute named
TILE to each city object.
e <genericAttributeValue> Value for the generic attribute. Allowed values
are identical to those for <tilePathSuffix>
(default: xMin_yMin_xMax_yMax).



164 3D Geodatabase for CityGML 2019

If the <cityGMLTilingOptions> element is not present, then the settings defined for the
Tiling options export preference (cf. chapter 5.6.2.2) are used instead.

5.4.2.8 targetSrid attribute

The <query> element offers an optional targetSrid attribute. If targetSrid is present, then all
exported geometries will be transformed into the target coordinate reference system. The
targetSrid attribute must reference an SRID defined in the underlying database. The
transformation is performed using corresponding functions of the database system.

<query "25832">
</query>

5.4.2.9 Using address information and 3DCityDB metadata in queries

The 3DCityDB comes with a CityGML ADE that allows to easily use address information
and metadata columns in XML queries. The following table shows the XML namespaces to
be used with CityGML version 2.0 respectively 1.0 and the recommended XML prefix of the
3DCityDB ADE.

ADE XML prefix XML namespace

http://www.3dcitydb.org/citygml-ade/3.0/citygml/2.0
http://www.3dcitydb.org/citygml-ade/3.0/citygml/1.0

3DCityDB ADE citydb

Table 34: XML prefix and namespace of the 3DCityDB ADE.

Address information. CityGML uses the OASIS xAL standard for the representation of
address information. XAL is very flexible in that it supports various address styles that can be
XML-encoded in many ways. As a drawback, this flexibility makes it difficult to define a
filter on address elements (e.g., the street or the city) using an XPath expression based on
XAL. When importing address information into the 3DCityDB, the xAL address fragment is
parsed and mapped onto the columns STREET, HOUSE NUMBER, PO_BOX, ZIP CODE,
CITY, STATE and COUNTRY of the ADDRESS table. Thus, it is preferable and simpler to
express filter criteria on these columns.

For this reason, the 3DCityDB ADE injects additional properties into the core:Address feature
of CityGML that correspond to the columns of the ADDRESS table. By this means, these
properties can be used in filter expressions. The mapping between ADE properties and
columns of the ADDRESS table is shown below. Note that the citydb prefix must be
associated with the ADE XML namespace (see above). If omitted, the CityGML 2.0
namespace is assumed given that the prefix citydb is used.

ADE property

(injected into core:Address) Data type Column of the ADDRESS table
citydb:street xs:string STREET

citydb:houseNumber Xs:string HOUSE NUMBER

citydb:poBox Xs:string PO_BOX

citydb:zipCode Xs:string ZIP CODE

citydb:city Xs:string CITY




3D Geodatabase for CityGML 2019 165

citydb:state xs:string STATE

citydb:country Xs:string COUNTRY

Table 35: 3DCityDB ADE properties for accessing address information.

The following example illustrates how to query all buildings along the street Unter den
Linden. It uses the citydb:street ADE property as value reference in the filter expression.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<propertylsLike o . "\" “true">
<valueReference>bldg:address/core:Address/citydb:street</valueReference>
<literal>Unter den Linden*</literal>
</propertylsLike>
</filter>
</query>

Metadata for city objects. The 3DCityDB stores database-specific metadata with every city
object using the columns LAST MODIFICATION DATE, UPDATING PERSON,
REASON_FOR UPDATE and LINEAGE of the CITYOBJECT table. In order to make these
metadata properties available in filter expressions, the 3DCityDB ADE injects them into the
CityGML core:_CityObject feature.

ﬁ‘ggcf::ﬂfg%re:_CityObject) Data type Column of the ADDRESS table
citydb: lastModificationDate Xs:string LAST MODIFICATION DATE

citydb: updatingPerson xs:string UPDATING PERSON

citydb: reasonForUpdate Xs:string REASON FOR UPDATE

citydb: lineage xs:string LINEAGE

Table 36: 3DCityDB ADE properties for accessing address information.

The properties can also be used in filter expressions. For instance, the query below fetches all
bridges that have been modified in the database after 2018-01-01.

<query>
<typeNames>
<typeName>brid:Bridge</typeName>
</typeNames>
<filter>
<propertylsGreaterThan>
<valueReference>citydb:lastModificationDate</valueReference>
<literal>2018-01-01</literal>
</propertylsGreaterThan>
</filter>
</query>



166 3D Geodatabase for CityGML 2019

5.4.2.10 Using XML queries in batch processes

The Importer/Exporter offers a Command-Line Interface (CLI) which allows for embedding
the tool in batch processing workflows and third-party applications (cf. chapter 5.8). XML
queries can also be used in CityGML exports that are triggered via this CLI interface. For this
purpose, the XML query has to be copied into the config file that is used for running the
Importer/Exporter. This can be either the default config file (cf. chapter 5.1) or a local file that
is passed to the CLI using the —config command-line parameter.

Each config file must use a <project> root element associated with the XML namespace
http://www.3dcitydb.org/importer-exporter/config. Export settings are then provided in the
<export> subelement. The <query> element of an XML query expression can simply be
copied as child element of the <export> element. In addition, the useSimpleQuery attribute
on the <export> element has to be set to false.

The listing below shows an excerpt of a config file using an XML export query.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<project "http://www.3dcitydb.org/importer-exporter/config">
<database>
... database connection details go here ...
</database>
<export "false">
... copy your query here ...
<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
</query>
... provide more export settings here ...
</export>
</project>


http://www.3dcitydb.org/importer-exporter/config

3D Geodatabase for CityGML 2019 167

5.5 Exporting to KML/COLLADA/gITF

3D City Database contents can be directly exported in KML [Wilson 2008], COLLADA
[Barners & Finch 2008], and gITF [Khronos 2016] formats for presentation, viewing, and
visual inspection in a broad range of applications such as Earth browsers like Google Earth,
ArcGIS Explorer, and Cesium etc.

Note: KML/COLLADA/gITF formatted exports come straight from the 3D City Database.
No direct file transformation CityGML - KML/COLLADA/gITF is supported yet.
If a CityGML file shall be converted to KML/COLLADA/gITF, the CityGML
content must be imported into the database first and then exported into the
KML/COLLADA/gITF format.

The KML/COLLADA/gITF Export tab shown in Figure 71 collects all parameters required for
the export in a similar fashion as for a CityGML export (see the previous chapter). In
addition, more fine-grained preference settings affecting the KML/COLLADA/gITF export
are available on the Preferences tab of the operations window. Make sure to check these
settings before starting the export process. A full documentation of the export preferences is
available in chapter 5.6.3. The following table provides a brief summary overview.

Preference name Description

General Preference Some common settings of the exported files

Defines the look of the KML/COLLADA/gITF exports when
visualized in the virtual globes (e.g. Cesium, Google Earth,

NASA World Wind, ESRI ArcGlobe). Each of the top-level
feature categories has its own Rendering settings here

KML offers the possibility of enriching its placemark elements
with information bubbles, so-called balloons. They can be

Rendering Preferences

Information Balloon

Preferences -

specified here
Altitude/Terrain Controls the way through which the exported datasets to be
Preferences perfectly displayed in the Earth browser

Table 37: Summery overview of the KML/COLLADA/gITF export preferences.



168

3D Geodatabase for CityGML 2019

File Project View Help

u 3D City Database Importer/Exporter

Import Export KML/COLLADA/gITF Export Database Preferences

X

Versioning
Workspace

Xport contents

(O single object
gml:id

(® Bounding Box
@ 8 [
Xmin

Yimin

Tiling

Export from level of detail

LoD2

Feature Types

=0

[+ [ Bridge
Building
CityFurniture
CityObjectGroup
Generics
LandUse
Relief
Transportation
Tunnel

[+ [] Vegetation

- [] WaterBody

@® No tiling

| !! Browse I

Reference system | Same as in database

O Automatic (O Manual

Display as
Footprint
Extruded
Geometry

COLLADA/gITF

KOO0

Appearance/Theme none

Timestamp (DD.MM.YYY) o

Columns

visible from pixels

visible from pixels

visible from pixels

visible from |g| pixels

Fetch themes from DB

Ready

Export

Database disconnected

Figure 71: The KML/COLLADA/gITF Export tab allowing for exporting KML/COLLADA/gITF models from
the 3DCityDB.

Output file selection. Type the filename directly into the text field or activate the file dialog
provided by the operating system after pushing the Browse button [1].

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the
name of the workspace and the timestamp from which the data shall be exported can be
specified [2]. If no workspace is provided, the default workspace is assumed (Oracle: LIVE).

Export contents. These KML/COLLADA/gITF Exporter allows for specifying/selecting the
objects of interest for the export. These can be single objects or whole areas delimited by a
bounding box. Two radio buttons [3] at the left side of the export dialog let you choose
between those two options.

separated by commas.

Single object: Enter the GML IDs of the object(s) of interest. Multiple IDs have to be



3D Geodatabase for CityGML 2019 169

e Bounding Box: Enter the coordinates of a bounding box defining the area of interest.
Objects are exported if their centroids lie within the specified bounding box. The
reference system used for defining the bounding box can be the same as the one used
in the database or any other one supported by Oracle and PostGIS. It is also possible to
add further user-defined reference systems (see the previous chapter). New reference
systems can be added to the Import/Export tool (preferences tab, node Database,
subnode Reference systems) if they are supported by the used database server. The
target system with the same dimensionality (WGS84 for 2D, WGS84 3D for 3D) will
be applied for the coordinate transformation during the KML/COLLADA/QITF
Export.

Tiling only applies to exports of areas defined by a bounding box. Tiled exports are used in
order to load and unload parts of the exported model depending on their current visibility
when viewed, for example, in Google Earth. Since the Earth Browser's responsiveness
decreases greatly with single files larger than 10 Mb, tiled exports (with tile file sizes usually
a lot smaller than that) are highly recommended. As mentioned above, only objects whose
centroids lie within the tile's bounding box will be exported.

There are three tiling modes [4] available for a KML/COLLADA/gITF export:

e no tiling: as the name implies, no tiling takes place. Just a single tile holding all the
exported objects is exported. This is only advisable when the resulting file is at most
10 Mb in size.

e automatic: the area enclosed by the bounding box will be exported in tiles having
roughly the side length set on the preferences tab under the node
KML/COLLADA/gITF Export, subnode Rendering (default value is 125m.). The
amount of exported rows and columns will be calculated by dividing the length and
width (in unit of meters) of the delimiting bounding box by the preferred tile side
length and rounding up the result. For example: if the user wants to export a 1000m x
1100m bounding box with a preferred tile side length of 300m, 4x4 tiles will be
generated since 1000/300 = 3.333 and 1100/300 = 3.666. This also implies: in case of
automatic tiling it cannot be guaranteed that tiles will be perfectly square, but they will
tend to.

e manual: the number of rows and columns can be freely set by the user. The area will
be divided in equally spaced portions horizontally and vertically in WGS84 and the
resulting tile sizes and forms will adapt to the values specified.

The exported tiles are organized with a hierarchical directory structure which means that each
individual tile file is named by its column number and all the tile files that belongs to the
same row are stored in a separate subfolder named by their corresponding row number. The
numbering of both rows and columns should start with 0. All those subfolders are in turn
stored in a folder named “Tiles”. This hierarchical directory structure (cf. Figure 72) ensures
that the exported tile files are distributed over different subfolders in order to avoid putting all
tile files into a single folder which may result in significant performance issues at least under
MS Windows operating systems.



170 3D Geodatabase for CityGML 2019

:

J,
o
|
-
\
®

3
g

;

0,2) | (1,2)

o = s 0 7 leCLLApA
E(lo.n]a@, |:> Tiles —— 1 —-[ . Z
> 1 —
CCLLADA
(0,001 (1,0
=N @
Longitude g . —> 0 " lcCoLwADa

1
:
1)

—

:

Figure 72: Example: hierarchical directory structure for export of 2x3 tiles

Export from level of detail. The Level of Detail as defined by the CityGML specification
should be used as basis information for the KML/COLLADA/gITF export. For the same city
object higher levels of detail usually contain many more geometries and these geometries are
more complex than in lower levels. For instance, a building made of 40 polygons in LoD2
may consist of 3000 polygons in LoD3. This means LoD3 based exports are a lot more
detailed than LoD2 based exports, but they also take longer to generate, are bigger in size and
therefore load more slowly in the Earth browser.

By using the drop-down list [5] a single constant LoD can be used as basis for all exports or it
can be left to the Importer/Exporter to automatically determine which the highest LoD
available for each cityobject is and then use it as the basis for the KML/COLLADA/QITF
exports.

Display as. These fields in the export dialog [6] determines what will be shown when
visualizing the exported dataset in earth browsers.

e Footprint: objects are represented by their ground surface projected onto the earth
surface. This is a pure KML export.

e Extruded: objects are represented as blocks models by extruding their footprint to
their height (calculated by using their 3D envelopes). This is a pure KML export.

e Geometry: objects are represented with fully detailed geometry information with
respect to the selected Level of Detail. It can explicitly show the different thematic
surfaces (e.g. wall and roof surfaces) by means of coloring them (textures are not
supported by KML) according to the settings in the preferences tab
(KML/COLLADA/QITF Export node, Rendering subnode). If not explicitly modeled,
thematic surfaces will be inferred for LoD1 or LoD2 based exports following a trivial



3D Geodatabase for CityGML 2019 171

logic (surfaces touching the ground — that is, having a lowest z-coordinate- will be
considered wall surfaces, all other will be considered roof surfaces), in LoD3 or LoD4
based exports surfaces not thematically modeled will be colored as wall surfaces.

e COLLADA/QITF: shows the detailed geometry in COLLADA and gITF formats
including support for textures. The Appearance/Theme combo box below allows
choosing from all possible appearance themes (as defined in the CityGML
specification [Groger et al. 2012]) available in the currently connected 3DCityDB
instance. The list is workspace- and timestamp sensitive and will be filled on demand
when clicking on the fetch button. Default value is none, which renders no textures at
all and colors all surfaces according to the settings in the preference tab
(KML/COLLADA/gITF Export node, Rendering subnode).

Figure 73: The same building displayed as (top down and left to right) footprint, extruded, geometry,
COLLADA

Note: For Oracle, the Footprint and Extruded display forms internally use the spatial
function sDO_AGGR UNION. This function is not allowed to be used under Oracle
10g/11g with the Locator license option even if it happens to be available. The
Importer/Exporter does not check the Oracle license option. Thus, it is up to the user to



172 3D Geodatabase for CityGML 2019

observe the Oracle license and not to use the Footprint and Extruded display forms
under Oracle 10g/11g Locator. This restriction does not hold for the Oracle Spatial
license option. Likewise, starting from Oracle 12c, SDoO AGGR UNION is also
available for Locator.

Depending on the chosen level of detail, some display form checkboxes will become enabled
or disabled, depending on whether the level of detail offers enough information for this
display form or not. For instance, Footprint can be exported from any CityGML LoD (0 to 4),
whereas Extruded, Geometry, and COLLADA/gITF exports are possible from LoD1 upwards.
Exports will have their filename enhanced with a suffix specifying the selected display form.
This applies for both tiled and untiled exports.

With the visibility field next to each display form the user can control the KML element
<minLodPixels>, see [Wilson 2008]: measurement in screen pixels that represents the
minimum limit of the visibility range for a given <Region>. A <Region> is in the
generated tiled exports equivalent to a tile. The <maxLodPixels> value is identical to the
<minLodPixels> of the next visible display form, so that display forms are seamlessly
switched when the viewer zooms in or out. The last visible display form has a
<maxLodPixels> value of -1, that is, visible to infinite size. Visibility ranges can start at a
value of O (they do not have to, though). Please note that the region size in pixels depends on
the chosen tile size. Thus, if the tile size is reduced also the visibility ranges should be
reduced. Increases in steps of a third of the tile side length are recommended. An example of a
good combination for a tile size of about 250m x 250m could be: Footprint, visible from 50
pixels, Geometry, visible from 125 pixels, COLLADA/gITF, visible from 200 pixels. Some
display forms, like Extruded in this example, can be skipped. The visibility field only
becomes enabled for bounding box exports; single building exports are always visible.

Feature Types. Similar to CityGML imports and exports it is also possible to select what top-
level feature types shall be displayed in a KML/COLLADA/gITF export. With the selection
tree panel [7] it is possible to pick each category individually and also leave single categories
out, i.e.: export CityFurniture and WaterBody only, or export everything but Building and so
on. Between LoD1 and LoD4 all feature types are available. For LoDO only those top-level
feature types offering LoDO geometry in the CityGML 2.0 schema (Building, Waterbody,
LandUse, Transportation and GenericCityObject) are selectable, whereas the rest of the
feature class checkboxes will become automatically disabled.

Note:  Support for Relief features in KML/COLLADA/gITF exports is currently limited to
the type TIN_RELIEF. Other Relief types such as MASSPOINT_RELIEF,
BREAKLINE_RELIEF, and RASTER_RELIEF are not supported currently. Also, due
to the usually wide-streched area of Relief features and the non-clipping nature of the
BoundingBox filter it is recommended to export Relief features in a single step
making use of the no tiling option and using an extensive enough BoundingBox.
As an alternative, the digital terrain model data can be divided in smaller
ReliefComponents tailored to match the tiling settings of the desired export (their
area contained in or equal to the resulting tiles). This requires altering the original



3D Geodatabase for CityGML 2019 173

data nevertheless and, as such, it must be done before the CityGML contents are
imported into the database at all.

Google earth

Figure 74: Example for exported CityGML top-level features (building, bridge, tunnel, water, vegetation,
transportation etc.) displayed as KML/COLLADA

KML/COLLADA/gITF export. Having completed all settings, the KML/COLLADA/QITF
data export is triggered with the Export button at the bottom of the dialog (cf. Figure 71). If a
database connection has not been established manually beforehand, the currently selected
entry on the Database tab is used to connect to the 3D City Database. Progress information
is displayed within a separate status window. This status window also offers a Cancel button
that lets a user abort the export process. The separate steps of the export process as well as
possible error messages are reported to the console window.

After having completed the export, multiple files along with the Tiles folder will be written to
the prespecified output location. One of them is called master KML file which contains a list
of <NetworkLink> elements pointing to every exported tile files stored in the Tiles folder.
This KML file can therefore be directly opened in Google Earth for viewing and exploring the
exported KML/COLLADA models. In addition, for each selected display form (Footprint,
Extruded, Geometry, and COLLADA/QITF), a JSON formatted file called master JSON file is
created and its contents should look like the following example:

Master JSON file example:
{

"version": "1.0.0",
"layername": "NYC Buildings",
"fileextension": ".kmz",
"displayform": "extruded",
"minLodPixels": 140,
"maxLodPixels": -1,

"colnum": 29,
"rownum": 23,
"bbox": {



174 3D Geodatabase for CityGML 2019

"xmin": -74.0209007,
"xmax": -73.9707756,
"ymin": 40.6996416,
"ymax": 40.7295678
}
}

As the name of each JSON parameter implies, this JSON file contains the relevant
information about the specified export settings and can hence be seen as a kind of metadata
allowing applications to interpret the contents of the exported datasets. For example, the
length and width (in WGS84) of each tile can be determined using the following formulas:

TileWidth = (bbox.xmax - bbox.xmin) / colnum

TileLength = (bbox.ymax - bbox.ymin) / rownum

With these two calculated values, applications are also able to use the following formulas to
rapidly retrieve the row and column number of the tile in which a given point lies:

ColumnNumber = floor (X - bbox.xmin) / TileWidth)
RowNumber = floor ((Y - bbox.ymin) / TileLength)
where X and Y denote the WGS84 coordinates of the given point.

Further, if a bounding box is given, which is formed by a lower-left corner and an upper-right
corner and their row and column numbers are expressed as (R1, Cl) and (R2, C2)
respectively, all those tiles that intersect with the given bounding box can be found iteratively,
as their row and column numbers must fulfil the following conditions:

R1 < RowNumber < R2 A C1 < columnNumber < C2.

5.5.1 Support of GenericCityObject having any geometry types

The earlier versions of KML/COLLADA/QITF Exporter have been designed to only support
exports of surface-based geometries for all CityGML classes. Starting from version 3.0.0 of
the 3DCityDB, the KML/COLLADA/gITF Exporter has been functionally enhanced with the
support for exporting point and curve geometry types of GenricCityObject objects in
KML/KMZ format. GenricCityObject is a feature class defined within the CityGML’s
Generics module (see chapter 2.2.4.6) that allows for modeling and exchanging of 3D city
objects which are not covered by any other thematic modules of CityGML. The geometry of a
GenericCityObject can be explicitly defined in LODO-4 using arbitrary 3D GML geometry
object (class gml:_Geometry). Thus, any complex structured objects that have point, line,
surface, or solid geometries can be geometrically represented by means of GenricCityObject
objects for every LOD. For example, the indoor routing network model, which are not defined
in the current CityGML specification, could be even though modeled using the CityGML’s
Generics module where each GenricCityObject object may represent a node or an edge of the
network model.



3D Geodatabase for CityGML 2019 175

GMLID: 8344

Existing generic attributes (mouseOver for values):
Area, DIN277_, DIN277Untergruppe_, Flooring_, LAYER_ID, Level,
Original_RoomNumber_, Room_no, SPACE_STATE_ID, STATE_NAME,

TUMWebLink

Figure 75: Visualization of the network model of the building interior of Technical University Munich (TUM)

Depending on the chosen Level of Detail, the point and curve geometries of GenricCityObject
objects are exported, along with their surface and solid geometries, into the output
KML/KMZ file whose filename is enhanced with a suffix denoting the selected display form
(e.g. Footprint, Extruded, Geometry, or COLLADA/gITF).

5.5.2 Loading exported models in Google Earth and Cesium Virtual
Globe

In order to make full use of the features and functionalities provided by Google Earth, it is
highly recommended to use the enhanced version of Google Earth — Google Earth Pro which
is available free of charge starting from January 2015. Some of the features described in this
documentation, like highlighting, can also flawlessly work in the normal Google Earth with
version 6.0.1 or higher.

Displaying a file in Google Earth can be achieved by opening it through the menu ("File",
"Open") or double-clicking on any kml or kmz file if these extensions are associated with the
program (default option at Google Earth's installation time).

Loaded files can be refreshed when generated again after loading (if for example the balloon
template file was changed) by choosing the "Revert" option in the context menu on the
sidebar. There is no need to delete and load them again or shutdown or restart the Earth
browser.

For best performance, cache options ("Tools", "Options", "Cache™) should be set to their
maximum values, 1024MB for memory cache size, 2000MB for disk cache. Actual
maximums may be lower depending on the computer's hardware.



176 3D Geodatabase for CityGML 2019

Google Earth enables showing the terrain layer by default for realistic display of 3D models.
Disabling of terrain layer is only possible in Google Earth Pro. You may need to disable the
terrain layer in case that the exported models cannot be seen although shown as loaded in
Google Earth's sidebar, since they are probably buried into the ground (see chapter 5.6.3.4).

When exporting balloons into individual files (one for each object) written together into a
balloon directory access to local files and personal data must be allowed ("Tools", "Options",
"General"). Google Earth will issue a security warning that must be accepted, otherwise the
contents of the balloons (when in individual files and not as a part of the doc.kml file) will not
be displayed.

It is also possible to upload the generated KML/COLLADA/QITF files to a web server and
access them from there via internet browser with Cesium Virtual Globe (starting from
December 2015, the Google Earth Plugin is no longer supported by most modern web
browsers due to security considerations). In this case, the Cross Origin Resource Sharing
(CORS) shall be enabled on the web server to allow cross-domain AJAX requests sent from
the based-web frontend.

Note: Starting with version 7 (and at least up to version 7.1.1.1888) Google Earth has
changed the way transparent or semi-transparent surfaces are rendered. This is
especially relevant for visualizations containing highlighting surfaces (explained in
chapter 5.6.3.2). When viewing KML/COLLADA models in Google Earth it is
strongly recommended to use Google Earth (Pro) version 7 or higher and switch to the
OpenGL graphic mode for an optimal viewing experience. Changing the Graphic
Mode can be achieved by clicking on Tools, Options entry, 3D View Tab.

r ~
i Google Earth Options [ ? ﬂh]
3D Wiew | Cache I Touring I MNavigation I General /\

Texture Colors Anisotropic Filtering Labels/Icon Size Graphics Mode \
High Calor {16 bit) Off Small @ OpenGL

@ True Color (32 bit) @ Medium @ Medium Directy

V| Compress High Large Use safe mode

Show LatfLong Units of Measurement Fonts

Decimal Degrees @ System default

@ Degrees, Minutes, Seconds Feet, Miles m

Degrees, Dedmal Minutes
9 ' Meters, Kilometers
Universal Transverse Mercator

Terrain

Elevation Exaggeration (also scales 30D buildings and trees): 1 (0.01-3)
Use high quality terrain (dizable for quicker resclution and faster rendering)
Use 3D Imagery (disable to use legacy 3D buildings)

Cverview Map

Map Size: Small U Large
Zoom Relation: infinity 1:1 D Linfinity
Restore Defaults OK ] | Cancel | | Apply
h

Figure 76: Setting the Graphics Mode in Google Earth



3D Geodatabase for CityGML 2019 177

“Coogle earth
(+( qlcea

Figure 77: KML/COLLADA models rendered with DirectX, highlighting surface borders are noticeable
everywhere

-(-\)(\t‘ >*eartn
] (\\

Figure 78: The same scene rendered in OpenGL mode



178 3D Geodatabase for CityGML 2019

5.6 Preferences

In addition to the settings on the Import, Export, KML/COLLADA/glTF Export and
Database tabs of the operations window, more preferences affecting the separate operations
of the Importer/Exporter are available on the Pre ferences tab shown below.

[# 3D City Database Importer/Exporter - O >

File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

[=1-CityGML Import Continuation
~gml:id handling Continuation information
--Bounding box )
Data lineage
--Address g
- Appearance Reason for update
--Geometry
-~ Indexes 3
Updating person
%ML validation £ dE
¥5L transformation (@ Use database user name
- Import log () Spedfy updating person
--Resources
[#-CityGML Export
[#-KML/COLLADA/glTF Export
[+-Database Methed for creationDate allocation
[+-General (O Inherit missing creationDate from parent object {or set to current date instead)

(O) Setmissing creationDate values to current date

(@) Replace all creationDates with the current date

Methed for terminationDate allocation
(O Inherit missing terminationDate from parent object (or set to null instead)

(O Setmissing terminationDate values to null
(@ Setall terminationDate values to null

Restore Default Apply e

Ready Database disconnected

Figure 79: The preferences dialog.

The preferences are structured in a tree view [1] on the left side of the dialog with the
following main nodes:

e CityGML Import Settings affecting the CityGML import operation

® CityGML Export Settings affecting the CityGML export operation

e KML/COLLADA/glTF Export Settings affecting the KML/COLLADA/QITF export
operation

e Database Database-specific settings

® General General settings affecting the entire application

Below these main nodes, further subnodes organize the preferences into separate topics.
When selecting a node in the tree view, the associated settings dialog is displayed on the right
side [2]. Changes made to the settings of the selected node are applied through the Apply
button [3]. The buttons Restore and Default allow for resetting the preferences to their
previous state or to their default values.

The preferences (including the settings on the separate operation tabs) are automatically
stored in the config file of the Importer/Exporter and are restored from this file upon program



3D Geodatabase for CityGML 2019 179

start. Thus, changes made to the preferences are remembered on restart. Via the Project
menu available from the menu bar of the Importer/Exporter, the preferences can optionally be
stored in or loaded from user-defined config files (cf. chapter 5.1).

5.6.1 CityGML import preferences

5.6.1.1 Continuation

The Continuation preferences allow for specifying metadata that is assigned to every city
object at import time. The metadata is carried to columns of the table CITYOBJECT and is
therefore accessible in SQL queries.

. 3D City Database Importer/Exporter - O X

File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

[=)-CityGML Import Continuation

~-gml:id handiing Continuation information
-Bounding box "

Data lineage
--Address g 0
- Appearance Reason for update
~-Geometry
- Indexes -

Updating person
- %ML validation £ i
%51 transformation (® Use database user name
--Import log (O) Specify updating person

~R.esources

[#-CityGML Export

[+-KML/COLLADA fgITF Export

[#-Database Method for creationDate allocation

[#)-General (O Inherit missing creationDate from parent object {or set to current date i

() Setmissing creationDate values to current date

(® Replace all creationDates with the current date

Method for terminationDate allocation
(O Inherit missing terminationDate from parent object {or set to null inste;
() Setmissing terminationDate values to null

©

(@ Setall terminationDate values to null

Restore Default Apply

Ready Database disconnected

Figure 80: CityGML import preferences — Continuation.

The following metadata can be set:

Metadata Description

A string value denoting the origin of the data.
(column: LINEAGE; default value: NULL)

A string value providing the reason for a data update.
(column: REASON FOR UPDATE; default value: NULL)

A string value identifying the person being responsible for importing or
Updating person [2] updating the city object.
(column: UPDATING PERSON, default value: name of the database user)

A timestamp value denoting the date of creation of the city object. If this
date is not available from the CityGML feature during import, it may either
be set to the import date or be inherited from the parent feature (if
available). Alternatively, the user can choose to replace all creation dates
from the input files with the import date.

(column: CREATION DATE,; default value: import date)

Data lineage [1]

Reason for update [1]

creationDate [3]




180 3D Geodatabase for CityGML 2019

A timestamp value denoting the date of termination of the city object. If this
date is not available from the CityGML feature during import, it may either
be set to NULL or be inherited from the parent feature (if available).
Alternatively, the user can choose to replace all termination dates in the
input files with NULL.

(column: TERMINATION DATE; default value: NULL)

terminationDate [4]

Table 38: Metadata stored with every city object in the table CITYOBJECT.

Note:  Both creationDate and terminationDate are CityGML properties of city objects and
therefore are exported to CityGML datasets. The remaining metadata information
does not map to CityGML properties. It is therefore not exported to CityGML
datasets but is only available in the database.

5.6.1.2 gml:id handling

Globally unique object identifiers are crucial for ensuring data consistency and for enabling
data management workflows. Especially when it comes to (subsequently) updating the city
model content in the database, unique identifiers will help to quickly identify and replace
objects in the database with candidates from external datasets. Unfortunately, gm1 : id values
do not meet the requirement of global uniqueness since they are, per definition, optional and
only unique within the scope of a single dataset.

W4 3D City Database Importer/Exporter = m] X
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

-/~ CityGML Import gml:id handling
Continuation
fgml:id handling Method for gml:id assignment

Address

Appearance

Geometry (@ Only use UUIDs in case of missing gml:id
Indexes

XML validation
XSL transformation Store original gml:ids as external reference

gml:id prefix |UUID_

(O Replace all gml:ids by UUIDs

Import log

Resources Codespace for gml:ids
- CyGML Export (® Do not store a codespace
+- KML/COLLADA/gITF Export
+-Database (O Use file name of CityGML file
+ General (O Use path and file name of CityGML file

(O User-defined codespace
UUID
Restore Default Apply
Ready Database disconnected

Figure 81: CityGML import preferences — gm1 : 1d handling.

Per default, the Importer/Exporter assumes that the gm1 : id values associated with the city
objects to be imported are globally unique and therefore imports them “as is” into the
database. Only in case a city object (or geometry object) lacks a gm1 : id, a UUID value will
be generated at import time and stored with the object.

This default behavior can be overridden with this preferences dialog in order to let the
Importer/Exporter replace all gm1 : id values in the input file(s) with generated UUID values.



3D Geodatabase for CityGML 2019 181

The user may choose a prefix for the gml:id value. Use this option with caution. The original
gml : id value may optionally be stored as external reference to not lose this information.

In addition to the gm1:id, the 3DCityDB allows for storing a second GMLID CODESPACE
metadata value. The idea is that the compound value of gml:id and GMLID CODESPACE
is globally unigue. The user can choose to use the file name of the CityGML import file, its
complete path or a user-defined string as GMLID CODESPACE. Per default, the
Importer/Exporter does not import a GMLID CODESPACE value though.

Note: The Importer/Exporter internally only relies on the gml:id value to identify
objects, for example, when resolving XLink references. The GMLID CODESPACE
value therefore supports user-defined data management processes in the first place.

5.6.1.3 Address

CityGML relies upon the OASIS Extensible Address Language (xXAL) standard for the
representation and exchange of address information. XAL provides a flexible and generic
framework for encoding address data according to arbitrary address schemes. The columns of
the ADDRESS table of the 3D City Database however only map the most common fields in
address records (cf. chapter 2.3). Moreover, the Importer/Exporter currently does not support
arbitrary xAL fragments but is tailored to the parsing of following two xAL templates that are
taken from the CityGML specification.

<bldg:Building>

<bldg:address>
<Address>
<xalAddress>
<!-- Bussardweg 7, 76356 Weingarten, Germany -->
<xAL:AddressDetails>
<xAL:Country>
<xAL:CountryName>Germany</xAL:CountryName>
<xAL:Locality Type="City">
<xAL:LocalityName>Weingarten</xAL:LocalityName>
<xAL:Thoroughfare Type="Street">
<xAL:ThoroughfareNumber>7</xAL:ThoroughfareNumber>
<xAL:ThoroughfareName>Bussardweg</xAL:ThoroughfareName>
</xAL:Thoroughfare>
<xAL:PostalCode>
<xAL:PostalCodeNumber>76356</xAL:PostalCodeNumber>
</xAL:PostalCode>
</xAL:Locality>
</xAL:Country>
</xAL:AddressDetails>
</xalAddress>
</Address>
</bldg:address>
</bldg:Building>

<bldg:Building>

<bldg:address>
<Address>
<xalAddress>
<!-- 46 Brynmaer Road Battersea LONDON, SWll 4EW United Kingdom -->
<xAL:AddressDetails>
<xAL:Country>
<xAL:CountryName>United Kingdom</xAL:CountryName>
<xAL:Locality Type="City">
<xAL:LocalityName>LONDON</xAL:LocalityName>



182

3D Geodatabase for CityGML 2019

<xAL:DependentlLocality Type="District">
<xAL:DependentLocalityName>Battersea</xAL:DependentLocalityName>
<xAL:Thoroughfare>
<xAL:ThoroughfareNumber>46</xAL:ThoroughfareNumber>
<xAL:ThoroughfareName>Brynmaer Road</xAL:ThoroughfareName>
</xAL:Thoroughfare>
</xAL:DependentLocality>

<xAL:PostalCode>

<xAL:PostalCodeNumber>SW1ll 4EW</xAL:PostalCodeNumber>

</xAL:PostalCode>
</xAL:Locality>
</xAL:Country>
</xAL:AddressDetails>
</xalAddress>
</Address>
</bldg:address>
</bldg:Building>

Figure 82: xAL fragments supported by the Importer/Exporter.

If XAL address information in a CityGML instance document does not comply with one of the
templates (e.g., because of additional or completely different entries), the address information
will only partially be stored in the database (if at all). In order to not lose any original address
information, the entire <xal:AddressDetail> XML fragment can be imported “as is”
from the input CityGML file and stored in the XAL SOURCE column of the ADDRESS table

in the 3D City Database.

For this purpose, simply check the Import original <xal:AddressDetail> XML option (this is
the default value). Note that the import of the XML fragment does not affect the filling of the
remaining columns of the ADDRESS table (STREET, HOUSE NUMBER, etc.) from the XAL

address information.

File Project View Help

—I-CityGML Import

- Continuation
--gml:id handling
--Bounding box

™ ddress
--Appearance
--(3eometry

- Indexes

- XML validation
~%5L transformation
- Import log
~Resources
+-CityGML Export
+-KML/COLLADA gITF Export
%—--Database

+-General

Ready

hﬂ 3D City Database Importer/Exporter - O X

Import Export KML/COLLADA/gITF Export Database Preferences

Address

xAL address information
Import original <xal: AddressDetails> XML fragment

Restore Default Apply

Database dizconnected

Figure 83: CityGML import preferences — Address.

The symmetrical setting for CityGML exports (i.e., recovering the xAL fragment from
XAL SOURCE) is explained in chapter 5.6.2.4.



3D Geodatabase for CityGML 2019 183

5.6.1.4 Appearance
The Appearance preference settings define how appearance information (i.e., materials and
textures associated with the observable surfaces of a city object) is processed at import time.

¥ 3D City Database Importer/Exporter - [m] X
File Project View Help

Import Export KML/COLLADA/GITF Export Database Preferences

—]-CityGML Import Appearance
Continuation
+~-gml:id handiing Import of appearances
iz‘;?:;zg box @ Import appearances, import texture files
m O Import appearances, do notimport texture files
{~Geometry (O Do notimport appearances
~Indexes
XML validation — r
...XSL transformation Conversion from TexturedSurface (deprecated) to Appear;
Import log Store in theme | rgbTexture
“-Resources
—
+-CityGML Export
+-KML /COLLADA/gITF Export
+-Database
+-General
Restore Default Apply
Ready Database disconnected

Figure 84: CityGML import preferences — Appearance.

Per default, all appearance information as well as all related texture image files are loaded
into the 3D City Database [1]. The Importer/Exporter will work on both image files located in
a relative path to the CityGML dataset and image files referenced by a valid URL. The latter
might require network access. Alternatively, a user may choose to only consider the
appearance information but to not load the texture image files. As a third option, appearance
information can be completely skipped during import [1].

Prior to version 1.0 of the CityGML standard, material and texture information of surface
objects was modelled using the TexturedSurface concept. This concept was however
replaced by the Appearance module in CityGML 1.0 and therefore is marked deprecated.
Although the CityGML specification disadvises the use of the TexturedSurface concept,
it is still allowed even in CityGML 2.0 datasets. The Importer/Exporter can parse and
interpret TexturedSurface information but will automatically convert this information
losslessly into the Appearance module. Since TextureSurface information is not
organized into themes but a theme is mandatory in the context of the Appearance module,
the user has to define a theme that shall be used in the conversion process [2]. The default
value is rgbTexture.

5.6.1.5 Geometry

Before importing the city objects into the 3D City Database, the Importer/Exporter can apply
an affine coordinate transformation to all geometry objects. Per default, this option is disabled
though.



184 3D Geodatabase for CityGML 2019

¥ 3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

=I-CityGML Import Geometry
¢ -Continuation
~~gml:id handiing Affine transformation of coordinates
Bounding box
Address Acoly
- Appearance
Transformation matrix (3x4)
Indexes (Mg 5oz ) =
11727 y3r1, 1 0 0 0
XML validation !
--¥5L transformation (M3 MypMyzmag) = 0 1 0 0
--Import log Tl
L ’ i =10 0 1 0
:  ~-Resources MMM
+-CityGML Export
+-KML/COLLADA/QITF Export Predefined transformation matrices
T Database Identity matrix Swap X/Y
+-General
Restore Default Apply
Ready Database disconnected

Figure 85: CityGML import preferences — Geometry.

An affine transformation is any transformation that preserves collinearity (i.e., points initially
lying on a line still lie on a line after transformation) and ratios of distances (e.g., the midpoint
of a line segment remains the midpoint after transformation). It will move lines into lines,
polylines into polylines and polygons into polygons while preserving all their intersection
properties. Geometric contraction, expansion, dilation, reflection, rotation, skewing, similarity
transformations, spiral similarities, and translation are all affine transformations, as are their
combinations.

The affine transformation is defined as the result of the multiplication of the original
coordinate vectors by a matrix plus the addition of a translation vector.

p'=Ap+b

In matrix form using homogenous coordinates:

X
x’' mypy Myp Mz Myy y
y'| =M1 Mz Myz My, ~
z' M3y Mz; Mgz Mgy 1

The coefficients of this matrix and translation vector can be entered in this preferences dialog
(cf. Figure 85). The first three columns define any linear transformation; the fourth column
contains the translation vector. The affine transformation does neither affect the
dimensionality nor the associated reference system of the geometry object, but only changes
its coordinate values. It is applied the same to all coordinates in all objects in the original
CityGML file. This also includes all matrixes in CityGML like the 2x2 matrixes of
GeoreferencedTextures, the 3x4 transformation matrixes of TexCoordGen elements
used for texture mapping and the 4x4 transformation matrixes for ImplicitGeometries.

Note:  An affine transformation cannot be undone or reversed after the import using the
Importer/Exporter.



3D Geodatabase for CityGML 2019 185

Two elementary affine transformations are predefined: 1) Identity matrix (leave all geometry
coordinates unchanged), which serves as an explanatory example of how values in the matrix
should be set, and 2) Swap X/Y, which exchanges the values of x and y coordinates in all
geometries (and thus performs a 90 degree rotation around the z axis). The latter is very
helpful in correcting CityGML datasets that have northing and easting values in wrong order.

Example: For an ordinary translation of all city objects by 100 meters along the x-axis and 50
meters along the y-axis (assuming all coordinate units are given in meters), the identity matrix
must be applied together with the translation values set as coefficients in the translation

vector:
1 0 0 100
p’=(0 1 0 50|p

0 01 O

5.6.1.6 Indexes

In addition to the Database tab on the operations window, which lets you enable and
disable spatial and normal indexes in the 3D City Database manually (cf. chapter 5.2.2), with
this preference settings a default index strategy for database imports can be determined.

¥ 3D City Database Importer/Exporter - O X
|File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

=|-CityGML Import Indexes
¢ -Continuation
Pl gml:id handling Spatial Indexes
: Bounding box .
i Address (@ Keepindex status
- Appearance (O) Deactivate before import and automatically reactiva
-~ Geometry (O) Deactivate before import and keep deactivated
: XML validation -
¢ =-XSL transformation Normal indexes
-~ Import log (@ Keepindex status
; -Resources (O Deactivate before import and automatically reactiva
+-CityGML Export
1 KML/COLLADA/gITE Export (O) Deactivate before import and keep deactivated
+|-Database
+-General
Restore Default Apply
Ready Database disconnected

Figure 86: CityGML import preferences — Indexes.

The dialog differentiates between settings for spatial indexes [1] and normal indexes [2] but
offers the same options for each index type.

The default setting is to not change the status (i.e., either enabled or disabled) of the indexes.
This default behavior can be changed so that indexes are always disabled before starting and
import process. The user can choose whether the indexes shall be automatically reactivated
after the import has been finished.

Note:  All indexes are enabled after setting up a new instance of 3D City Database.

Note: It is strongly recommended to deactivate the spatial indexes before running a
CityGML import on a big amount of data and to reactive the spatial indexes



186 3D Geodatabase for CityGML 2019

afterwards. This way the import will typically be a lot faster than with spatial indexes
enabled. The situation may be different if only a small dataset is to be imported.
Deactivating normal indexes should however never be required.

Note:  Activating and deactivating indexes can take a long time, especially if the database
fill level is high. Note that the operation cannot be aborted by the user since this
could result in an inconsistent database state.

5.6.1.7 XML validation

On the Import tab of the operations window, the CityGML input files to be imported into
the database can be manually validated against the official CityGML XML Schemas. This
preference dialog lets a user choose to perform XML validation automatically with every
database import.

¥4 3D City Database Importer/Exporter - [m] X
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

=]-CityGML Import XML validation
- Continuation

~-gml:id handiing Validation of CityGML documents
Bounding box [] Perform ¥ML validation during database import

Address
- Appearance Invalid top+evel features wil mot be imported

-~ Geometry [] Justreport one error per top-evel feature
Indexes
~-¥5L transformation
--Import log
--Resources
+|-CityGML Export
+-KML/COLLADA /gITF Export
+-Database
+-General

Restore Default Apply

Ready Database disconnected
Figure 87: CityGML import preferences — XML validation.

In general, it is strongly recommended to ensure (either manually or automatically) that the
input files are valid with respect to the CityGML XML schemas. Invalid files might cause the
import procedure to behave unexpectedly or even to abort abnormally.

If XML validation is chosen to be performed automatically during imports, then every invalid
top-level feature will be discarded from the import. Nevertheless, the import procedure will
continue to work on the remaining features in the input file(s).

Validation errors are printed to the console window. Often, error messages quickly become
lengthy and confusing. To keep the console output low, the user can choose to only report the
first validation error per top-level feature and to suppress all subsequent error messages.

Note:  The XML validation in general does not require internet access since the CityGML
XML schemas are packaged with the Importer / Exporter. These internal copies of
the official XML schemas will be used to check CityGML XML content in input
files. The user cannot change this behavior. External XML schemas will only be



3D Geodatabase for CityGML 2019 187

considered in case of unknown XML content, which might require internet access.
Precisely, the following rules apply:

e [If an XML element’s namespace is part of the official CityGML 2.0 or 1.0
standard, it will be validated against the internal copies of the official CityGML
2.0 or 1.0 schemas (no internet access needed).

e If the element’s namespace is unknown, the element will be validated against the
schema pointed to by the xsi:schemalLocation value on the root element or the
element itself. This is necessary when, for instance, the input document contains
XML content from a CityGML Application Domain Extension (ADE). Note that
loading the schema might require internet access.

e If the element’s namespace is unknown and the Xxsi:schemalocation value
(provided either on the root element or the element itself) is empty, validation
will fail with a hint to the element and the missing schema document.

5.6.1.8 XSL Transformation

This preference is used to apply changes to the CityGML input data before it is imported into
the database using XSL transformations. Simply check the Apply XSLT stylesheets option and
point to an XSLT stylesheet in your local file system using the Browse button. The stylesheet
will be automatically considered by the import process to transform the CityGML data.

¥ 3D City Database Importer/Exporter - O X
|File Project View Help

Import Export KML/COLLADA[GITF Export Database Preferences

=I-CityGML Import XSL transformation
- Continuation t
-~ aml:id handling XSLT stylesheets
Bounding box S —
[4] Apply XSLT stylesheets
Address R
--Appearance

- Geometry Stylesheet Browse -
Indexes
XML validation
'
-~ Import log
~-Resources
+-CityGML Export
+-KML/COLLADA [gITF Export
+-Database
+-General
Restore Default Apply
Ready Database disconnected

Figure 88: CityGML import preferences — XSL transformation.

By clicking the + and - buttons, more than one XSLT stylesheet can be fed to the importer.
The stylesheets are executed in the given order, with the output of a stylesheet being the input
for its direct successor. The Importer/Exporter is shipped with example XSLT stylesheets in
subfolders below templates/ XSLTransformations in the installation directory.

Note:  To be able to handle arbitrarily large input files, the importer chunks every CityGML
input file into top-level features, which are then imported into the database. Each



188 3D Geodatabase for CityGML 2019

XSLT stylesheet will hence just work on individual top-level features but not on the
entire file.

Note:  The output of each XSLT stylesheet must again be a valid CityGML structure.
Note:  Only stylesheets written in the XSLT language version 1.0 are supported.

5.6.1.9 Import log

A CityGML import process not necessarily works on all CityGML features within the
provided input file(s). An obvious reason for this is that spatial or thematic filters that
naturally narrow down the set of imported features. Also, in case the import procedure aborts
early (either requested by the user or caused by severe import errors), not all input features
might have been processed. To understand which top-level features were actually loaded into
the database during an import session, the user can choose to let the Importer/Exporter create
an import log.

b.", 3D City Database Importer/Exporter - [m] X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

=) CityGML Import Import log
: Continuation
i gml:lc‘]jhangilmg Import log
+-Bounding box . )
Address Write imported top-evel feature to log file
Appearance C:\Users\cnagel\3dcitydb\importer-exporterYog\impor ted-features Browse
Geometry
¢ -Indexes
XML validation
XSL transformation
i Resources
+-CityGML Export
+-KML/COLLADA/gITF Export
+-Database
+-General
Restore Default Apply

Ready Database disconnected
Figure 89: CityGML import preferences — Import log.

Simply enable the checkbox on this settings dialog to activate import logs (disabled per
default). You additionally must provide a folder where the import log files will be created in.
Either type the folder name manually or use the Browse button to open a file selection dialog.
The application proposes to use a folder within your user’s home directory, but this proposal
can be overridden.

To easily relate import logs to different 3D City Database instances managed on the
Database tab, the Importer/Exporter creates one subfolder for each connection entry below
the folder provided in the settings dialog. The description text of the connection entry (cf.
chapter 5.2.1) is used as folder name. Within that subfolder, a separate log file is created for
every input file during an import to that 3D City Database connection. The filename includes
the date and time of the import session according to following pattern:

imported-features-yyyy MM dd-HH mm ss SSS.log



3D Geodatabase for CityGML 2019 189

The import log is a simple CSV file with one record (line) per imported top-level feature. The
following figure shows an example.

| imported_features-2015_01_15-23 18 59 414.tx - Editor ==

Datei Bearbeiten Format  Ansicht ©

#3D City Database Importer/Exporter, version "3.0-b145"
#Imported top-level features from file: C:‘test.gml
#Database connection string: citydb@localhost:5432/test
#Timestamp: 2014,/10/21 23:18:59.414
FEATURE_TYPE,CITYOBJECT_ID,GMLID_IN_FILE
BUILDING,46759,GEE_TH_Default_GEB_2034
BUILDING,46760,GEE_TH_Default_GEB_124
BUILDING,46763,GEB_TH_Default_GEB_1519
BUILDING,46768,GEB_TH_Default_GEB_1137
BUILDING,46772,GEEB_TH_Default_GEB_1153
BUILDING,46776,GEE_TH_Default_GEB_1229
BUILDING,46779,GEB_TH_Default_GEB_1755
BUILDING,46783,GEB_TH_Default_GEB_1261
BUILDING,46791,GEB_TH_Default_GEB_1017
BUILDING,46799,GEE_TH_Default_GEB_1291

BUILDING,46804 ,GEB_TH_Default_GEB_1145
BUILDING,46808,GEB_TH_Default_GEB_1479
BUILDING,46815,GEB_TH_Default_GEB_1319
BUILDING,46821,GEB_TH_Default_GEB_1471
BUILDING,46825,GEE_TH_Default_GEB_1041
BUILDING,46828,GEB_TH_Default_GEB_1117
BUILDING,46831,GEB_TH_Default_GEB_1551
#Import successfully finished. L

Figure 90: Example import log.

The first four lines of the import log contain metadata about the version of the
Import/Exporter that was used for the import, the absolute path to the CityGML input file, the
database connection string, and the timestamp of the import. Each line starts with # character
in order to mark its content as metadata.

The first line below the metadata block provides a header for the fields of each record. The
field names are FEATURE TYPE, CITYOBJECT ID, and GML ID IN FILE. A single
comma separates the fields. The records follow the header line. The meaning of the fields is
as follows:

e FEATURE TYPE An uppercase string representing the type of the imported
CityGML feature.

e CITYOBJECT ID The value of the ID column (primary key) of the
CITYOBJECT table where the feature was inserted.

e GML ID IN FILE The original gm1 : 1d value of the feature in the input

file (might differ in database due to import settings).

The last line of each import log is a footer that contains metadata about whether the import
was successfully finished or aborted.

5.6.1.10 Resources

Multithreading settings. The software architecture of the Importer/Exporter is based on
multithreading. Put simply, the different tasks of an import process are carried out by separate
threads. The decoupling of compute bound from I/O bound tasks and their parallel non-
blocking processing usually leads to an increase of the overall application performance. For
example, threads waiting for database response do not block threads parsing the input
document or processing the CityGML input features. In a multi-core environment, threads can
even be executed simultaneously on multiple CPUs or cores.



190 3D Geodatabase for CityGML 2019

X

¥ 3D City Database Importer/Exporter - [m}

File Project View Help

Import Export KML/COLLADA[GITF Export Database Preferences

(=)-CityGML Import Resources
i i-Continuation
; gml:\drhandhng Multithreaded processing
¢+~ Bounding box Minimal number of threads 2
~-Address
- Appearance Maximal number of threads 8
~-Geometry
+-Indexes .
i Batch processin
XML validation = <
_-xSL transformation Commit after |20 Top-ev es
+~Import log 1000 gml:id ies
- CityGML Export 1000 temporary information
1 KML /COLLADA/gITF Export
T-Database gml:id cache
&)-General Geometry | 200000 Entries
85 Page factor [%]
10 T; itions
Features | 200000
85 Page factor [%]
10 Table partitions

Texture image cache
Texture images | 200000

85 r [%]

&

10 Table partitions

Restore Default Apply

Ready Database disconnected

Figure 91: CityGML import preferences — Resources.

The Resource settings allow for controlling the minimum and maximum number of
concurrent threads during import [1]. Make sure to enter reasonable values depending on your
hardware configuration. By default, the maximum number is set to the number of available
CPUs/cores times two. Before starting the import process, the minimum number of threads is
created. Further threads up to the specified maximum number are only created if necessary.

Note: A higher number of threads does not necessarily result in a better performance. In
contrast, a too high number of active threads faces disadvantages such as thread life-
cycle overhead and resource thrashing. Also, note that each thread requires its own
physical connection to the database. Therefore, your database must be ready to
handle enough parallel physical connections. Ask you database administrator for

assistance.

Cache settings. The Importer/Exporter employs strategies for parsing CityGML datasets of
arbitrary file size and for resolving XLink references. A naive approach for XLink resolving
would read the entire CityGML dataset into main memory. However, CityGML datasets
quickly become too big to fit into main memory. For this reason, the import process follows a
two-phase strategy: In a first run, features are written to the database neglecting references to
remote objects. If a feature contains an XLink though, any context information about the
XLink is written to temporary database tables. This information comprises, for instance, the



3D Geodatabase for CityGML 2019 191

table name and primary key of the referencing feature/geometry instance as well as the
gml : id of the target object.

In addition, while parsing the document, the import process keeps track of every encountered
gml : id as well as the table name and primary key of the corresponding object in database. It
is important to record this information because a priori it cannot be predicted whether or not a
gml: id is referenced by an XLink from somewhere else in the document. In order to ensure
fast access, the information is cached in memory. If the maximum cache size is reached, the
cache is paged to temporary database tables to prevent memory overflows. In a second run,
the temporary tables containing the context information about XLinks are revisited and
queried. Since the entire CityGML document has been processed at this point in time, valid
references can be resolved and processed accordingly. With the help of the gm1 : id cache,
the referenced objects can be quickly identified within the database.

The caching and paging behaviour for gm1 : id values can be influenced via the Resource
preferences [3]. The dialog lets a user enter the maximum number of gm1 :id values to be
held in main memory (default: 200,000 entries), the percentage of entries that will be written
to the database if the cache limit is reached (page factor, default: 85%), as well as the number
of parallel temporary tables used for paging (table partitions, default: 10). The
Importer/Exporter employs different caches for gml:id values of geometries and features
[3]. Moreover, a third cache is used for handling texture atlases and offers similar settings [4].

Batch settings. In order to optimize database response times, multiple database statements are
submitted to the database in a single request (batch processing). This allows for an efficient
data processing on the database side. The user can influence the number of SQL statements in
one batch through the settings dialog [2]. The dialog differentiates between batch sizes for
CityGML features (default: 20) and gml:id caches respectively temporary XLink
information (default: 1000 each).

Note:  All database operations within one batch are buffered in main memory before being
submitted to the database. Thus, the Importer/Exporter might run out of memory if
the batch size is too high. After a batch is submitted, the transaction is committed.



192 3D Geodatabase for CityGML 2019

5.6.2 CityGML export preferences

5.6.2.1 CityGML version
The CityGML version preference settings let you choose the target CityGML version
when exporting 3D city model content from the database to a CityGML dataset.

W 3D City Database Importer/Exporter - [m] X
File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences
+- CityGML Import CityGML version
- CityGML Export
ityGML version CityGML version of instance document
Tiling options .
- CityObjectGroup (® v2.0.0 (OGC Encoding Standard)
~-Address O vi.00
--Appearance
~XLinks
XSL transformation
Resources
+- KML/COLLADA/gITF Export
+ Database
+- General
Restore Default Apply
Ready Database disconnected

Figure 92: CityGML export preferences — CityGML version.

The default value is CityGML version 2.0.0, which is the current version of the OGC
CityGML Encoding Standard. In addition, also the preceding version 1.0.0 is still supported.

Note:  CityGML 2.0.0 introduces new feature types such as bridges and tunnels that are not
available in CityGML 1.0.0. If the 3D City Database instance contains features of
these types, they will be neglected in an export to CityGML version 1.0.0 simply
because they cannot be encoded in this version.

5.6.2.2 Tiling options

The Importer/Exporter allows for applying a spatial bounding box filter to CityGML exports
on the Export tab of the operations window. To trigger a tiled export, a user can
additionally check the Tiling option and provide the number of rows of columns into which
the bounding box shall be evenly split (cf. chapter 5.4).

When tiling is enabled, the export operation iterates over all tiles within the bounding box and
exports the city objects on each tile. Every tile is exported to its own file within a separate
subfolder of the export directory. With the Ti1ing options preferences, the names of the
subfolders and tile files can be adapted as shown in Figure 93.

Each subfolder name consists of a prefix and a tile-specific suffix [1]. The suffix may contain
the row and column number of the tile exported or a combination of the tile’s minimum /
maximum coordinates. If a coordinate suffix is chosen, the coordinates will be given in the
reference system specified for the CityGML export (cf. chapter 5.4; default value is the
internal SRS of the 3D City Database instance), even if the coordinates of the bounding box
filter are given in another user-defined SRS. This makes it easy to relate objects to tiles since
the coordinates of the objects contained in the tile are exported in the same reference system.



3D Geodatabase for CityGML 2019

193

The filename of the CityGML instance document created in each subfolder corresponds to the

one defined on the Export tab. However, a tile-specific suffix may be appended [1].

[ 3D City Database Importer/Exporter
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

- ] X

Name |TILE

+ - CityGML Import Tiling options
— - CityGML Export
; CityGML version Output directory and file name for tiles
| ' Each tile is exported to a subdirectory of the export directory
CityObjectGroup .
Address Tile subdirectory  tile
--Appearance Subdirectory suffix  row / column it
XLinks
-XSL transformation Filename suffix No suffix e
Resources
+-KML/COLLADA/gITF Export Further tiling options
+-Database [] Export tile information as generic attribute
+General

Value  Xmin / Ymin / Xmax / Ymax

Ready

Restore Default

Apply

Database disconnected

Figure 93: CityGML export preferences — Tiling options.

For further traceability, it is possible to attach a generic string attribute called TILE to each
exported CityGML feature, indicating which tile it belongs to [2]. The options for the value of
the generic attribute are the same as for the suffix of the tile subfolder.

5.6.2.3 CityObjectGroup

When exporting city object groups, also group members are written to the target CityGML
dataset (cf. chapter 5.4). Group members are always given by reference (i.e., the grp:member
property uses an xlink:href reference to point to the group member in the dataset) and only
group members satisfying the export filter settings are considered.

4 3D City Database Importer/Exporter

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

+- CityGML Import CityObjectGroup
-~ CityGML Export
CityGML version Export of group members
Tiling options
Address Filter settings are not applied
Appearance
XLinks
XSL transformation
Resources
+ KML/COLLADA/gITF Export
+Database
+-General

Ready

Restore Default

ityObi Fotn [T] Export all group members as xlink:href references

Apply

Database disconnected

Figure 94: CityGML export preferences — CityObjectGroup.



194 3D Geodatabase for CityGML 2019

The default behavior can be changed using this preference dialog. When checking the option
Export all group members as xlink:href references, then an xlink:href reference is created for
each group member defined in the database, no matter whether this group member is also
exported or skipped due to filter settings. Thus, the consistency of the xlink:href references is
not checked, and some references might not be resolvable in the final dataset. The benefit of
skipping this check is that the performance of the CityGML export is increased.

5.6.2.4 Address

Like the import of XAL address information (see chapter 5.6.1.3), the user can choose how
address information should be exported to a target CityGML dataset. The available options of
the Address export preferences are shown in the figure below.

W 3D City Database Importer/Exporter - [m} X

File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

+- CityGML Import

- CityGML Export
CityGML version
Tiling options
CityObjectGroup
Ad

Appearance
XLinks

Address

Generation of xAL address information
(@ Create xAL address from data values in the ADDRESS table

(O Export original <xal:AddressDetails> XML fragment
[] Use the other method as fallback

XSL transformation
Resources
+ KML/COLLADA/gITF Export
+Database
+-General

Restore Default Apply

Ready Database disconnected

Figure 95: CityGML export preferences — Address.

Address information is exported form the data values in the ADDRESS table of the 3D City
Database instance. As discussed in chapter 5.6.1.3, these values may however lack data
present in the original XAL fragment or they may even contain no data at all when the address
information differs too much from the supported XAL templates (cf. Figure 82). In such cases,
using the original <xal : AddressDetail> element stored in the XAL SOURCE column is
the only means to achieve a lossless reconstruction of the initial address data.

Since importing the original <xal:AddressDetail> fragment into XAL SOURCE does
not hinder the population of the remaining columns of the ADDRESS table (STREET,

HOUSE NUMBER, etc.), there are two possible ways to reconstruct the address contents when
exporting from the 3D City Database.

1) The default option is to build the xAL address from the columns of the ADDRESS
table without considering the XAL_SOURCE column. In this case, the XML encoding
of the xAL address follows the first template as shown Figure 82.

2) Optionally, the XAL fragment is taken “as is” from the XAL SOURCE column and
inserted literally into the target CityGML document. This way there will be no loss of
information and the address encoding will be identical to the original source datasets.



3D Geodatabase for CityGML 2019 195

Obviously, this option requires that the XAL SOURCE column has been populated
during import (chapter 5.6.1.3).

Both options are mutually exclusive, but one can be used as a fallback alternative to the other
if the first chosen renders no results.

5.6.2.5 Appearance
The Appearance export preferences are like the settings available for importing CityGML
(cf. chapter 5.6.1.4).

4 3D City Database Importer/Exporter - m} X
File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

+ CityGML Import Appearance
~|-CityGML Export

CityGML version Export of appearances
Tiling options
Export
. C\[YOb]ec(Gr’oup @ Xport appearances
Address Overwrite existing texture files
Generate unigue texture filenames
INKS

XSL transformation [] Do not store texture files

Resources () Do not export appearances
+-KML/COLLADA/gITF Export
1| Database

Output diectory for texture files
+-General

Relative or absolute directory appearance Browse

[ Automatically place texture files in additional subfolders (number): 0 0

Restore Default Apply

Ready Database disconnected

Figure 96: CityGML export preferences — Appearance.

Per default, both appearance information and texture image files associated with the city
objects in the 3D City Database are exported [1]. Alternatively, the user can choose to only
export the appearance information without storing the texture files or even to not export
appearances at all.

When exporting texture files, two additional options Overwrite existing texture files and
Generate unique texture filenames influence the way in which texture files are written to the
file system [1].

1) Overwrite existing texture files
Texture files are stored in a separate folder of the file system. Before exporting a
texture image file into this folder, the Importer/Exporter can check whether a file of
the same filename already exists in this folder. In this case, the existing file will be
kept if this option is not enabled. Otherwise, and per default, there is no check and a
texture file of the same name will be overwritten (if it exists).

2) Generate unique texture filenames
Often filenames for texture images are automatically created from a naming scheme
involving some counter (e.g., a prefix “tex” followed by a number incremented by 1
for each new image). It thus can happen that two city objects within the same or
different instance documents are assigned a texture image file of the same name but
with different content (e.g., if the texture files are distributed over several folders). In



196 3D Geodatabase for CityGML 2019

the 3D City Database, texture images are stored in separate records and thus duplicate
filenames are not an issue. When exporting to CityGML however, two texture files of
the same name might be written to the same target folder, in which case one is
replaced with the other. This will obviously lead to false visualizations and issues in
workflows consuming the exported CityGML data. For this reason, checking this
option (default) will force the export process to generate unique filenames for each
texture file based on the primary key value of the TEX IMAGE table. Therefore, the
filename even keeps stable amongst several exports from the 3D City Database.

The location where to store the texture files can be defined by the user [2]. The default option
is to pick a folder below the export directory and thus relative to the target CityGML file. The
default folder name is “appearance”. Instead of a local path, also an absolute path can be
provided. In this case, the same folder will be used in subsequent exports from the 3D City
Database.

When appearances are chosen to be exported but the Do not store texture files option [1] is
enabled, then appearance information is generated for the city objects in the CityGML dataset,
but the texture files are not stored in the file system. However, since the texture path is part of
the appearance information, the directory settings [2] and whether to generate unique texture
filenames [1] still has an impact on the generated appearance information. The Do not store
texture files option is useful, for example, if the texture files have already been exported to an
absolute directory in a previous run of the export operation.

Especially when using Windows, placing a large number of files into the same folder might
lead to severe time lags when trying to access files in this folder or to write new files to this
folder. This might negatively affect the performance for large exports. For this reason, the
Importer/Exporter can automatically distribute the texture files over additional subfolders that
are automatically created. Simply check the option Automatically place texture files in
additional subfolders and provide the number of subfolders to be used.

5.6.2.6 XLinks

Both the 3D City Database and the Importer/Exporter are capable of handling XLinks. If the
CityGML input document that is imported into the 3D City Database contains XLink
references to features and/or geometries, then this information is kept in the database in order
to be able to reconstruct the XLinks upon database export. This is also the default behavior.

Depending on the target application that consumes the exported CityGML dataset, this default
behavior may be disadvantageous, especially if the target application cannot follow and
resolve XLink references. In such cases, the XI.inks preference settings let a user change the
default behavior so that the referenced objects are exported by value rather than by reference.
Put differently, instead of an XLink reference, a copy of the original feature or geometry is
placed into the CityGML dataset. This necessarily requires that the gm1 : id of the copy is
different from the gm1:id of the original object because identical gm1 :id values are not
allowed in the same dataset. The Importer/Exporter takes care of this issue and creates new
gml1 : id values for the copies based on UUID values.



3D Geodatabase for CityGML 2019 197

W 3D City Database Importer/Exporter = m} X
File Project View Help
Import Export KML/COLLADA/GITF Export Database Preferences
+ CityGML Import XLinks
- CityGML Export
CityGML version Multiple export of feature elements
il ti
C:t‘:gbjzcltz‘rsoup (® Use XLink reference to existing feature element
Address () Copy feature element (use UUID as new gml:id)
Appearance Gl Tref -
agml:id prefix |UUID.
)
XSL transformation Store original gml:id as external reference
Resources Append original gml:id to new gmi:id
+ KML/COLLADA/gITF Export
+ Database Multio} n n
i General ultiple export of geometry elements
@ Use XLink reference to existing geometry element
() Copy geometry element (use UUID as new gml:id)
gml:id prefix |UUID.
Append original gml:id to new gml:id
Restore Default Apply
Ready Database disconnected

Figure 97: CityGML export preferences — XLinks.

The user can define the behavior for exporting XLinks differently for features [1] and
geometries [2]. The settings allow to provide a prefix string that will be used when creating
new gml:id values (default: “UUID_"). In addition, the original gml:id may be
appended to the newly created one. Whereas these settings are available for both features and
geometries, the user can additionally choose to create a CityGML
<ExternalReference> element for features that carries the original gm1 : id value and
to attach this external reference as attribute to the copied feature.

5.6.2.7 XSL Transformation

As available for CityGML imports, you can apply XSLT transformations during the export
process to change the resulting CityGML output data. Simply check the Apply XSLT
stylesheets option and point to an XSLT stylesheet in your local file system using the Browse
button. The stylesheet will be automatically considered by the export process to transform the
CityGML data before it is written to a file.

4 3D City Database Importer/Exporter - O X

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

+- CityGML Import XSL transformation
- CityGML Export

CityGML version XSLT stylesheets

Tiling options
"] Apply XSLT stylesheet
CityObjectGroup Pply XSLT styleshests

Address
--Appearance Stylesheet Browse T
~-XLinks
Resources
+- KML/COLLADA/gITF Export
+- Database
+-General

Restore Default Apply

Ready Database disconnected

Figure 98: CityGML export preferences — XSL transformation.



198 3D Geodatabase for CityGML 2019

By clicking the + and - buttons, more than one XSLT stylesheet can be fed to the exporter.
The stylesheets are executed in the given order, with the output of a stylesheet being the input
for its direct successor. The Importer/Exporter is shipped with example XSLT stylesheets in
subfolders below templates/ XSLTransformations in the installation directory.

Note: To be able to handle arbitrarily large exports, the export process reads single top-
level features from the database, which are then written to the target file. Each XSLT
stylesheet will thus just work on individual top-level features but not on the entire
file.

Note:  The output of each XSLT stylesheet must again be a valid CityGML structure.
Note:  Only stylesheets written in the XSLT language version 1.0 are supported.

5.6.2.8 Resources

Just like with CityGML imports, the export process is implemented based on multithreaded
data processing in order to increase the overall application performance. Likewise, in order to
reconstruct XLinks during exports (cf. chapter 5.6.2.6), the export process also needs to keep
track of each and every gml : id of exported features and geometry objects. For fast access,
the gm1 : id values are kept in main memory and are only paged to temporary database tables
in case the predefined cache size limit is reached.

W 3D City Database Importer/Exporter - [m] X
File Project View Help
Import Export KML/COLLADA/QITF Export Database Preferences
+~ CityGML Import Resources
~|- CityGML Export
i CTFVGML ‘j’EFSiO“ Multithreaded processing
Tiling ?pt‘ons Minimal number of threads 2
CityObjectGroup
Address Maximal number of threads 8
~Appearance
~Xinks gml:id cache
XSL transformation .
_ Geometry 200000 Entries
: Resources
+-KML/COLLADA/gITF Export 85 Page factor [%]
+-Database
+-General 10 Table partitions
Features 200000 Entries
85 Page factor [%]
10 Table partitions
Restore Default Apply
Ready Database disconnected

Figure 99: CityGML export preferences — Resources.

The Resource preferences allow for setting the number of concurrent threads to be used in
the export process and for defining the sizes and page factors of the gml:id caches for
features and geometries. The meaning of the values is identical to the Resource preferences
for CityGML imports. So please refer to chapter 5.6.1.10 for more details.



3D Geodatabase for CityGML 2019 199

5.6.3 KML/COLLADA/gITF export preferences

The preferences tab contains four subnodes — General, Rendering, Balloon, and
Altitude/Terrain — make customization of these exports possible. These settings will be
explained in the following sections in details.

5.6.3.1 General Preferences
Some common features of the exported files, especially those related to tiling options, can be
set under the preferences tab, node KML/COLLADA/gQITF Export, subnode General.

w30 City Database Importer/Exporter

Eile Project View Help
Import Export KML/COLLADA[gITF Export ADE Manager SPSHG Database Preferences

[#-CityGML Import General
[#-CityGML Export

1-KML fCOLLADA/ITF Expart
Create gITF model; Path of the COLLADAZgITF tool:

contribs\collada2gtf\COLLADAZGLTF-v2. 1. 3-windows-Release-x64\COLL Browse

- Altitude Terrain [] Do nat create COLLADA (.dae) files
:2::1?:?8 [] Embed textures in giTF (.gltf) files
(O) Expart alTF version 1.0
(® Export glTF version 2.0
[] Exportin .kmz format
Show bounding box borders
Show tile borders
Tile side length for automatic tiing 125.0 m.
[] Each CityObject in an own region
visible from |50.0 pinels
view refresh mode  |onRegion
view refresh time | 1.0
Write JSON file
[ of type 150NP
with callback method name

handle_30CityDB_data

Restore Default

Ready Database disconnected

Figure 100: General settings for the KML/COLLADA/gITF export.

Create gITF model

In addition to COLLADA models, the Importer/Exporter can also create gITF models for
efficient loading and rendering of 3D contents on WebGL-enabled web browsers. If the
“Create gITF model” option is activated, the Importer/Exporter requires an open source tool
called COLLADA2gITF*to convert the exported COLLADA models to gITF models. The
COLLADAZ2gITF tool is available for Windows, Linux, and Mac OS X and has been installed
together with the Importer/Exporter and located in the subfolder contribs/collada2gltf of the
installation directory. Per default, the relative path (depending on the operating system in use)

4 https://github.com/KhronosGroup/COLLADA2GL TF/wiki



200 3D Geodatabase for CityGML 2019

of the COLLADAZ2gITF tool is proposed in the Path of the COLLADAZ2gITF tool text field
whose value will be used by the Importer/Exporter to run the target executable file. Thus, if
you want to use another version of the COLLADAZ2gITF tool, its absolute path has to be
manually specified using, for example, the Browse button to open a file selection dialog.
Starting with the Importer/Exporter version 4.0.0 however, version 2.1.0 or later of the
COLLADAZ2gITF tool is required in order to enable support for both gITF version 1.0 and
2.0. The pre-installed COLLADAZ2gITF binaries come already in version 2.1.3. It is also
possible to just export gITF models without COLLADA models by activating the Do not
create COLLADA (.dae) files checkbox.

When exporting a textured city object in gITF, its texture images can either be encoded in the
Base64 format and embedded into the gITF file, or saved as separate image files in the same
directory as the gITF file having references to them. This can be controlled by the setting
Embed textures in gITF (.gltf) files. In fact, both options have their pros and cons: the gITF
file without embedded texture images allows client applications to realize an incremental
loading effect which may give a better user experience, since the geometry contents and
texture images can be loaded and rendered consecutively. However, this will result in a large
amount of AJAX requests which might possibly impair the overall visualization performance
especially when a large number of city objects are loaded simultaneously. This issue can be
avoided by choosing the way of embedding the texture images into the gITF file. However,
loading of the geometries and textures of a city object must be performed within one AJAX
request that may slightly slow down the speed of the visualization of individual city object.

Note:  The exported gITF file can be further converted to the so-called binary gITF file
which is a binary container for gITF models and allows for faster loading and
processing 3D objects. However, this conversion process is currently not yet
supported by the KML/COLLADA/gITF Exporter and therefore needs to be carried
out later wusing third party tools which can be found on the
https://github.com/KhronosGroup/gITF website.

Export in kmz format

Determines in which format single files and tiled exports should be written: kmz when
selected, kml when not. Whatever format is chosen, the main file (so called master file,
pointing to all others) will always be a kml file, all other files will comply with this setting.

Tests have shown shorter loading times (in Google Earth) for the kml format (as opposed to
kmz) when loading from the local hard disk. The Earth Browser's stability also seems to
improve when using the uncompressed format. On the other hand, when loading files from a
server kmz reduces the amount of requests considerably, thus increasing performance. Kmz is
also recommended for a better overview since kml exports may lead to a large number of
directories and files.

The Export in kmz format and Create gITF model options are mutually exclusive. A warning
message will be displayed when the user trys to choose the both.

Show bounding box borders


https://github.com/KhronosGroup/glTF

3D Geodatabase for CityGML 2019 201

When exporting a region of interest via the bounding box option in the
KML/COLLADA/gITF Export tab, this checkbox specifies whether the borders of the whole
bounding box will be shown or not. The frame of the bounding box is four times thicker than
the borders of any single tile in a tiled export.

Show tile borders
Specifies whether the borders of the single tiles in a tiled export will be shown or not.

Tile side length for automatic tiling

Applies only to automatically tiled exports and sets the approximate square size of the tiles.
Since the Bounding Box settings in the KML/COLLADA/gITF Export tab are the determining
factor for the area to be exported and have priority over this setting, the resulting tiles may not
be perfectly square or have exactly the side length fed into this field.

Each CityObject in an own region

The visibility of the objects exported can be further fine-tuned by this option. While the
visibility settings on the main KML/COLLADA/gITF Export tab apply to the whole area (no
tiling) or to each tile (automatic, manual) being exported, this checkbox allows to individually
define a KML <Region> for every single city object. The limits of the object’s region are
those of the object’s CityGML Envelope.

Note:  This setting only takes effect when if the export KML/KMZ files are opened with
Google Earth (Pro). The Cesium-based 3D web client will silently ignore this setting.

Following the KML Specification [Wilson 2008], each KML <Region> is defined inside a
KML <NetworkLink> and has an associated KML<Link> pointing to a file. This implies
when this option is chosen a subfolder is created for each object exported, identified by the
object’s gmlld. The object’s subfolder will contain any KML/COLLADA/gITF files needed
for the visualization of the object in the Earth browser. This folder structure (which can
contain a large number of subfolders) is required for the KML <Region> visibility
mechanism to work.

When active, the parameters affecting the visibility of the object’s KML <Region> can be
set through the following related fields.

The field visible from determines from which size on screen the object’s KML <Region>
becomes visible, regardless of the visibility value of the containing tile, if any. Since this
value is the same for every single object and they have all different envelope sizes a good
average value should be chosen.

The field view refresh mode specifies how the KML <Link> corresponding to the KML
<Region> is refreshed when the geographic view changes. May be one of the following:

e never - ignore changes in the geographic view.

e onRequest - refresh the content of the KML <Region> only when the user explicitly
requests it.



202 3D Geodatabase for CityGML 2019

e onStop - refresh the content of the KML <Region> n seconds after movement stops,
where n is specified in the field view refresh time.

e onRegion - refresh the content of the KML <Region> when it becomes active.

As stated above, the field view refresh time specifies how many seconds after movement stops
the content of the KML <Region> must be refreshed. This field is only active and its value
is only applied when view refresh mode is onStop.

Write JSON file

After exporting some cityobjects in KML/COLLADA/gITF you may need to include them
into websites or somehow embed them into HTML. When working with tiled exports
referring to a specific object inside the KML/COLLADA/QITF files can become a hard task if
the contents are loaded dynamically into the page. It is impossible to tell beforehand which
tile contains which object. This problem can be solved by using a JSON file that is
automatically generated when this checkbox is selected.

In the resulting JSON file each exported object is listed, identified by its gmlld acting as a key
and some additional information is provided: the envelope coordinates in CRS WGS84 and
the tile, identified by row and column, the object belongs to. For untiled exports the tile’s row
and column values are constantly 0.

This JSON file has the same name as the so-called master file and is located in the same
folder. Its contents can be used for indexed search of any object in the whole
KML/COLLADA/gITF export.

JSON file example:

{
"BLDG _0003000b0013felf": {
"envelope": [13.411962, 52.51966, 13.41277, 52.5200917,
"tile": [1, 11},

"BLDG_00030009007£8007": {

"envelope": [13.406815, 52.51559, 13.40714, 52.51578],

"tile": [0, 0]}

}

The JSON file can automatically be turned into JSONP (JSON with padding) by means of
adding a function call around the JSON contents. JSONP provides a method to request data
from a server in a different domain, something typically forbidden by web browsers since it is
considered a cross-site-scripting attack (XSS). Thanks to this minimal addition, the JSON file
contents can be more easily embedded into webpages or interpreted by web kits without
breaking any rules. The function call name to be added to the original JSON contents is
arbitrary and must only be entered in the callback method name field.

Note:  Another solution for overcoming the restriction on making cross-domain requests is
to make use of the Cross-Origin Resource Sharing (CORS) mechanism by enabling
the web server to include additional HTTP headers in the response that allows web
browsers to access the requested data. When working with the 3DCityDB-Web-Map-



3D Geodatabase for CityGML 2019 203

Client, it is required that the web server storing the KML/COLLADA/gITF datasets
must be CORS-enabled. In this case, there is no need anymore to use this JSONP
solution and the option of type JSONP should be deactivated.



204

3D Geodatabase for CityGML 2019

5.6.3.2 Rendering Preferences

Most aspects regarding the look of the KML/COLLADA/QITF exports when visualized in
virtual globes like Google Earth and Cesium can be customized under the preferences tab,
node KML/COLLADA/QITF Export, subnode Rendering. Each of the top-level feature
categories has its own Rendering settings. For the sake of clarity the most complex Rendering
settings for Buildings will be explained here as an example. Settings for all other top-level
features are either identical or simpler. An exceptional case is GenricCityObject which can be
exported into point or line geometries, and the corresponding settings will be explained at the

end of this section.

'; 3D City Database Importer/Exporter

-CityG
- CityG

=R

-\

Ready

File Project Wiew Help

ML Import
ML Export

E-KML/COLLADA/QITF Export

eneral

endering

----- WaterBody
--LandUse

----- Vegetation

----- Transportation
~Relief

- CityFurniture

[+-GenericCityObject

- CityObjectGroup
--Bridge
----- Tunnel

[+-Balloon

ItitudeTerrain

[+-Database
[x-General

Import Export KML/COLLADA/QITF Export ADE Manager SPSHG Database Preferences

Building

Footprint and extruded display options

Alpha-value (0-255) 200
Fill calar Line color -
Highlight when onMouseQver
Highlighted fill color Highlighted line color
LODO geometry property selection |Footprint ~
Geometry display options
Alpha-value (0-255) 200

Wall fill color

Roof fill color _

[ Highlight when onMouseCver

Wall line color _

Highlighted fill color Highlighted line color

Surface distance (0-10m) |0.75

COLLADA/gITF display options
Ignore surface orientation {<double_sided = 1</double_sided =)
Generate surface normals
[ Crop texture images
Generate texture atlases with algorithm | BASIC w

Texture atlas sizes must be powers of 2

Scale texture images by (0.0-1.0) 0.4

These color settings are only used for objects without Appearance elements

Alpha-value (0-255) 25515

-

wall fill color

Roof fill color _

(@) Putobjects together in groups of 1

() Highlight when onMouseCOver (Just for Google Earth)
Highlighted fill color Highlighted line color

Surface distance (0-10m) |0.75

Restore Default Apply

Database disconnected

Figure 101: Rendering settings for the KML/COLLADA/gITF Building export.




3D Geodatabase for CityGML 2019 205

All settings in this menu are grouped according to the display form they relate to.

Footprint and extruded display options

In this section the fill and line colors can be selected. Additionally, it can be chosen whether
the displayed objects should be highlighted when being run over with the mouse or not.
Highlighting colors can only be set when the highlighting option is enabled. The alpha value
affects the transparency of all colors equally: O results in transparent (invisible) colors, 255 in
completely opaque ones. A click on any color box opens a color choice dialog.

As defined in the CityGML specification [Groger et al. 2012] CityGML version 2.0.0 allows
LoDO representation (footprint and roofprint representations) for buildings and building parts.
If LoDO in the Level of Export setting on the main KML/COLLADA/QITF Export tab is
selected, there are three options available for LoD0O geometry export:

o footprint: the footprint geometries of the buildings or building parts will be exported
e roofprint: the roofprint geometries of the buildings or building parts will be exported

e roofprint, if none then footprint: footprint geometries will be exported if none of the
roofprint geometries are found.

Geometry display options

This parameter section distinguishes between roof and wall surfaces and allows the user to
color them independently. The alpha value affects the transparency of all roof and wall
surface colors in the same manner as in the footprint and extruded cases: O results in
transparent (invisible) colors, 255 in completely opaque ones. A click on any color box opens
a color choice dialog.

As previously stated: when not explicitly modeled, thematic surfaces will be inferred for
LoD1 or LoD2 based exports following a trivial logic (surfaces touching the ground —that is,
having a lowest z-coordinate- will be considered wall surfaces, all other will be considered
roof surfaces), in LoD3 or LoD4 based exports surfaces not thematically modeled will be
colored as wall surfaces.

The highlighting effect when running with the mouse over the exported objects can also be
switched on and off. Since the highlighting mechanism relies internally on a switch of the
alpha values on the highlighting surfaces, the alpha value set in this section does not apply to
the highlighted style of geometry exports, only to their normal style. For a detailed
explanation of the highlighting mechanism see the following section.

COLLADA/gITF display options

These parameters control the export of COLLADA and gITF models. The first option
addresses the fact that sometimes objects may contain wrongly oriented surfaces (points
ordered clockwise instead of counter-clockwise) as a result of errors in some previous data
gathering or conversion process. When rendered, wrongly oriented surfaces will only be
textured on the inside and become transparent when viewed from the outside. Ignore surface
orientation informs the viewer to disable back-face culling and render all polygons even if
some are technically pointing away from the camera.



206 3D Geodatabase for CityGML 2019

Note:  This will result in lowered rendering performance. Correcting the surface orientation
data is the recommended solution. This option only provides a quick fix for
visualization purposes.

The activation of the option Generate surface normal allows calculating the surface normals
for the exported object surfaces that can be illuminated with a shading effect in 3D scenes and
therefore provides a better visual representation of the 3D object which has a constant color
throughout its surfaces. If this option is not activated, this 3D object will be rendered as a
solid geometry without any visual distinction of its boundary surfaces (cf. Figure 102).
However, when exporting textured 3D models, the shading effect is not relevant, since the
texture information can already provide a sophisticated visual effect.

Note:  Starting with version 4.0.0, the Importer/Exporter activates the option Generate
surface normal by default for all (top-level) features if such information is available.

Figure 102: Comparison of the different visual effects of the same 3D model with (the left figure) and without
(the right figure) surface normals

Surface textures can be stored in an image file, or grouped into large canvases containing all
images clustered together so-called texture atlases, which can significantly increase the
storage efficiency and loading speed of 3D models. However, in some CityGML datasets, it
might occur that a very large texture atlas image is shared by multiple surface geometries
belonging to many different city objects. In this case, every exported COLLADA/gITF model
representing a city object will receive a complete copy of the texture atlas image in which
only a small portion of it is actually used. This will result in extreme performance issues when
loading and rendering such COLLADA/gITF models in Earth browsers. In order to avoid this,
the option Crop texture images shall be activated which allows cropping the large texture
atlas image into a number of small texture images, each of which could be very small in size
and should correspond to only one surface geometry of the city object.



3D Geodatabase for CityGML 2019 207

With the option Generate texture atlases with algorithm, grouping images in an atlas or not
and the algorithm selected for the texture atlas construction (differing in generation speed and
canvas efficiency) can be set here. Depending on the algorithm and size of the original
textures, an object can have one or more atlases, but atlases are not shared between separate
objects.

The texture atlas algorithms address the problem of two-dimensional image packing, also
known as 'knapsack problem’ in different ways (see [Coffman et al. 1980]):

e BASIC: recursively divides the texture atlas into empty and filled regions (see
http://www.blackpawn.com/texts/lightmaps/default.html). The first item is placed in
the top left corner. The remaining empty region is split into two rectangles along the
sides of the item. The next item is inserted into one of the free rectangles and the
remaining empty space is split again. Doing this in a recursive way builds a binary tree
representing the texture atlas. When adding an item, there is no information of the
sizes of the items that are going to be packed after this one. This keeps the algorithm
simple and fast. The items may be rotated when being inserted into the texture atlas.

e TPIM: touching perimeter (see [Lodi et al. 1999] and [Lodi et al. 2002]). Sorts images
according to non-increasing area and orients them horizontally. One item is packed at
a time. The first item packed is always placed in the bottom-left corner. Each
following item is packed with its lower edge touching either the bottom of the atlas or
the top edge of another item, and with its left edge touching either the left edge of the
atlas or the right edge of another item. The choice of the packing position is done by
evaluating a score, defined as the percentage of the item perimeter which touches the
atlas borders and other items already packed. For each new item, the score is evaluated
twice, for the two item orientations, and the highest value is selected.

e TPIM w/o image rotation: touching perimeter without rotation. Same as TPIM, but
not allowing for rotation of the original images when packing. Score is evaluated only
once since only one orientation is possible.

From the algorithms, BASIC is the fastest (shortest generation time) and produces good
results, whereas TPIM is the most efficient (highest used area/total atlas size ratio).

Scaling texture images is another means of reducing file size and increasing loading speed. A
scale factor of 0.2 to 0.5 often still offers a fairly good image quality while it has a major
positive effect on these both issues. Default value is 1.0 (no scaling). This setting is
independent from the atlas setting and both can be combined together. It is possible to
generate atlases and then scale them to a smaller size for yet shorter loading times in Earth
browsers.

In the next parameter section, the fill color of the roof and wall surfaces can be set by clicking
on the corresponding color box to open the color selection dialog. The alpha value that affect
the transparency of all surface colors can also be selected from a range of 0 (completely
transparent) to 255 (completely opaque).



208 3D Geodatabase for CityGML 2019

Note:  This setting only takes effect if none of the appearance themes (as defined in the
CityGML specification [Groger et al. 2012]) is selected or available in the currently
connected 3DCityDB instance.

Buildings can be put together in groups into a single model/placemark. This can also speed up
loading, however it can lead to conflicts with the digital terrain model (DTM) of the Earth
browser, since buildings grouped together have coordinates relative to the first building on the
group (taken as the origin), not to the Earth browser's DTM. Only the first building of the
group is guaranteed to be correctly placed and grounded in the Earth browser. If the objects
being grouped are too far apart this can result in buildings hovering over or sinking into the
ground or cracks appearing between buildings that should go smoothly together.

Up to Google Earth 7, no highlighting of model placemarks loaded from a location other than
Google Earth's own servers is supported natively (glowing blue on mouse over). Therefore, a
highlighting mechanism of its own was implemented in the KML/COLLADA/gITF exporter:
highlighting is achieved by displaying a somewhat "exploded” version of the city object being
highlighted around the original object itself. "Exploded” means all surfaces belonging to the
object are moved outwards, displaced by a certain distance orthogonally to the original
surface. This "exploded"” highlighting surface is always present, but not always visible: when
the mouse is not placed on any building (or rather, on the highlighting surface surrounding it
closely) this "exploded” highlighting surface has a normal style with an alpha value of 1,
invisible to the human eye. When the mouse is place on it, the style changes to highlighted,
with an alpha value of 140 (hard-coded), becoming instantly visible, creating this model
placemark highlighted feel. The displacement distance for the exploded highlighting surfaces
can be set here. Default value is 0.75m.

Figure 103: Object exported in the COLLADA display form being highlighted on mouseOver



3D Geodatabase for CityGML 2019 209

This highlighting mechanism only works in Google Earth and has an important side effect:
the model's polygons will be loaded and displayed twice (once for the representation itself,
once for the highlighting), having a negative impact in the viewing performance of the Earth
browser. The more complex the models are, the higher the impact is. This becomes
particularly noticeable for models exported from a LoD3 basis upwards. The highlighting and
grouping options are mutually exclusive.

GenericCityObject

As previously stated: in addition to the standard support for surface and solid geometry
exports, other geometry types like point and line for the feature class GenricCityObject can
also be exported in KML format. The related rendering node contains two further
independent subnodes (“Surface and Solid” and “Point and Curve”) that allows for
customizing the export of different geometry types individually. As the subnode “Surface and
Solid” has similar settings illustrated in the previous section, only the settings within the
subnode “Point and Curve” will be explained in the following paragraphs.



210 3D Geodatabase for CityGML 2019

-
T

3D City Database Importer/Exporter

File Project View Help
Import Export KML/COLLADA/GITF Export ADE Manager SPSHG Database Preferences
--CityGML Import Point and Curve
--CityGML Export
(=-KML [COLLADA/gITF Expart Point rendering options
|~ General Altitude Mod
[=+Rendering Slhrl=
- Building damp to ground "
----- WaterBody
L andUse @® cros
""" Vegetation Thickness 3
----- Transportation
Relief Color
- CityFurniture -
] Highlight when onMouseOver
[E-GenericCityObject LA
+-Surface and Solid Highlighted thickness 6%
CityObjectGroup Highlighted color
--Bridge O Icon
----- Tunnel
[+-Balloon Caolor -
- Altitude fTerrain o =
[r-Database cdle hd
[-General () Cube
Length of Side 1%
Fill color
Highlight when onMouseQver
Highlighted fill color
Curve rendering options
Altitude Mode
clamp to ground ~
Thickness 3%
Color
Highlight when onMouseQver
Highlighted thickness =
Highlighted color
Restore Default Apply
Ready Database disconnected

Figure 104: Rendering settings for point and curve geometry exports for GenericCityObject.

The field Altitude mode specifies how the Z-coordinates (altitude) of the exported point

geometries are interpreted by the earth browser. Possible value may be one of the following
options:

e absolute: the altitude is interpreted as an absolute height value in meters according to
the vertical reference system (EGM96 geoid in KML).

e relative: the altitude is interpreted as a value in meters above the terrain. The absolute
height value can be determined by adding the attitude to the elevation of the point.



3D Geodatabase for CityGML 2019 211

clamp to ground: the altitude will be ignored and the point geometry will be always
clamp to the ground regardless of whether the terrain layer is activated or not.

Three setting options are available which allow user to choose a more appropriate display
form for point geometry on the 3D map:

Cross: The point geometry can be spatially represented by using a cross-line in the
form like “X” with the length size of around 2 meters (hard-encoded). Changing the
thickness and color settings will affect the width of the cross-line geometry in pixels
and the display color respectively. The mouseOver highlighting effect is also
supported and can be switched on and off by the user. When highlighting is enabled,
further settings can be made for the thickness and color properties of the highlighting
geometry.

Imagelor20,aFierclVest

Gox \:Ql\'¢ i1t

Figure 105: An exported point geometry object displayed as a cross-line.

Icon: An alternative way for displaying point geometry in the earth browser is to use
the KML’s native point placemark that can be represented with an icon in a user-
defined color. The size of the icon can be determined with the help of the Scale
option, where the default value is 1.0 (no scaling) which can give a fairly good
perception.



212 3D Geodatabase for CityGML 2019

GOOQIC Eart

Figure 106: An exported point geometry object displayed as an icon.

e Cube: Another possibility of representing the point geometry is to use a small solid
particle whose central point should be identical to the target point. Similar to the
options (Cross and Icon) described above, settings options for the size, color, and
highlighting effect can also be adjusted to achieve an optimal visual effect.

Figure 107: An exported point geometry object displayed as a small cube.

The rendering settings for the export of curve geometry objects can be configured in a similar
manner as those of point geometry with the display form “Cross”.

Note: When displaying curve geometry objects in Google Earth, the altitude modes like
absolute and relative may result in the curves intersecting with or hovering over the earth
ground. If the user wants to keep the curve geometry objects always being draped on the earth
ground, the altitude mode clamp to ground shall be chosen.



3D Geodatabase for CityGML 2019 213

5.6.3.3 Information Balloon Preferences

KML offers the possibility of enriching its placemark elements with information bubbles, so-
called balloons, which pop up when the placemark is clicked on. This is supported by the
Importer/Exporter regardless of the display form in which the objects is exported.

Note:  When exporting in the COLLADA display form it is recommended to enable the
"highlighting on mouseOver" option, since model placemarks not coming from
Google Earth servers are not directly clickable, but only through the sidebar.
Highlighting geometries are, on the contrary, directly clickable wherever they are

loaded from.

Note:  If you want to use the 3DCityDB-Web-Map-Client (see chapter 8 for more details) to
visualize the exported datasets (KML/gITF models), the options (the both
checkboxes shown in Figure 108) for creating information balloons shall be
deactivated, since the 3DCityDB-Web-Map-Client does not provide support for
showing information balloons. In stead, it utilizes the online spreadsheet (Google

Fusion Table) to query and display attribute information of the respective objects.

Balloon preferences can be set independently for each CityGML top-level feature type. That
means every object can have its own individual template file (so that for instance, WaterBody
balloons display a different background image as Vegetation balloons), and it is perfectly
possible to have information bubbles for some object types while some others have none. For
GenericCityObject, the point and line geometry object can also has its own individual balloon
settings. The following example is set around Building balloons but it applies exactly the
same for all feature classes.

& 3D City Database Importer/Exporter

File Project View Help

Import Export KML/COLLADA/gITF Export ADE Manager SPSHG Database Preferences

[-CityGML Import Building

[+~ CityGML Export

=I-KML/COLLADA/gITF Export

5 ----fGeneraI g por Placemarks must indude <description= (balloon]

[}-Relllﬂdering Balloon content source
[=-Balloon ) . .
_____ (O} generic attribute "Balloon_Content
----- WaterBody ® &
~LandUse
X Browse
----- Vegetation
""" Transportation (7)) selected file only when no generic attribute available
-Relief
--CityFurniture
[-GenericCityObject Export balloon contents into & separate file for each object
-CityObjectGroup {must allow access to local files in Google Earth)
--Bridge
----- Tunnel
- Altitude,Terrain
[+-Database
[+-General
Restare Default Apply
Ready Database disconnected

Figure 108: Building Balloon settings.



214 3D Geodatabase for CityGML 2019

The contents of the balloon can be taken from a generic attribute called Balloon_Content
associated individually to each city object in the 3DCityDB. They can also be uniform for all
objects in an export by using an external HTML file as a template, or a combination of both:
individually and uniformly set, the Balloon_Content attribute (individually) having priority
over the external HTML template file (uniform). A few Balloon HTML template files can be
found after software installation in the subfolder templates/balloons of the installation
directory.

The balloons can be included in the doc.kml file generated at export, or they can be put into
individual files (one for each object) written together into a "balloon” directory. This makes
later adaption work easier if some post-processing (manual or not) is required. When balloon
contents are put into a separate file for each exported object, access to local files and personal
data must be granted in Google Earth (Tools - Options - General) for the balloons to show.

The balloon contents do not need to be static. They can contain references to the data
belonging to the city object they relate to. These references will be dynamically resolved (i.e.:
the actual value for the current object will be put in their place) at export time in a way similar
to how Active Server Pages (ASP) [Microsoft, 2015] work. Placeholders embedded in the
HTML template, beginning with <3DCityDB> and ending with </3DCityDB> tags, will
be replaced in the resulting balloon with the dynamically determined value(s). The HTML
balloon templates can also include JavaScript code.

For all concerns, including dynamic content generation, it makes no difference whether the
template is taken from the Balloon_Content generic attribute or from an external file.

Balloon template format. As previously stated, a balloon template consists of ordinary
HTML, which may or may not contain JavaScript code and <3DCityDB> placeholders for
object-specific content. These placeholders follow several elementary rules.

Rules for simple expressions
e Expressions begin with <3DCityDB> and end with </3DCityDB>. Expressions are
not case-sensitive.

e Expressions are coded in the form "TABLE/[AGGREGATION FUNCTION]
COLUMN [CONDITION]". Aggregation function and condition are optional. When
present they must be written in square brackets (they belong to the syntax). These
expressions represent an alternative coding of a SQL select statement: SELECT
[AGGREGATION FUNCTION] COLUMN FROM TABLE [WHERE
condition]. Tables refer to the underlying 3DCityDB table structure (see chapter
2.3.2 for details).

e Each expression will only return those entries relevant to the city object being
currently exported. That means an implicit condition clause somewhat like
"TABLE.CITYOBJECT ID = CITYOBJECT.ID" is always considered and does
not need to be explicitly written.



3D Geodatabase for CityGML 2019 215

Results will be interpreted and printed in HTML as lists separated by commas. Lists
with only one element are the most likely, but not exclusively possible, outcome.
When only interested in the first result of a list the aggregation function FIRST
should be used. Other possible aggregation functions are LAST, MAX, MIN, AVG, SUM
and COUNT.

Conditions can be defined by a simple number (meaning which element from the
result list must be taken) or a column name (that must exist in underlying 3DCityDB
table structure) a comparison operator and a value. For instance: [2] or [NAME =

'abec'].

Invalid results will be silently discarded. Valid results will be delivered exactly as
stored in the 3DCityDB tables. Later changes on the returned results - like substring()
functions - can be achieved by using JavaScript.

All elements in the result list are always of the same type (the type of the
corresponding table column in the underlying 3DCityDB). If different result types
must be placed next to each other, then different <3DCityDB> expressions must be
placed next to each other.

Special keywords in simple expressions

The balloon template files have several additional placeholders for object-specific
content, called SPECIAL KEYWORDS. They refer to data that is not retrieved “as is”
in a single step from a table in the 3DCityDB but has to undergo some processing
steps (not achievable by simple JavaScript means) in order to calculate the final value
before being exported to the balloon. A typical processing step is the transformation of
some coordinate list into a CRS different from the one the 3DCityDB is originally set
in. The coordinates in the new CRS cannot be included in the balloon with their
original values as read from the database (which was the case with all other expression
values so far), but must be transformed prior to their addition to the balloon contents.

Expressions for special keywords are not case-sensitive. Their syntax is similar to
ordinary simple expressions, start and end are marked by <3DCityDB> and
</3DCityDB> tags, the table name must be SPECIAL KEYWORDS (& non-existing
table in the 3DCityDB), and the column name must be one of the following:

CENTROID WGS84 (coordinates of the object’s centroid in WGS84 in the following
order: longitude, latitude, altitude)

CENTROID WGS84 LAT (latitude of the object’s centroid in WGS84)

CENTROID WGS84 LON (longitude of the object’s centroid in WGS84)

BBOX WGS84 LAT MIN (minimum latitude value of the object’s envelope in
WGS84)

BBOX WGS84 LAT MAX (maximum latitude value of the object’s envelope in
WGS84)

BBOX WGS84 LON MIN (minimum longitude value of the object’s envelope in
WGS84)



216

3D Geodatabase for CityGML 2019

BBOX WGS84 LON MAX (maximum longitude value of the object’s envelope in
WGS84)

BBOX WGS84 HEIGHT MIN (minimum height value of the object’s envelope in
WGS84)

BBOX WGS84 HEIGHT MAX (maximum height value of the object’s envelope in
WGS84)

BBOX WGS84 LAT LON (all four latitude and longitude values of the object’s
envelope in WGS84)

BBOX WGS84 LON LAT (all four longitude and latitude values of the object’s
envelope in WGS84)

No aggregation functions or conditions are allowed for SPECIAL KEYWORDS. If
present they will be interpreted as part of the keyword and therefore not recognized.

The SPECIAL_KEYWORDS list is also visible and available in its current state in the
updated version of the Spreadsheet Generator Plugin (see the following section). The
list can be extended in further Importer/Exporter releases.

Examples for simple expressions:

<3DCityDB>ADDRESS/STREET</3DCityDB>
returns the content of the STREET column on the ADDRESS table for this city object.

<3DCityDB>BUILDING/NAME</3DCityDB>
returns the content of the NAME column on the BUILDING table for this city object.

<3DCityDB>CITYOBJECT GENERICATTRIB/ATTRNAME</3DCityDB>
returns the names of all existing generic attributes for this city object. The names will
be separated by commas.

<3DCityDB>CITYOBJECT GENERICATTRIB/REALVAL

[ATTRNAME = 'H Trauf Min']</3DCityDB>
returns the value (of the REALVAL column) of the generic attribute with attrname
H Trauf Min for this city object.

<3DCityDB>APPEARANCE/ [COUNT] THEME</3DCityDB>
returns the number of appearance themes for this city object.

<3DCityDB>APPEARANCE/THEME [0]</3DCityDB>
returns the first appearance for this city object.

<3DCityDB>SPECIAL KEYWORDS/CENTROID WGS84 LON</3DCityDB>
returns the longitude value of this city object’s centroid longitude in WGS84.

<3DC1ityDB> simple expressions can be used not only for generating text in the balloons,
but any valid HTML content, like clickable hyperlinks:



3D Geodatabase for CityGML 2019 217

<a href="<3DCityDB>EXTERNAL REFERENCE/URI</3DCityDB>">
click here for more information</a>
returns a hyperlink to the object's external reference,

or embedded images:

<img src= "<3DCityDB>CITYOBJECT GENERICATTRIB/URIVAL
[ATTRNAME='TIllustration']</3DCityDB>" width=400>

This last example produces, for instance, in the case of the Pergamon Museum in Berlin:

<img src="http://upload.wikimedia.org/wikipedia/commons/d/
dl/FrisoaltarPergamo.jpg" width=400>

BLDG_00030000001829f9

Pergamon Museum

Address:
Bodestr. 1
10178, Berlin

Figure 109: Dynamically generated balloon containing an embedded image (image taken from Wikimedia).

Simple expressions are sufficient for most use cases, when only a single value or a list of
values from a single column is needed. However, sometimes the user will need to access more
than one column at the same time with an unknown amount of results. For these situations
(listing of all generic attributes along with their values is one of them) iterative expressions
were conceived.


http://upload.wikimedia.org/wikipedia/commons/d/d1/FrisoaltarPergamo.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d1/FrisoaltarPergamo.jpg

218

3D Geodatabase for CityGML 2019

Rules for iterative expressions

Iterative expressions will adopt the form:
<3DCityDB>FOREACH

TABLE/COLUMN [, COLUMN] [, COLUMN] [...] [, COLUMN] [CONDITION]
</3DCityDB>
[...]
HTML and JavaScript code (column content will be referred to as %1, %2, etc. and
follow the columns order in the FOREACH line. %0 is reserved for displaying the
current row number)
[...]
<3DCityDB>END FOREACH</3DCityDB>

No aggregation functions are allowed for iterative expressions. The amount of
columns is free, but they must belong to the same table. Condition is optional. Implicit
condition (data must be related to the current city object) applies as for simple
expressions.

FOREACH means truly "for each™. No skipping is possible. If skipping at display time
is needed it must be achieved by JavaScript means.

The generated HTML will have as many repetitions of the HTML code between the
FOREACH and END FOREACH tags as lines the query result has.

No inclusion of simple expressions or SPECIAL KEYWORDS between FOREACH and
END FOREACH tags is allowed.

No nesting of FOREACH statements is allowed.

Examples for iterative expressions:
Listing of generic attributes and their values:

<script type="text/javascript">
function ga value as tooltip (attrname, datatype, strval,
intval, realval)

{

document.write ("<span title=\"");
switch (datatype) {

case "1": document.write(strval);
break;

case "2": document.write(intval);
break;

case "3": document.write(realval);
break;

default: document.write ("unknown") ;

}s



3D Geodatabase for CityGML 2019

219

document.write ("\">" + attrname + "</span>")

<3DCityDB>FOREACH

14

CITYOBJECT GENERICATTRIB/ATTRNAME, DATATYPE, STRVAL,

INTVAL, REALVAL</3DCityDB>
ga_value as tooltip("%1",

"%2",

<3DCityDB>END FOREACH</3DCityDB>

</script>

"%3", "%4",

BLDG_0003000b006907e8

]
Address:

Rochstr. 9

Berlin

Available in: LoD2

Appearances: 1

Measured height: 78.05785 m

Existing generic attributes (mouseOver for values): ANZ_LOC,
EIG_KL_PV, EIG_KL_ST, FOLIE, GE_LoD2_zOffset, GMDE,
H_First_Max, H_First_Min, HNR, H_Trauf_Max, H_Trauf_Min, Kachel,
KREIS, LAND, LFD, OAR, RBEZ, STR, TexVersion

External reference name: 0003000b006907e8

/
’ 'J )

-
b
-

ARALLAL L L & 0o
\\-\\\-\‘\\\\
A Y
R \\‘\\‘\
SN\ \\\\\‘\ R N S

.

N\

AR N
N\

AR LR R R RN
\\\\\..\“

’
U

~

< -

N\
NN

4 L%

NN\
\ \\\

5

"%5")

14

-
*_N
N\

.Google
O

Figure 110: Model placemark with dynamic balloon contents showing the list of generic attributes.



220 3D Geodatabase for CityGML 2019

5.6.3.4 Altitude/Terrain Preferences

In order to ensure a perfect display of the exported datasets in the Earth browser, some
adjustments on the z coordinate for the exported 3D objects may be necessary.

= 3D City Database Importer/Exporter

Eile Project View Help

Import Export KML/COLLADA/gITF Export ADE Manager SPSHG Datsbase Preferences

[#-CityGML Import Altitude/ Terrain

[+]-CityGML Export

=-KML/COLLADA/gITF Export

& / /g Expor Use original z-Coordinates without transformation

- General
[#-Rendering Altitude mode
(-Baloon absolute
-Building >
----- WaterBody
-LandUse Altitude offset
""" Vegetation () Mo offset
----- Transportation
Relief () Constant (in m) 100.0
~CityFurniture (® Move each object to bottom height &
-G icCityCObject
D Cﬁ:gr;elc:;mi? (") Use generic atiribute "GE_LoDn_zOffset”
-Bridge Call the Google Elevation API when no data is available
""" Tunine| To use the Sevation AFT enter an APT key in the general preferences
A ltitude Terrain
[+-Database
[#-General
Restore Default Apply
Ready Database disconnected

Figure 111: Altitude/Terrain settings.

Use original z-Coordinates without transformation

Depending on the spatial database used, the transformation of the original coordinates to
WGS84 will include transformation of the z-coordinates (PostGIS >= 2.0 or Oracle >= 11g)
or not (Oracle 10g). To make sure only the planimetric (x,y) and not the z-coordinates are
transformed this checkbox must be selected. This is useful when the used terrain model is
different from Google Earth’s and the z-coordinates are known to fit perfectly in that terrain
model.

Another positive side-effect of this option is that GE_LoDn_zOffset attribute values
(explained in the following section) calculated for Oracle 10g keep being valid when imported
into PostGIS >= 2.0 or Oracle >= 11g. Otherwise, when switching database versions and not
making use of this option, GE_LoDn_zOffset values must be recalculated again.

GE_LoDn_zOffset attribute values calculated for Oracle 10g are consistent for all
KML/COLLADA/gITF exports from Oracle 10g. The same applies to PostGIS >= 2.0 or
Oracle >= 11g. Only cross-usage (calculation in one version, export from the other) creates
inconsistencies that can be solved by turning z-coordinate transformation off.

This setting affects the resulting GE_LoDn_zOffset if used when a cityobject has none such
value yet and is exported in KML/COLLADA for the first time, so it is recommended to
remember its status (z-coordinate transformation on or off) for all future exports.



3D Geodatabase for CityGML 2019 221

Altitude mode

Allows the user to choose between relative (to the ground), interpreting the altitude as a value
in meters above the terrain, or absolute, interpreting the altitude as an absolute height value in
meters according to the vertical reference system used by the Earth browser (e.g., Google
Earth uses the EGM96 geoid, whereas Cesium uses the WGS84 ellipsoid), or clamp to
ground, which allows the exported objects to be always clamped to ground.

This means, when relative altitude mode is chosen, the z-coordinates of the exports represent
the vertical distance from the digital terrain model (DTM) of the Earth browser, which should
be 0 for those points on the ground (the building's footprint) and higher for the rest (roof
surfaces, for instance). However, z-coordinate values of the city objects stored in a 3DCityDB
usually have values bigger than 0, so choosing this altitude mode will often result in exports
hovering over the ground.

Ws——|mage® 2011 AeroWest
Wimage ©201)DigitalGlobe
Imagel@201,GeoContent

Lsoogle
C

Figure 112: Possible export result with relative altitude mode.

When absolute altitude mode is chosen, the z-coordinates of the exports represent the vertical
distance from the vertical datum - the ellipsoid or geoid which most closely approximates the
Earth curvature, regardless of the DTM at that point. This implies, choosing this altitude mode
may result in buildings sinking into the ground wherever the DTM indicates there is a hill or
hovering over the ground wherever the DTM indicates a dent.

When the clamp to ground altitude mode is chosen, the z-coordinate values of the exported
objects will be ignored and every surface geometry of the KML models will be forced to lie
on the surface of the ground.



222 3D Geodatabase for CityGML 2019

For a proper grounding, the Altitude offset setting can additionally be used so that a positive
or negative offset value can be applied to all z-coordinates of the exports, moving the city
objects up and down along the z-axis until they match the ground.

Note:  Both Altitude mode and Altitude offset settings will only take effect when the city
objects are exported in the Geometry or COLLADA/gITF display forms. When, for
example, the Footprint display form is selected, The KML/COLLADA/QITF-
Exporter will internally use the clamp to ground altitude mode to ensure that the
exported geometries will be always clamped to ground regardless of the altitude
mode chosen by the user. Likewise, when exporting in the Extruded display form,
the relative altitude model will be internally applied and the height value of the
respective city object will be used to represent the relative height above the ground.

Altitude offset

A value, positive or negative, can be added to the z coordinates of all geometries in one export
in order to place them higher or lower over the earth surface. This offset can be O for all
exported objects (no offset), it can be constant for all (constant), or it can have an individual
value for each object to ensure that the bottom of the object is placed on the earth surface.

The first option no offset implies that the z-coordinates of all geometries are kept unchanged
at export time if the option Use original z-Coordinates without transformation is selected.
The second option constant is particularly appropriate for exports of a single city object,
allowing some fine-tuning of its position along the z-axis.

When exporting regions - via bounding box settings -, the other two options, Move each
object to bottom height 0 and Use generic attribute "GE_LoDn_zOffset", are recommended.

Once the option Move each object to bottom height O is selected, the elevation value of the
lowest point for every object will be calculated and its inversed value should exactly equal to
the zOffset value of the respective object. This zOffset value will be used for adjusting the z-
coordinates of the object to ensure that its lowest point has a height of 0 meter. This setting is
particularly advisable, since combined with the relative altitude mode the exported objects
can always be properly placed on the ground in Google Earth regardless of whether its terrain
layer is activated or not. However, if the absolute altitude is chosen, a proper grounding of the
objects requires that the terrain layer in Google Earth must be deactivated.

Note: Regardless of the chosen altitude mode, the Cesium-based 3DCityDB-Web-Map-
Client always interprets the altitude as an absolute height value in meters according to
the WGS84 ellipsoid reference system. Thus, the option Move each object to bottom
height 0 can only ensure a proper grounding of the objects on the Cesium Virtual
Globe when its WGS84 ellipsoid terrain model (default) is activated.

When choosing the absolute altitude model and displaying city objects on 